NONMEM Users Guide - Part IV
NM-TRAN Guide
September 2020
by
Alison J. Boeckmann
Stuart L. Beal

Lewis B. Sheiner

NONMEM Project Group
University of California at San Francisco

ICON plc, Gaithersburg, Maryland

Copyright by the Regents of the University of California
1992

Copyright by ICON plc, Gaithersburg, MD
2014,2015,2017,2020

All rights reserved

NM-TRAN Guide

Preface to Sth Edition

The appearance of this 5th edition of the NM-TRAN Guide coincides with the appearance of NM-TRAN
7.5.0 and NONMEM 7.5.0. It contains changes since the 4th. edition, which appeared with NM-TRAN
7.4.2 and NONMEM 7.4.2.

Significant changes since the previous edition are marked with bars.
This version supports the new features of NONMEM and PREDPP and NM-TRAN Versions 7.5.0.

Abbreviated code:
PRED_IGNORE_DATA, PRED_IGNORE_DATA_TEST feature.
See Chapter IV Section E.6

New output file:
FDATA.csv
See Chapter II .B.1

Compartment Name Substitution
Compartment names defined in $SMODEL are automatically available for substitution without
requiring SABBR REPLACE records. This is called "implicit" compartment name replacement.
See Chapter V, C.4. $MODEL Record

Symbolic Label Substitutions at STHETA, SOMEGA, and $SIGMA records

The $THETA record may be used to specify a symbolic label substitution and initial values for a
THETA.
See Chapter III B.9

The $OMEGA record may be used to specify symbolic label substitution for an ETA and initial
values for SOMEGA
See Chapter III B.10

The $SIGMA record may be used to specify symbolic label substitution for an EPS and initial val-
ues for $SIGMA
See Chapter III B.11

This preface mentions some of the most important changes to NM-TRAN, but is not complete. NON-
MEM Users Guide VIII and on-line help and Introduction to NONMEM 7 should also be consulted.

Table of Contents

I. Introduction
II. General Con31deratrons

A. Generated Subroutines and nmfe
B. Files
B.1 NM-TRAN Flles
B.2 NONMEM Files .
C. Data Set Translation - The Data Preprocessor
C.1. Fieldless Format
C.2. Day-Time Translation .
C.3. Included Comments
C.4. Generated ID Data Items .
C.4.1. Background
C.4.2. Implementation
D. Odd-type Data

E. Implementation of NMPRD4 PRINFN and DECLAREVARIABLES in NONMEM 7

E.1 Implementation of NMPRD4 in NONMEM 7 .
E.2. Implementation of PRINFN in NONMEM 7 (nm71)

E.3. Implementation of DECLAREVARIABLES in NONMEM 7 .
III. Control Records

A. Record Syntax - General

B. Record Syntax - Specific Records
B.1. $PROBLEM Record .
B.2. S$INPUT Record
B.3. $INDEX Record .
B.4. $CONTR Record .
B.5. $DATA Record
B.6. $SUBROUTINES Record .
B.7. $ABBREVIATED Record .
B.8. $PRED Record .
B.9. $THETA Record .
B.10. SOMEGA Record
B.11. $SIGMA Record .
B.12. $MSFI Record
B.13. $SIMULATION Record
B.14. $SESTIMATION Record
B.15. $SCOVARIANCE Record
B.16. $TABLE Record . .o
B.17. $SCATTERPLOT Record .
B.18. $SUPERPROBLEM Record
B.19. $WARNING Record .
B.20. $INCLUDE Record . . .
B.21. $SNONPARAMETRIC Record
B.22. $OMIT Record
B.23. $PRIOR Record . .
B.24. $STHETAP, $STHETAPV Record
B.25. $OMEGAP, $OMEGAPD Record

(o) Ne) N R S L

B.26. $SIGMAP, $SIGMAPD Record 68

B.27. $SCHAINRecord . 68
B.28. $SIZESRecord
B.29. SANNEAL Record . 69
B.30. $ETAS Record
B.31. $PHISRecord . 69
B.32. SLEVELRecord .10
B.33. $SDEFAULTRecord .10
IV. AbbreviatedCode ... 1N
A. Introduction0N
B. General Restrictions . . N 2
C. Restrictions Specific to an Abbrev1ated Code for PRED A
D. Extensions Specific to an Abbreviated Code forPRED 76
E. Some Special right-hand Quantities 71
E.1. MIXNUMand MIXEST and MIXP« .« « .« .« 77
E.2. COMACTo, T8
E3. coM(n) A
E.4. NONMEM Counter Varlables A
E.5. Other Reserved Variableso 80
E.6. PRED_IGNORE_DATA_TEST and PRED__ IGNORE _DATA 83
F. PRED-Defined Items . 83
G. PRED Error-Recovery ... 44
G.1. Background 84
G.2. Implementation 7
G.3. Rejecting Simulated Results and Slmulatlon Error Forglveness T
H. Pseudo-Statements . 86
I.1. Verbatim Code . . . e ¢
I.2. Verbatim Code with NONMEM 7 e * K
J. Advanced Coding Techniques . . . 8
J.1. Indicator Variables, Random Varlables and Recurswn Code T
J.2. Use of NONMEM’s PASS Utility 9
J.3. The DOWHILE Statement . 9
J4. MU Modelling . 98
J.5. INCLUDE statement . . . 1Y
J.6. PROTECT functions (nm74) .o e e e .99
J.7. $ABBR FUNCTION and $ABBR VECTOR (nm74) e 100
L.$MIXRecord .o
M. $THETAI Record . 102
N.$THETAR Record .10
V. NM-TRAN with PREDPP . 103
A. Introduction . . . (0 X
B. Data Set Translation w1th PREDPP . (0 X)
C. Control Records with PREDPP . 104
C.1. $INPUTRecord ..105
C.2. $BIND Record . . . S [0}
C.3. $SUBROUTINES Record . 0]
C4. $MODELRecord . 110
C.5. $PKRecord L. 118
C.6. $SERRORRecord . 118

C.7. $DES Recordo

C.8. $AESINITIAL Record

C.9. $AES Record .

C.10. $TOL Record .

C.11. $INFN Record o
Appendix I. NM-TRAN Control Records .
Appendix II. NM-TRAN Data Set -- Example .
Appendix III. NM-TRAN Outputs -- Example .
Appendix IV. Another Example
Appendix V. NM-TRAN Control Records with PREDPP

Appendix VI. NM-TRAN Data Set with PREDPP -- Example .
Appendix VII. NM-TRAN Outputs with PREDPP -- Example .

Appendix VIII. Additional NM-TRAN Control Streams .
Appendix IX. Another Example with PREDPP

124
127
129
131
133
135
138
145
149
151
155
162
165

1. Introduction

NM-TRAN stands for NONMEM Translator, a preprocessor to NONMEM which translates user-inputs
into i) a NONMEM data set, ii) a NONMEM control stream, and iii) various subroutines which must be
included in a NONMEM load module. It is a separate computer program which is written in FORTRAN
90/95, and one precedes a NONMEM run by first running it. This document describes NM-TRAN and
how to use it. In order to read this document the reader should be familiar with the concepts and nomen-
clature associated with the statistical models expressible in NONMEM. This familiarity can be obtained
by reading modeling discussions in Guides I and VI. At the same time attention should also be paid to
material describing the concepts and nomenclature associated with NONMEM data records and data
items (especially Guide I, section B.1) and PREDPP event records and data items (especially chapters I,
II, and V of Guide VI), and to the concepts and nomenclature associated with the various kinds of NON-
MEM output. However, material in these guides describing how control records, file records, and user-
supplied subroutines are constructed may be skipped. Beginning NONMEM users who desire to analyze
pharmacokinetic data will find it particularly helpful to first read Guide V. That document is written
especially for the beginning user and from the point of view that the user is going to use NM-TRAN.
Much of NM-TRAN, as well as much about NONMEM modeling, is described there.

The inputs for NM-TRAN include a data set, the NM-TRAN data set , but this data set need not be for-
matted quite as rigidly as a NONMEM data set. NM-TRAN translates the NM-TRAN data set into a
NONMEM data set. The part of NM-TRAN which performs this translation is called the Data
Preprocessor .

The inputs for NM-TRAN also include a control stream, the NM-TRAN control stream , but, again, the
language for this control stream is much more user-friendly than the fixed-field numerical-code type lan-
guage used for a NONMEM control stream. NM-TRAN translates the NM-TRAN control stream into a
NONMEM control stream.

The NM-TRAN control stream can (optionally) also include abbreviated FORTRAN codes from which
various completely FORTRAN-coded NONMEM subroutines are generated. Thus, for example, from
one such abbreviated code a PRED subroutine can be generated which computes the partial derivatives of
the statistical model with respect to /7 and ¢ random variables and stores them in the G and H arguments
of the PRED routine. The abbreviated code itself does not directly involve partial derivatives. In effect,
NM-TRAN performs symbolic differentiation, and this ability probably represents its most useful pur-
pose. An abbreviated code also allows the statistical models to be represented in a natural and perspicu-
ous symbolic way, wherein the 77 and ¢ variables are explicitly expressed. Indeed, one need not even un-
derstand the allusions that have just been made to partial derivatives and G and H arrays; it is enough to
understand that a statistical model may be represented in a natural way and that from this representation
NM-TRAN automatically generates information required by NONMEM.

As powerful a device as is NM-TRAN abbreviated code, such code is still somewhat limited, and certain
complicated subroutines which could be useful cannot be generated from it alone. It will probably be
adequate, though, for the purposes of any beginning NONMEM user.

It should be emphasized that NONMEM can be used without NM-TRAN. NM-TRAN simply makes the
user’s tasks easier, and we strongly recommend the use of this preprocessor, especially for beginning
NONMEM users.

Here follows an example of an NM-TRAN control stream; it is meant to be used along with the example
of an NM-TRAN data set shown in Appendix II. This NM-TRAN control stream is recorded on the
NONMEM distribution medium as CONTROL4; see Guide III. NM-TRAN will translate the data set
and control stream to a NONMEM data set, a NONMEM control stream, and a completely coded PRED
subroutine. The effect of using these three NONMEM inputs in a NONMEM run will be to produce
essentially the same output obtained from using the NONMEM control stream and PRED subroutine
shown in Figures 75 and 74 of Guide 1. That is, the effect will be to produce the same data analysis for

NM-TRAN Guide - Chapter I Introduction

the population theophylline data as that presented and detailed in chapter F of that guide. The data set,
control stream, and PRED routine produced by NM-TRAN are given in Appendix III. They differ some-
what from the data set, control stream and PRED routine of Figures 75 and 74. (In fact, the NONMEM
control stream of Fig. 75 contains the data itself, rather than the data being in a separate file. NONMEM
data can be embedded in a NONMEM control file.) However, the NONMEM output is the same, no
matter whether NM-TRAN is used or not. Subroutine PRED shown in Appendix III is a simplified ver-
sion of the subroutine PRED generated by NONMEM 7.3’s NM-TRAN.}

SPROB THEOPHYLLINE POPULATION DATA

SINPUT ID DOSE TIME CP=DV WT
SDATA THEO
SPRED

; THETA (1) =MEAN ABSORPTION RATE CONSTANT (1/HR)
; THETA (2) =MEAN ELIMINATION RATE CONSTANT (1/HR)
; THETA (3) =SLOPE OF CLEARANCE VS WEIGHT RELATIONSHIP (LITERS/HR/KG)
; DOSE=WT-ADJUSTED DOSE (MG/KG)
; DS=NON-WT-ADJUSTED DOSE (MG)
IF (DOSE.NE.0O) THEN
DS=DOSE*WT
W=WT
ENDIF
KA=THETA (1) +ETA (1)
KE=THETA (2) +ETA (2)
CL=THETA (3) *W+ETA (
D=EXP (-KE*TIME) -EX
E=CL* (KA-KE)
F=DS*KE*KA/E*D
Y=F+EPS (1)

3)
P (-KA*TIME)

S$STHETA (.1,3,5) (.008,.08,.5) (.004,.04,.9)
SOMEGA BLOCK(3) 6 .005 .0002 .3 .006 .4

$SIGMA .4

SEST MAXEVAL=450 PRINT=5

Scov

STABLE ID DOSE WT TIME

$SSCAT (RES WRES) VS TIME BY ID

Much of the remainder of this document is devoted to describing the language illustrated in this example.

An NM-TRAN control stream includes control type information. It also can include information indicat-
ing that a FORTRAN-coded PRED routine is being supplied by the user, or it can include an abbreviated
code from which a PRED routine can be generated (as in the example). However, NM-TRAN is also
designed to make the use of PREDPP easier. PREDPP is a special, but elaborate, PRED routine that has

T In order to obtain subroutine PRED for Appendix III, the record SABBR NOFASTDER DERIV2=NO,
was added to the control stream so that code for eta first partial derivatives is not collected and performed
separately, and code for eta second derivatives is not generated. Other statements usually produced by
NM-TRAN (such as those for NMPRD4; see Chapter II) were deleted because they are not needed for this
example. Other code not relevant to the Estimation Method of figure 75 was also omitted for the sake of
clarity.

NM-TRAN Guide - Chapter I Introduction

been developed to assist with the task of analyzing pharmacokinetic data; see Guide VI. So, the NM-
TRAN control stream can also include special control type information which can be used only when
PREDPP is used and which facilitates the use of PREDPP, and it can also include abbreviated codes from
which routines for PREDPP, which are otherwise user-supplied (INFN, MODEL, PK, ERROR, DES,
AES), can be generated.

It may also contain abbreviated code from which a user-supplied MIX subroutine can be generated, and
control record information from which a user-supplied PRIOR subroutine can be generated. This is inde-
pendent of the choice of $PRED vs. PREDPP.

Accordingly, this document is divided into a few major parts which separate PREDPP considerations
from general NONMEM considerations (see the Table of Contents).

NM-TRAN Guide - Chapter 11 General Considerations

II. General Considerations

IL.II.A. Generated Subroutines and nmfe

A subroutine may be generated from an abbreviated code in an NM-TRAN control stream, as explained
in chapter I. Such a routine is called a generated subroutine , or a generated code . With NONMEM 7
this is the only choice because NM-TRAN Library subs are no longer supported.

Typically, NM-TRAN is run using shell script nmfe74 and batch file nmfe74.bat (nmfe stands for "Non-
Mem Front-End"; "74" indicates the version of NONMEM). These are supplied with NONMEM. NM-
TRAN creates certain files for use by nmfe. However, any user-written or third-party interface may be
used. It may (or may not) invoke NM-TRAN before running NONMEM. It may use any of the files cre-
ated by NM-TRAN.

ILIL.B. Files

ILIL.B.1 NM-TRAN Files

NM-TRAN takes its input from two files: one file contains the NM-TRAN control stream, and one file
contains the NM-TRAN data set. The control stream points to the name of the file containing the data
set. For more information about how to run NM-TRAN, see Guide III. NM-TRAN outputs several files
with names as shown:

File Name Content
1. FDATA NONMEM data set
2. FCON NONMEM control stream
3. FSUBS generated and user subroutines
4, FSTREAM NONMEM file stream
5. FREPORT report file

FDATA and FCON are needed in a NONMEM run and have already been mentioned in chapter I. If
NM-TRAN actually modifies the NM-TRAN data set, then the modification, the NONMEM data set, is
contained in FDATA.

With NONMEM 7.5, an additional file, FDATA.csv is produced that outputs the contents of its input data
file (typically FDATA) in a comma delimited file format, so you can check how NONMEM interprets the
input data. The records in FDATA.csv may differ from those in FDATA in the following cases. If
REPL/REPL _ is used, the replicated form of the data will appear in FDATA .csv. Also, records excluded
by PRED_IGNORE_DATA will not be present in FDATA.csv.

If, though, NM-TRAN does not need to modify the NM-TRAN data set, then the NONMEM data set is
simply identified with the NM-TRAN data set and is found in whatever file contains the latter. FSUBS
contains the FORTRAN-coded subroutines generated from abbreviated codes. With NONMEM 7,
FSUBS contains additional subroutines; see below. All subroutines in FSUBS must be compiled and the
resulting object modules used in the NONMEM load module.t FSTREAM is also needed in the NON-
MEM run. The NONMEM file stream is described in Guide I, section B.3. Sometimes a NONMEM run
does not need a file stream (see Guide I, section C.3.1). However, whenever NM-TRAN is used before
NONMEM, a NONMEM file stream is needed. (This is because with NM-TRAN, the NONMEM data
set is never embedded in the NONMEM control stream, and the NONMEM file stream is needed to point

T The NONMEM executable is also referred to as the NONMEM load module. This is a different usage of
the word "module" than the Fortran 90 MODULE’s discussed below; the latter will always have the word
MODULE in upper-case.

NM-TRAN Guide - Chapter 11 General Considerations

to the file containing the NONMEM data set.) FREPORT contains a list of all the routines which must
be present in a NONMEM load module in order to implement the NONMEM run specified by the NM-
TRAN inputs. It may be useful to the user to have this information, but this file is not needed by NON-
MEM. For more about how this information could be useful, see Guide III, which discusses the shell
script nmfe74 and batch file nmfe74.bat.

Examples of FDATA, FCON, FSTREAM, FREPORT, and FSUBS are given in Appendix III. These
examples result from using the NM-TRAN control stream shown in chapter I along with the NM-TRAN
data set shown in Appendix II.

FSUBS contains several subroutines and MODULES in addition to those generated for the user’s abbre-
viated code, as follows.

SUBROUTINE MUMODEL2 (nm71)
The MUMODEL?2 subroutine is based on the PRED or PK subroutine in FSUBS. It contains only
statements (if any) for the MU_ model, which is used in the new (Bayseian) methods of NON-
MEM. This subroutine is frequently called during the Estimation Step, more often than PRED or
PK. The fewer code lines that MUMODEL?2 has to go through to evaluate all the MU_s the more
efficient.

SUBROUTINE FSIZESR (nm72)
Starting with NONMEM 7.2, dynamic memory allocation is performed in NONMEM. Subroutine
FSIZESR contains the constants for the allocation in this run. The $SIZES record can be used to
override some of the values in FSIZESR. Constants set to 0 cannot be determined or are not given
by NM-TRAN and will default to the values hard-coded in resource/SIZES.f90}

MODULES NMPRD4, PRINFN, and DECLAREVARIABLES
NMPRD4 is an area of storage that is defined by NONMEM. It may be used by user-supplied and
generated code, and also by NONMEM. Variables stored in this area can be displayed by NON-
MEM in tables and scatterplots. It is possible for the user to set aside a portion of NMPRD4 for
variables defined in user-supplied code, or for variables directly controlled by the user (see
COMACT, COMRES, COMSAV in Chapters III.B.7 and IV.E.2). The implementation of
NMPRD4 changed with NONMEM 7.

PRINFN is an area of storage that may be used by user-supplied and generated code, but not by
NONMEM. PRINEN is generated only if an $INFN block of abbreviated code is present and
defines variables. The implementation of PRINFN changed with NONMEM 7.

DECLAREVARIABLES is an area of storage that is defined using the SABBREVIATED
DECLARE control record. (nm73)

See Section D, below, for more information.

SUBROUTINE THETAISUB and SUBROUTINE THETARSUB (nm73)
These subroutines implement the STHETAI and $THETAR blocks of code, respectively, if present
in the NM-TRAN control stream. If either or both blocks are not present, the corresponding sub-
routine is not present in FSUBS.

Several other files are also generated by NM-TRAN.

FSUBS_MU.F90
This file contains the MUMODEL2 portion of FSUBS (the MU_ model statements). File
FSUBS_MU is produced for easy reading by the user, and is not used by the NONMEM system. It
allows the user to see easily how the MU_ model is implemented in generated code. File
FSUBS_MU may be ignored.

TThe NONMEM installation directory contains several subdirectories. One is resource, in which the file
SIZES.f90 may be found. Another is util, which contains utility files such as nonmem_reserved_general
(see Chapter 1V.J.4).

NM-TRAN Guide - Chapter 11 General Considerations

FSIZES
File FSIZES contains the same values as the FSIZESR routine in FSUBS. File FSIZES is pro-
duced for easy reading by the user, and is not used by the NONMEM system. File FSIZES may be
ignored.

PRSIZES .f90 (nm72)
PRSIZES .f90 contains sizes for compiling PREDPP or a user-supplied or generated PRED ("pr
recompile” in nmfe74). This is discussed in Guide VI, Chapter VILA.

FMSG
This file contains normal and warning and error messages arising from the program’s efforts to
translate the NM-TRAN data set and control stream. The messages are also displayed at the termi-
nal by NM-TRAN. When errors are detected, Files 1-5 may be incomplete, and NONMEM should
not be run. Even if there are no fatal errors and NM-TRAN and NONMEM seem to terminate nor-
mally, the warning messages in FMSG should be reviewed, because they may describe situations in
which the NONMEM results may be incorrect.

FORIG, FREPL
When the $ABBR REPLACE statement is present in the NM-TRAN control stream, NM-TRAN
produces two files:
FORIG - Contains the original (pre-replacement) abbreviated code and $STABLE and $SCATTER
records.
FREPL - Contains the new (post-replacement) abbreviated code and $TABLE and $SCATTER
records.
These may be helpful for debugging.

FSUBS2, FSUBS.F90
FSUBS2 and FSUBS.F90 are copies of FSUBS.

thetair.f90
This file contains the subroutines THETAISUB and THETARSUB, if present in FSUBS.

ILIL.B.2 NONMEM Files
NONMEM creates a number of files during the run.
INTER

If an MSF is output, and intermediate output with iteration summaries is requested (i.e., SESTIM options
MSFI and PRINT are used), then NONMEM also writes the parameter estimates of these summaries to
the console and to file INTER, which now exists after the run terminates. INTER now include lines giv-
ing the parameter estimates in their natural unscaled space (NPARAMETR) as well as the UCP values
(PARAMETER) (nm72).

Additional output files are produced by NONMEM. These provide a more efficient way of way of
extracting numerical results from the analysis. Names of the files start with "root", where root is the
root name (not including extension) of the NM-TRAN control stream file. The files have names with
extensions (suffixes) .ext, .cov, .coi,

.cor, .phi, .phm, .grd, .shk, .shm, .cnv, smt, .rmt, etc. The file root.ext is called the raw output file.
The root name may be specified by SESTIMATION record option FILE. (nm72).

ILII.C. Data Set Translation - The Data Preprocessor

II.II.C.1. Fieldless Format

A NM-TRAN data set is much like a NONMEM data set. In particular, each data record consists of a
sequence of data items, these data items are of the the same types across all data records (unless some

NM-TRAN Guide - Chapter 11 General Considerations

data records serve as continuations for others), and the data records are grouped into individual records.¥
An example of a NM-TRAN data set is given in Appendix II, and the first two individual records of this
data set are these:

1 4.02 0. .74 79.6
1 0.25 2.84

1 0.57 6.57

1 1.12 10.5

1 2.02 9.66

1 3.82 8.58

1 5.1 8.36

1 9.05 6.89

1 7.03 7.47

1 12.12 5.94

1 24.37 3.28 .
2 4.4 0. 0. 72.4
2 .27 1.72

2 .52 7.91

2 1. 8.31

2 1.92 8.33

2 3.5 6.85

2 5.02 6.08

2 7.03 5.4

2 9. 4.55

2 12. 3.01

2 24.3 .90

This same data set could be used as a NONMEM data set; it conforms to all the requirements of a NON-
MEM data set. A dot (surrounded by blanks) would be interpreted in a NONMEM run as a data item
which is 0. Dots can substitute for 0 data items in order to improve the readability of the data set. Fields
of blanks can also be used for the same purpose; see, for example, the NONMEM data set in Appendix
III. This is because a FORTRAN format specification for the data set is always supplied in the NON-
MEM control stream. (Such a format specification can also be supplied in the NM-TRAN control
stream, and when it is, fields of blanks can be used in the NM-TRAN data set). However, there are other
NM-TRAN data sets which are convenient to use, but cannot be used as NONMEM data sets; NM-
TRAN must be used to translate these to NONMEM data sets.

In general, use of NM-TRAN simplifies things for the user. For one thing, it is not required that a FOR-
TRAN format specification be supplied in the NM-TRAN control stream. Without a format specification
there really need be no fields of fixed lengths, even though in the example the data items have been lined
up (in informal fields of fixed lengths) to improve readability. NM-TRAN understands two data items in
a data record to be separated by any number of blanks or by a comma. It recognizes and translates the
dot to a field of blanks (or to a field consisting of a specified character preceded by blanks).

The question "When Must a Format Specification be Included or Omitted?" is discussed in NONMEM
Users Guide - Part V Introductory Guide, Chapter 6, Section 10.4.

T Note the difference between a data record (which is a single record in a data file) and an individual
record, which is a group of contiguous data records having the same value for the ID data item and presum-
ably containing data from the same individual. (When the data are not population, then the all the data
records comprise a single individual record.)

NM-TRAN Guide - Chapter 11 General Considerations

Another way to format these data records for NM-TRAN is this:

1,4.02,0. .74 79.6
1,,0.25 2.84
1,,0.57 6.57
1,,1.12 10.5
1,,2.02 9.66
1,,3.82 8.58
1,,5.1 8.36
1,,9.05 6.89
1,,7.03 7.47
1,,12.12 5.94
1,,24.37 3.28
2,4.4,0. 0. 72.4
2,,.27 1.72
2,,.52 7.91
2,,1. 8.31
2,,1.92 8.33
2,,3.5 6.85
2,,5.02 6.08
2,,7.03 5.4
2,,9. 4.55
2,,12. 3.01
2,,24.3 .90

~
~

Beginning with NONMEM 7.1, The maximum number of characters in a data item is given by constant
SDF in resource/sizes.f90. This is 24. With previous versions, the maximum number was 12.

Notice that two successive commas act as a single dot, and a record may terminate with a data item
which is not the last one if the subsequent data items in the record can be represented by dots.

Such items are referred to as null data items. They are replaced by a field of blanks in the NONMEM
data set. Null data items can be instead be replaced with one consisting of a specified alphanumeric char-
acter. The NULL option of $DATA may be used to specify a different character (e.g., NULL=. or
NULL=0). See Chapter III.B.5.

A file saved from Excel as a csv file ("comma separated values") may used as an NM-TRAN input file.

Starting with NONMEM vi.2.0, a tab character may also be used to separate data items. E.g., let T stand
for the tab character.

"1T2" and "1,2" are read as "1 2"

"1TT2" and "1,,2" are read as "1 0 2"

Thus, a file saved from Excel as a txt file ("Text (tab delimited)" or "Windows Formatted Text") may also
be used as an NM-TRAN input file.

Starting with NONMEM VI1.2.0, MS-DOS formated files can be read in Unix. These are control files and
data files having a carriage return character at the end of the line. Such characters may appear as ""M" in
NONMEM output.

Useful information for operating systems as of 1992 can be found in the Introduction to Version VI
(intro.pdf). This information may be relevant to more recent operating systems. In particular, see
Section 26. "NM-TRAN datafiles - Ill-formed files"

Section 29. "NM-TRAN datafiles: Tab and "M".

NM-TRAN Guide - Chapter 11 General Considerations

Null data items as described above consist of a single dot (.) or consecutive commas or consecutive tabs.

It may happen that a record in the NM-TRAN data file is totally blank. NM-TRAN will produce an error
message unless $DATA option BLANKOK is used. In this case, there is no error message and the corre-
sponding record in the NONMEM data set will contain null values.

ILIL.C.2. Day-Time Translation
Another way to format these data records for NM-TRAN is this:

1 4.02 9:00 .74 79.6
1 9:15 2.84

1 9:34 6.57

1 10:07 10.5

1 11:01 9.66

1 12:49 8.58

1 14:06 8.36

1 18:03 6.89

1 16:02 7.47

1 21:07 5.94

1 33:22 3.28 .
2 4.4 8:00 0. 72.4
2 8:16 1.72

2 8:31 7.91

2 9:00 8.31

2 9:55 8.33

2 11:30 6.85

2 13:01 6.08

2 15:02 5.4

2 17:00 4.55

2 20:00 3.01

2 32:18 .90

Here the third data item of each record, which is a value of time in hours, has been expressed as a clock
time, rather than as a relative time. NM-TRAN can accept clock time; NONMEM (and PREDPP) can-
not. NM-TRAN translates a clock time to a relative time. Information in the NM-TRAN control stream
indicates that translation of this type should be performed; see section III.B.2. When this is done, all
times in the NM-TRAN data set are assumed to be clock times. A clock time is either of form hr:min, as
in the example, or hr.fr, where fr is a decimal fraction of the hour to two digits, using a military clock in
both cases. E.g. 2:45PM can be expressed either as 14:45 or 14.75.

With NONMEM 7.3, values may also have the form hh:mm:ss (i.e., hours:minutes:seconds). For exam-
ple, 8:45:29.

NM-TRAN provides five digits (xxxxx.xx), which allows relative time to be at most approximately 4166
days. Furthermore, when the $DATA record includes the option WIDE, six digits (XXXXXX.XX) are pro-
vided.

NM-TRAN makes a distinction between population data and single-subject data; see section C.4. If the
data are population data, then the clock time in the first data record of an individual record is translated
to relative time 0. If the data are single-subject data, then the clock time in the first data record of the
data set is translated to relative time 0. If PREDPP is used, then a time on a reset or reset-dose event
record is translated to relative time 0, whether the data type is population or single-subject.

NM-TRAN Guide - Chapter 11 General Considerations

Yet another way to format these data records for NM-TRAN is this:

1 4.02 10/1 9:00 .74 79.6
1 10/1 9:15 2.84

1 10/1 9:34 6.57

1 10/1 10:07 10.5

1 10/1 11:01 9.66

1 10/1 12:49 8.58

1 10/1 14:06 8.36

1 10/1 18:03 6.89

1 10/1 16:02 7.47

1 10/1 21:07 5.94

1 10/2 9:22 3.28 .
2 4.4 10/1 8:00 0. 72.4
2 10/1 8:16 1.72

2 10/1 8:31 7.91

2 10/1 9:00 8.31

2 10/1 9:55 8.33

2 10/1 11:30 6.85

2 10/1 13:01 6.08

2 10/1 15:02 5.4

2 10/1 17:00 4.55

2 10/1 20:00 3.01

2 10/2 08:18 .90

Here calendar dates have been included, and clock time has been treated modulo 24 hours. These dates
are called date data items . Information in the NM-TRAN control stream indicates that translation with
this type of data should be performed; see section III.B.2. Information in the NM-TRAN control stream
also indicates that the date data items should not appear in the NONMEM data set; only the relative time
data items should appear where clock time data items appear. More generally, instead of month followed
by day in date data items, day can follow month, and year can also be included at either the beginning or
end of the data items. Or, only day need be given. Again, the choice of format in this regard is specified
in the control stream. Regardless of format, with any date data item any non-numeric character, except
comma or blank, can separate the date fields. Here are some examples of possibilities: 10/1, 10-1,
10-1-1986, 10-1-86, 86-10-1. Leap years are recognized; they are years 4, 8, 12, etc. If year is omitted
from the format, the year is assumed to be year 0, which is not a leap year. When the date data items on-
ly give days (months and years are missing), then these data items can be any positive or negative inte-
gers, and for the purpose of computing relative times, they are ordered in the same way as are the inte-
gers.

If year is recorded with four digits, it is always processed correctly and the value of LAST20 is of no
consequence. The following discussion only affects years that are recorded with two digits. The year
1900 was not a leap year, but the year 2000 was a leap year. A constant LAST20 in
resource/TRGLOBAL.f90 affects how two digit years are interpreted.

One or two digit years > LAST20 are assumed to be in the 1900’s,

One or two digit years <= LAST20 are assumed to be in the 2000’s.

The default value of LAST20 is 50. Two digit years are interpreted as follows:

00-50 = 2000-2050

51-99 = 1951-1999

The option LAST20 on the $DATA record can be used to change how two digit years are interpreted. For
example, LAST20=-1 can be used when two digit years span the year 2051. All two digit years will be

10

NM-TRAN Guide - Chapter 11 General Considerations

assumed to be in the same century.

The TRANSLATE option of the $DATA record was new to NONMEM V and has been expanded with
NONMEM 7.3. Any values may be given for dividing TIME and II values, and any precisions may be
requested for the result. An example is:

SDATA TRANSLATE (TIME/0.01/6)

which divides TIME values by 0.01, and writes 6 digits to the right of the decimal. TRANSLATE may
be used to convert hours to days. E.g., TIME/24.000 or TIME/24.00. With NONEM 7.3, new choices
are TIME/F, TIME/F/D and II/F, II/F/D. F ("factor") and D ("digits") may be integer or real values. This
is independent of day-time translation. That is, TRANSLATE may be specified whether or not day-time
translation occurs, and is applied by NM-TRAN after day-time translation. The user must insure that the
units of PK parameters such as CL or K are consistent with the units of TIME. See Guide VIII on-line
help description for SDATA TRANSLATE for more information.

ILIL.C.3. Included Comments
Comments can be included in NM-TRAN data sets. E.g.

1 . 12.12 5.94
1 . 24.37 3.28
C This next individual may be an outlier
2 4.4 0. 0. 72.4
2 . .27 1.72

If requested, any (FORTRAN) record with a designated character in position 1 is ignored, i.e. it does not
appear in the NONMEM data set. The character used in position 1 must be the same for all comment
records; it is specified in the $DATA record using IGNORE=C (see section IIL.B.5).

Note that the IGNORE and ACCEPT options of the $DATA record can also be used to select records
according to the values of specified data items. This is also discussed in section III.B.5.

IL.II.C.4. Generated ID Data Items

ILIL.C.4.1. Background

NONMEM data records are grouped into contiguous sets of records called individual records . With
population data, where there are multiple observations from multiple subjects, an individual record con-
tains the data records associated with a given subject. Each data record of the individual record has the
same ID data item. NONMEM can also be used to analyze data from a single subject. With such data,
and when each observation consists of a single number, an individual record is simply any group of con-
tiguous data records including only one observation record and having the same ID data item if the num-
ber of data records in the group is two or more. When a multivariate observation is present, the individu-
al record containing it includes several observation records, each containing one element of the observa-
tion.

The inclusion of ID data items in a data set with single-subject data is a little unnatural, and it is not com-
monly required by computer programs that are meant to be used only with single-subject data, With sin-
gle-subject data, NM-TRAN automatically generates the ID data items required in a NONMEM data set.
Such ID data items are called generated ID data items . Usually, this is advantageous. There are situa-
tions, though, where the generated ID data items are not appropriate, and then generated ID data items
should be disallowed; see below. Most notably, such a situation occurs when multivariate observations

11

NM-TRAN Guide - Chapter 11 General Considerations

are included in the data set. The mechanism for disallowing generated ID data items is given in sections
C.4.2 and 1I1.B.2.

NM-TRAN "recognizes" the difference between population data and single-subject data .t

(NONMEM itself also makes this distinction, which it makes available to PRED via reserved variable
IPS.)

A data set consisting of population data is called a population data set . A data set consisting of single-
subject data is called a single-subject data set .t The only consequence of NM-TRAN’s ability to recog-
nize this difference between data types is to allow ID data items to be automatically generated with sin-
gle-subject data. NM-TRAN infers from information in the control stream whether the data are of one
type or the other. The way this is done is outlined next. For details, see section C.4.2.

Both NONMEM and NM-TRAN explicitly recognize two types of random variables, /7-variables and
e-variables. These two types are nested, i.e. for any set of fixed values for the ;7-variables, the -variables
can assume different values, but not conversely. The & variables can only occur along with ;7 variables,
and then they represent random intraindividual effects, while the ;7 variables represent random interindi-
vidual effects. If control stream information indicates that £ variables occur in the statistical model, then
population data are inferred. To infer population data when the & variables occur is consistent with the
fact that with population data there are both random intersubject and random intrasubject effects in the
statistical model; then the interindividual (intraindividual) effects are identified with the intersubject
(intrasubject) effects. (However, for noncontinuous population data see the discussion below.)

If population data are not inferred, then only 77 variables occur in the model. These variables, occuring
by themselves, are nonnested variables. They can represent either intersubject effects or intrasubject
effects. (The terms ’intrasubject’ and ’intraindividual’ are used interchangeably, but the term ’interindi-
vidual’ is reserved; see below.) With single-subject data there is no subject-to-subject variability, and the
n variables represent intrasubject effects. When each observation comes from a different subject, either
the data are regarded as population data and ¢ variables are used, or more usually, intrasubject variability
is not distinguishable from intersubject variability, and /7 variables only are used to represent the one type
of random effect. As long as only ;7 variables occur in the statistical model and the observations are
taken to be statistically independent, it really makes no difference whether the ;7 variables are regarded as
representing intersubject or intrasubject random effects. Statistically, the observations being modeled can
be regarded as arising from a single subject, or each observation can be regarded as coming from a differ-
ent subject. The NONMEM convention is to take a "middle position”. The term individual is used to
mean an individual observation in the population of observations. Thus no matter how the data actually
arise, the 77 variables can be regarded as representing interindividual effects. Moreover, in deference to
the often-occuring pharmacokinetic study where data arise from a single-subject, when the data are not
recognized as population data, they are called single-subject data, even when different observations actu-
ally arise from different subjects. This convention conforms with a convention of PREDPP, whereby
when only nonnested random variables occur, the data are regarded as single-subject data (Guide VI, sec-
tion IV.A).

With single-subject data, each observation must be in a different individual record (this requirement is a
consequence of the fact that the ;7 variables represent interindividual effects). Accordingly, if one wants
to extract an individual record from a population data set and use this record as a single-subject data set
(anew NM-TRAN data set), the ID data items in this record must be changed since they are all equal. In
this case one might allow NM-TRAN to generate new ID data items for the single-subject data set. At
the same time one might (but one need not) instruct NM-TRAN to exclude the old ID data items from the
NONMEM data set (see discussion of the DROP attribute in section I1I1I.B.2). Whether or not one does
the latter, NONMEM will be properly instructed to use only the new ID data items.

T In the first edition of this guide and in certain other NONMEM Users Guides, the terms individual data
and individual data set are used instead of single-subject data and single-subject data set.

12

NM-TRAN Guide - Chapter 11 General Considerations

There are single-subject data sets where generated ID data items should be disallowed. One example is
where there are multivariate observations. Each element of the multivariate observation must be placed
on a different data record, but each of these records must be included in the same individual record.
Were generated ID data items allowed, a multivariate observation would span more than one individual
record. In this example, the user must include appropriate ID data items in the NM-TRAN data set.

Note that sometimes the data are population data in the sense that multiple observations are obtained
from multiple subjects, but ¢ variables are not used in the statistical model. This situation arises when,
for example, the data are categorical, rather than continuous. Then 7 variables still represent random
interindividual effects, and random intraindividual variablity exists, but it is expressed without the use of
& variables. If option LIKELIHOOD or -2LL is used on the SESTIMATION record, NM-TRAN recog-
nizes this as odd-type data and does not generate the ID data item. See ILILD below.

Note that NONMEM can also analyze a population data set as if the data from each individual were sin-
gle-subject data. ("POPULATION WITH UNCONSTRAINED ETAS"); see Section II1.B.10 (nm73).

ILII.C.4.2. Implementation

NM-TRAN infers that the data are population data when at least one of the following is true of the con-
trol stream:

1. An abbreviated code is present which uses EPS’s.
See section IV.A

2. An abbreviated code is present which uses ETA’s, and an abbreviated code is present (perhaps the
same one) which uses ERR’S.
See section IV.A

3. A $SIGMA record is used.
See section III.B.11.

4. A $MSFI record is used with the option NPOPETAS=n, where n is positive.
See section II1.B.12.

5. With PREDPP: no $PK record is used, and a SOMEGA record precedes a SERROR record.
See section V.C.6

6. An $SESTIMATION record includes the option LIKELIHOOD or -2LOGLIKELIHOOD, and an
abbreviated code is present which uses ETA’s.

7. The SESTIMATION record includes the option LIKELIHOOD or -2LOGLIKELIHOOD, and an
$OMEGA record is used.f

When none of the above is true, the data are inferred to be single-subject data. In this case NM-TRAN
generates ID data items unless this is disallowed by the presence of the reserved labels L1 or L2 on the
$INPUT record. Generated ID data items have values 1 and 2.%

When each data record includes an actual observation, then the generated ID data items alternate between
1 and 2 with every data record. More precisely, when MDV (missing dependent variable) data items do
not appear in the NM-TRAN data set, or when NM-TRAN does not automatically include them in the

T This option is used with non-continuous observed responses. If the data are population, The data are
referred to as "odd-type data". See ILII.D below.

+The rule can be described as follows: When the data are single-subject and the L2 data item is defined to
NM-TRAN, then the L2 data item is identified to NONMEM as the ID item. No L2 item is identified to
NONMEM. The ID item may be defined to NM-TRAN, but it is not identified to NONMEM as such. The
variables L2 and ID (if defined) may be used in abbreviated code, and then they refer to the corresponding
items of the data record. However, if the user uses the label L1 instead of the label ID, or uses the label L1
as a synonym with the ID label, then NM-TRAN does not change the designations: the items labeled L1
are taken to be the ID data items, and the items labeled L2 are taken to be the L2 data items.

13

NM-TRAN Guide - Chapter 11 General Considerations

NONMEM data set (see section V.B), then the generated ID data items alternate between 1 and 2 with
every data record. Suppose, though, that either MDV data items appear in the NM-TRAN data set, or are
automatically included by NM-TRAN in the NONMEM data set. Then the generated ID data items
alternate between 1 and 2, remaining constant over a group of contiguous data records with MDV=1.

For an example, see Appendix IV.

ILILD. Odd-type Data (nmv)

By default, objective functions used with NONMEM are least-squares type functions, and as such, need
not be considered to be related to likelihood functions. However, NONMEM allows data to be analyzed
with an objective function equal to -2log likelihood for the data, and this is particularly necessary when
the intraindividual distributions of the data are non-continuous (discrete) and/or very asymmetrical. Cat-
egorical data is an example of non-continuous data. (For the purposes of this discussion, such data are
called "odd-type" data.) To accomplish this, the value of F returned by the PRED routine with an obser-
vation may be set to the value of the conditional likelihood of 77 for the observation, given the values of
the model parameters & , rather than set to a prediction for the observation. The matrices G and H should
be the usual derivatives of the expression used for F. The #’s, if any, are understood to be population
etas. No ¢ variables may be used.

This different use of F is signaled by using the option LIKELIHOOD on the SESTIMATION record. It is
assumed that first-order type approximations are not being used, and so the LAPLACIAN option should
also appear. Alternatively, F may be set to the value of -2log conditional likelihood of I- for the observa-
tion. This is signaled by using the option -2LOGLIKELIHOOD (or simply -2LL) in the SESTIMATION
record.

Odd-type data may also be simulated. For this purpose, PRED must return the value of a simulated obser-
vation as the DV data item (rather than in the argument F, as with standard-type data), a technique that
will work even when the data are of standard-type.

A data set may contain both predictions and likelihoods; see F_FLAG in chapter IV.

See Guide VIII and on-line help for "Logistic regression example" (logit2.exa). See also example10.ctl
and examplelOl.ctl in the NONMEM examples directory for simultaneous analysis of predictions and
likelihoods.

ILILE. Implementation of NMPRD4, PRINFN and DECLAREVARIABLES in NONMEM 7

The user of NM-TRAN need not understand how MODULES NMPRD4, PRINFN, and DECLARE-
VARIABLES are implemented in FSUBS. The following is supplied for readers who are curious or who
need to understand the implementation.

ILIL.E.1 Implementation of NMPRD4 in NONMEM 7

NMPRD4 is an area of storage that is used by user-supplied and generated code, and also by NONMEM.
Variables stored in this area can be displayed by NONMEM in tables and scatterplots. In NONMEM IV
through NONMEM VI, NMPRD4 is a named FORTRAN COMMON declared in both NONMEM and
FSUBS. The declaration in NONMEM is

COMMON /NMPRD4/ VRBL (LNP4)

The allocation LNP4 can only be changed by re-compiling all of NONMEM and PREDPP and NM-
TRAN.

The same COMMON may be defined in other subroutines with different names for the variables. A vari-
able listed in a given location is the same variable, even though the name differs. Thus, a PK generated
subroutine may contain a list such as
COMMON/NMPRD4 /KA, K, CL, . ..

14

NM-TRAN Guide - Chapter 11 General Considerations

Within the generated PK subroutine, variable names KA, K, etc. are used. These variables are the same
variables that are known to NONMEM as VRBL(1), VRBL(2), VRBL(3),...

Another way that user code can refer to positions in NMPRD4 is as elements of array COM, e.g.,
coM(1l),coM(2), ..

The use of COM variables is described in Chapter IV.E.3.

Starting with 7.1, NMPRD4 is a FORTRAN MODULE. Starting with 7.2, it is also dynamically allo-
cated as needed for the current problem. With 7.2 and higher, the declaration in NONMEM is in
resource/GLOBAL.f90:

MODULE NMPRD4
REAL (KIND=DPSIZE), ALLOCATABLE, TARGET :: VRBL(:)
END MODULE

The VRBL array is allocated by NONMEM according to the value of LNP4 in resource/SIZES.f90 (or as
specified by the $SIZES record).

A user-written PRED code need only contain USE NMPRD4, ONLY: VRBL

Because NMPRD4 is a Fortran MODULE, however, the names must match. The generated code would
have to refer to user variables as VRBL(1), VRBL(2), etc.

In order to use alternate names for a variable in a MODULE, the variables must be given attributes TAR-
GET (for the real name) and POINTER (for the alternate name) and the association operator "=>" must
be used: pointer=>target. E.g., KA=>COM (00001) The subroutine must execute the association state-
ment explicitly. Pointer KA may now be used as an alias to target COM(1).

An example may help illustrate the NM-TRAN generated code.

Suppose
SABBR COMRES=5
is present in the control stream CONTROLS.

With NONMEM VI, FSUBS contains

COMMON/NMPRD4 /BBBBBO0O (0005) ,KA,K,CL, SC,Y,A00031,A00032,A00035
COMMON/NMPRD4/A00040,200041,A00034,BBBBBB(01984)

DIMENSION COM(002000)

EQUIVALENCE (BBBBBO (1) ,COM (1))

User-defined variables KA K, etc., and NM-TRAN generated variables such as A00031 (which contain
the values of their eta derivatives), are listed. BBBBBB is a "filler" to pad the size of the COMMON to
size LNP4, which (using the default value of LNP4) is 2000. The array BBBBBO reserves the 5 posi-
tions in NMPRD4, as requested. Variables COM(n) are alternative names for positions in NMPRD4.
They may be used in abbreviated and generated code, and may be displayed in tables.

With NONMEM 7, The code is more complicated.

FSUBS contains MODULE NMPRDA4P, and an included subroutine ASSOCNMPRD4, of which the
important code follows:

MODULE NMPRD4P

USE NMPRD4,ONLY: VRBL

REAL (KIND=DPSIZE), DIMENSION (:),POINTER ::COM
REAL (KIND=DPSIZE), POINTER ::KA,K,CL

SUBROUTINE ASSOCNMPRD4

COM=>VRBL
KA=>COM (00001) ; K=>COM(00002) ; CL=>COM (00003)

15

NM-TRAN Guide - Chapter 11 General Considerations

END SUBROUTINE ASSOCNMPRD4
END MODULE NMPRD4P

IF (ICALL <= 1) CALL ASSOCNMPRD4

This code defines array VRBL in MODULE NMPRD4. COM is defined as a pointer (alias), and vari-
ables KA etc. are also defined as pointers. The ASSOCNMPRD4 subroutine assigns COM as an alias for
VRBL, and KA, etc. as aliases for COM(1), etc.

In FSUBS, a subroutine ASSOCNMPRD4 is called at ICALL O (Run Initialization) and ICALL 1 (Prob-
lem Initialization).
CALL ASSOCNMPRD4 ASSOCNMPRD4 performs the associations for that subroutine.

With this code, COM(i) can be used in abbreviated and generated code, as with earlier versions.
Within the generated PK subroutine, variable names KA, K, etc. are used, as with previous versions of
NONMEM.

In Chapter IV Section IV.IV.I the use of verbatim code is described. Code from the FIRST block is
inserted between the last declaration and the first executable statement.

ILILE.2. Implementation of PRINFN in NONMEM 7

PRINEN is an area of storage that may be used by both user-supplied and generated code, but not by
NONMEM. 1t is part of generated code if there is an $INFN block that defines Initialization-Finalization
variables.

Prior to NONMEM 7, it was a named COMMON PRINFN, defined in FSUBS in subroutines such as
INFN, PK and ERROR.

With NONMEM 7, it is implemented much like NMPRD4. MODULE PRINFN is defined in
resource/GLOBAL.f90:

MODULE PRINFEN
REAL (KIND=DPSIZE), TARGET, DIMENSION (DIMTMP):: ITV
END MODULE PRINFEN

DIMTMP is set in SIZES.90. The default value is 500. It may be increased using $SIZES.

Suppose this code is used:
SABBR COMRES=1

IF (ICALL.EQ.1) SUM=0
FSUBS will contain:

MODULE INFENP

USE PRINFN, ONLY: ITV

REAL (KIND=DPSIZE), DIMENSION (:),POINTER ::TLCOM
REAL (KIND=DPSIZE), POINTER ::SUM

CONTAINS

SUBROUTINE ASSOCPRINFEN

TLCOM=>ITV

SUM=>TLCOM (00001)

END SUBROUTINE ASSOCPRINEN

END MODULE INFNP

Each subroutine in FSUBS contains the same code, e.g.,

SUBROUTINE INFN (ICALL, THETA,DATREC, INDXS, NEWIND)
USE INFNP

16

NM-TRAN Guide - Chapter 11 General Considerations

IF (ICALL <= 1) CALL ASSOCPRINFN
In each subroutine, variables TLCOM and SUM may be used.

ILILE.3. Implementation of DECLAREVARIABLES in NONMEM 7 (nm73)

The implementation of DECLAREVARIABLES is much simpler. Variables are listed as defined. For
example, suppose the following control record is present with $PRED (with PREDPP, A is reserved and
a different name would have to be used to avoid a compiler error):

SABBR DECLARE A,B(10),C(1,NO-1), INTEGER I J

The generated subroutine contains the following, which declares the variables and initializes them to
zero:

MODULE DECLAREVARIABLES
USE SIZES, ONLY: DPSIZE,ISIZE,NO

SAVE

REAL (KIND=DPSIZE) :: A=0.0D+00

REAL (KIND=DPSIZE) :: B(10)=0.0D+00
REAL (KIND=DPSIZE) :: C(1,NO-1)=0.0D+00
INTEGER (KIND=ISIZE) :: I=0

REAL (KIND=DPSIZE) :: J=0.0D+00

END MODULE DECLAREVARIABLES
Each subroutine in FSUBS contains the same code:

USE DECLAREVARIABLES

17

NM-TRAN Guide - Chapter I1I Control Records

II1I. Control Records

IILIILA. Record Syntax - General

A partial listing of NM-TRAN control record names and options is given in Appendix I. A complete list-
ing of all the control records can be found in NONMEM Users Guide V Appendix 3. NONMEM Users
Guide VIII and on-line help describe all the options. General rules for constructing these names and
options are given in this section. The reader may refer to the example of the control records given in
chapter I. It is not possible for NM-TRAN to generate a NONMEM control stream which contains syn-
tax errors. Errors in an NM-TRAN control stream are reported in a report file; see Chapter I (FMSG).

1.

Record names begin with $. With NONMEM 7.2 and higher, both lower and upper case may be
used for record names and all user-defined and reserved words in the control stream. Upper-case
is used in this guide for clarity.

E.g. SOMEGA

Option names on records may also be upper-case or lower-case.

E.g. SIGDIGITS

The order of the records and the order of options within records is immaterial except where noted
in the particular discussion of the record or option.

With record names and options prior to NONMEM 7, initial substrings of record or option names,
and of length 3 or more, are recognized as abbreviations.

E.g. SCOVARIANCE or $COV or $COVAR

An abbreviation is a type of alias for the record or option name. For any particular record or op-
tion, there may also be other acceptable aliases; these are noted as part of the description of the
particular record or option. All aliases may be abbreviated according to the convention just de-
scribed.

There are exceptions such as the NOABORTFIRST option of $THETA. With NONMEM 7, some

new record names (e.g., SANNEAL) and options (e.g. $SESTIMATION record option ISAMPLE)
cannot be abbreviated.

Text after a semicolon is regarded as a comment.

E.g. STHETA 7 ;Mean Clearance
Blank-line records and records containing only comments can be included for clarity or readability.

With NONMEM VI 2.0 and later versions, the length of a single record of the NM-TRAN input
file is at most 160 characters. (Previously, it was 80 characters.) With NONMEM 7.3, the maxi-
mum length is given by FSD in resource/SIZES.£90 (FSD=67000 with NONMEM 7.3).

For readability, a record can be continued to form a contiguous block of records .

18

NM-TRAN Guide - Chapter I1I Control Records

E.g.
STHETA 7 ;Mean Clearance
20 ;Mean Volume

The record name, or an alias for it, physically appears only in the first record of a contiguous
block. This name or alias is "understood" to appear in each continuation record of the block.
Also, a record can be continued by a series of contiguous blocks, no two of which need to be con-
tiguous to each other. In general, all the information from all records which use (or are understood
to use) the same name, or use (or are understood to use) an alias for this name, is regarded as com-
ing from a single record with that name. If this is ordered information, the ordering is determined
by the ordering of the separate records.

E.g.
STHETA 7

20
SOMEGA .5 4
$STHETA .7

SOMEGA .005

is equivalent to

STHETA 7 20 .7
SOMEGA .5 4 .005

The SESTIMATION record, like the STABLE and $SCATTER records, is an exception, as noted in
the descriptions of these records.

With NONMEM 7.3 and higher, & may be used at the end of any line of the control stream to
indicate that the line is to be continued, including control records as well as abbreviated code.
(This is FORTRAN 90-style continuation.) If the ampersand at the end of a line is not to be inter-
preted as a continuation marker, but as a part of the record, then, place a ; after it. For example, an
option of the $TABLE record may terminate with &.

FORMAT=s1PE15.8:160& ;

8. Options can be separated by commas and/or any number of spaces.
E.g. MAXEVAL=400 SIGDIGITS=4, PRINT=5
9. An option of the form A=B must be contained on a single record and may contain spaces around =.

A is called the option name , and B is called the option value .

E.g. MAXEVAL = 400

With an option of form A=B, the = can be omitted.

MAX = 300 or MAX 300

19

NM-TRAN Guide - Chapter I1I Control Records

10. Filenames on control records may consist of as many characters as fit on a single line. A filename
may not contain embedded spaces. If it contains commas, semicolons, or parentheses, or if it starts
with an equal sign, then it must be surrounded by single quotes ° or double quotes ". An option
name may not be used as a filename unless it is surrounded by quotes.

11. The numerical values in $THETA, SOMEGA, and $SIGMA may be each up to 30 characters long,
and may be described in E field notation.

In the descriptions of the particular records, which follow in later sections, square brackets are used to
surround an option or group of options, none of which need actually appear in the record. If they sur-
round a group of options, a vertical line is used to separate these options in the description, and at most
one of the options may be selected to actually appear in the record. If none are selected to appear, then
the default option , indicated in boldface (if there is an option so indicated), is understood to apply.

E.g. [UNCONDITIONAL|CONDITIONAL] indicates a choice between the options UNCONDITIONAL
and CONDITIONAL, and if neither are selected to appear in the record, it is understood that the first op-
tion applies.

IILIIL.B. Record Syntax - Specific Records

Specific NM-TRAN control records are described in the next subsections. The first 17 records (SPROB-
LEM thru $SCATTERPLOT) were part of NONMEM 1V, and are discussed in detail. Options are listed
as of NONMEM 7.4. Options added with NONMEM YV and later are not always discussed in this docu-
ment, but are discussed in the help/Guide VIII documents. The remaining records (starting with B.18.
$SUPERPROBLEM Record) is a listing of record types introduced with NONMEM V and later, with
brief descriptions. All of these records are optional. They are listed in order in which they were added to
NONMEM, with some exceptions. For additional information, see Guide VIII and on-line help.

20

NM-TRAN Guide - Chapter III Control Records $PROBLEM Record

IILIILB.1. $SPROBLEM Record

SPROBLEM text

E.g.
SPROB THEOPHYLLINE POPULATION DATA

The text becomes a heading for the NONMEM printout.

This record is required. Only $SIZES and $SUPERPROBLEM may precede a $SPROBLEM record.
(See 111.B.28 and II1.B.18 below.) A $PROBLEM record other than the first one marks the beginning of
another problem specification.

The text must be contained on a single record, and only the first 72 characters of text (starting with the
second character after the record name) are used in the heading. Spaces and semicolons in the text are
included "as is". The text is optional.

21

NM-TRAN Guide - Chapter I1I Control Records $INPUT Record

IILIIL.B.2. $SINPUT Record

SINPUT item, item, items - - -

E.g.
SINPUT ID DOSE TIME CP=DV WT

The items define the data item types that appear in the NM-TRAN data records, as well as the order of
their appearance.

This record is required, and it must precede any other NM-TRAN control record in the problem specifi-
cation that refers to specific data item types.

Each item has form B or A=B, where A and B are data item labels. Each data item label consists of let-
ters (A-Z) and numerals (0-9), but it must begin with a letter. Starting with NONMEM 7.1, the under-
score character _ may be used in a data item label. Starting with NONMEM 7.1, the maximum number
of characters in a label is given by SD in resource/SIZES.f90. The default value is 20. With previous
versions, the maximum number of characters is 4. The labels may be used in subsequent NM-TRAN
control records, and they will be used as labels for data items in NONMEM output.

NM-TRAN recognizes certain reserved labels:
IDp, L1, L2,DV,MDV, TIME, DATE, DAT1, DAT2, DAT3, DROP
RAW_ (nmv), MRG__ (nmv), RPT_ (nmvi), REPL_ (nm75)

The RAW__ data item identifies template records for which NONMEM computes and displays raw-
data averages. With this feature, the TEMPLT variable may be used in abbreviated code, and the
$OMIT record may be used.

The MRG_ data item identifies records for which NONMEM computes and displays marginal
quantities (expectations).

The RPT_ data item identifies NONMEM’s repeat data item. It is used to mark a data record as
a repetition base. (Another way of doing this is via global "Repetition Variables" RPTI, RPTO,
RPTON, PRDFL in abbreviated code.)

The REPL _ data item identifies NONMEM’s replication data item. NONMEM replicates subjects
from the template data set at the start of the problem. REPL_ may be used with the $DATA ...
REPL option.

By using ID, L1, L2, DV, MDV, RAW_, MRG_, RPT_, or REPL_ as B, the user defines the NON-
MEM data item type whose name corresponds to the label. The NONMEM data item type whose
name corresponds to ID is the same NONMEM data item type whose name corresponds to L1, but
L1 has another special meaning. Use of L1 not only defines the ID data item, it also supresses
automatic generated ID data items (see section I1.C.4).

By using TIME as B, the user defines a time data item type; time data items can be recognized as
clock times and translated to relative times (see section II.C.2 and the discussion below).

By using DATE, DAT1, DAT2, or DAT3 as B, the user defines a date data item type (see section
I1.C.2 and the discussion below). Usually, date data items should not appear in the NONMEM
data set (see below).

By using DROP as B, the user defines a data item type which will not appear in the NONMEM data
set, e.g. DATE=DROP. This is the one label that can be used more than once in the $INPUT
record. Ignoring items with this label, the total number of items in a NM-TRAN data record can-
not exceed a certain limit, and, if the data set is single-subject, this limit includes generated ID data
items (which actually do not appear in the NM-TRAN data set).

22

NM-TRAN Guide - Chapter I1I Control Records $INPUT Record

Starting with NONMEM 7.2, this limit is given by PD in resource/SIZES.f90. The default value is
50. PD may be changed using the $SIZES record. PD also specifies the maximum number of data
items in the NONMEM data set. With previous versions, the maximum number of items in both
NM-TRAN and NONMEM data sets was 20.

If the user prefers to label a NONMEM data item type or a time data item type with a label (A) other than
the reserved one (B), he may use the item A=B. In this case A is called a synonym for B. Alternatively,
he may use the item B=A, i.e. the order of the labels A and B are reversed in the item so that the reserved
label comes first. Either of the labels A and B may be used in subsequent control records of the problem
specification. However, only the synonym is used as a label in NONMEM output. Both A and B can be
reserved labels. Thus one type of data item can serve simultaneously as another type, e.g. ID=TIME.
Another example of this is DATE=DROP.

The items DROP, A=DROP, or DROP=A are all equivalent. The label SKIP acts just as does the label
DROP. The label DROP may not be used when the $DATA record contains a format specification (see
section B.5).

Time data items are translated from clock times to relative times when at least one time data item con-
tains a colon (:). Time data items are also translated from clock times to relative times when the reserved
label DATE, DAT1, DAT2, or DAT3 is used. In this case the order of the fields (day, month, year) must
be the same across all the date data items. This order corresponds to which label is used:

Label Order

DATE month day year
DAT1 day month year
DAT?2 year month day
DAT3 year day month

If only one field is used, it is assumed to be the day field. If two fields are used, they are assumed to be
month and day fields. When two or more fields are used, the user should be careful to use, for example,
DATE=DROP; otherwise, use of the nonumeric separator will raise an error during the NONMEM run.

If the data set is single-subject, ID data items are automatically generated, unless the reserved label L1 is
used. A=L1 or L1=A can also be used. Generated ID data items are assigned the label .ID. (i.e. ID
surrounded by dots). This label can be used in subsequent NM-TRAN control records of the problem
specification.

Changes to the $INPUT record may cause changes to generated codes. In this case care should be taken
in using the previous load module.

INPT is an alias for INPUT.

23

NM-TRAN Guide - Chapter III Control Records $INDEX Record

IIL.ITI.B.3. SINDEX Record

$INDEX [label|value,] [label,|value,] [labels|values] ...

E.g.
SINDEX DOSE 1

The labels are those of data items, as established by the $SINPUT record. The values are integers no
larger than the number of (non-DROP) items in the $INPUT record. Either (i) the index of the data items
with label label;, or (i) value;, whichever is chosen, is stored in INDXS(I). (The index of a data item is
its position in the NONMEM data record.) For the above example, and using the $SINPUT record shown
in chapter I: INDXS(1)=2, and INDXS(2)=1.

This record is optional, and it need not appear unless some complete FORTRAN-coded subroutines are
developed by the user, and at least one of these subroutines makes explicit use of the INDXS array.

INDXS is an array which is one of the arguments to certain user-supplied subroutines; see Guide I, sec-
tion C.4.1, or Guide VI, sections III.C, IV.B, and VI.A. The array cannot be used with an abbreviated
code. Therefore, the SINDEX record is not of interest to users of NM-TRAN who only use abbreviated
codes.

In the above description INDXS(I) should be understood to always mean the Ith element of the INDXS
array that is available to a user-written routine. With PREDPP the routine actually has access to only part
of a larger INDXS array, only to elements 12-50 of the larger array. NM-TRAN stores the indices of cer-
tain data items of use to PREDPP in elements 1-11, but PREDPP renumbers elements 12-50 to 1-39
before passing INDXS as an argument to the routine.

SINDXS is an alias for SINDEX.

Commas between labels and values are optional.

24

NM-TRAN Guide - Chapter III Control Records $CONTR Record

IIL.ITL.B.4. $SCONTR Record

$CONTR DATA= ([label,|0] [label,|0] [label;|0])

E.g.
SCONTR DATA= (0, TYPE)

This record defines one to three types of data items defined in the SINPUT record to be made available to
subroutines CONTR, CCONTR, and MIX in the DATA array.

This record is optional and need only appear if the CONTR, CCONTR, or MIX subroutine is user-sup-
plied and uses data items stored in the DATA array.

label; is the label (or synonym) given in the $INPUT record for the ith data item type.

The CONTR and CCONTR subroutines are used to define an objective function which differs from the
default (ELS) objective function. The MIX subroutine is used to describe the mixing parameter of a mix-
ture model; see Guide VI, section IIL.LL.2. See also $MIX in Chapter IV.L.

These routines are called with individual records. An array DATA is available in a NONMEM MOD-
ULE and changes value with each individual record. It contains up to three types of data items occuring
in each observation record of an individual record. For any individual record, the data item occuring in
the Ith observation record of the individual record, having the Jth label occuring in the DATA option of
the SCONTR record, is available in DATA(LJ). If a 0 is used in the DATA option instead of a label, then
a 0 1s found in DATA(LJ).

Commas between labels and 0’s are optional.

25

NM-TRAN Guide - Chapter I1I Control Records $DATA Record

IILIILB.5. $DATA Record

SDATA [filename|*] [(format)] [IGNORE=c,] [NULL=c,]
IGNORE= (list) ...|AC’CEPT= (list) ...]

PRED IGNORE_DATA]

NOWIDE|WIDE] [CHECKOUT]
RECORDS=n||RECORDS=label]

LRECL=n,] [NOREWIND|REWIND]

NOOPEN] [LAST20=n;] [TRANSLATE= (list)]
BLANKOK]

MISDAT=T...]

REPL=n...]

el lran v B

E.g. $DATA DATAFILE

This record gives the name of the file containing the NM-TRAN data set.

This record is required with the first problem specification, and with any problem specification where the
NM-TRAN data set differs from that of the preceding problem specification.

The filename must be the first option on the record.

If the $DATA record is missing from the problem specification, the problem uses the same NONMEM
data set as that used in the previous problem. With the previous problem the user might have modified
data items from those found in the NONMEM data set at the beginning of that problem (e.g. the modifi-
cation may have occurred in the simulation step, or in the initialization/finalization step - see Guide II,
section D.2.2, Guide VI, section VI.A), and then the data set used in the current problem (NONMEM’s
internal copy of the data set) contains the modified data items. Using an asterisk in the $DATA record, in
place of the file name, has the same effect as omitting the $DATA record. However, when one wants to
use the CHECKOUT option, as well as use the NONMEM data set from the previous problem, the asterisk
must be used. In this case no other options should be used.

The format refers to a FORTRAN format specification to be used by NM-TRAN to read the NM-TRAN
data records. Note that this specification is to be enclosed in parentheses. Format codes F, E, and X may
be used, but not I. The format will also be used by NONMEM to read the NONMEM data records, after
it had been modified to account for generated data items. If a format is provided, the label DROP cannot
be used, and the WIDE and NULL options may not be used. If a format is omitted, the NM-TRAN
records can still be read, and a format specification which is appropriate for reading the NONMEM data
records will be generated. In this case a NONMEM data set is found in FDATA (see section 11.B).

The IGNORE option specifies records to be dropped from the NONMEM data set.

When IGNORE=c; is coded and the character c; appears in column one of a (FORTRAN) record
of the data set, this record does not appear in the NONMEM data set. Such records can serve as
comment records in the NM-TRAN data set (see section II.C.3). The character ¢, can be any char-
acter other than a blank or semicolon. In the $DATA record it can be enclosed by single quotes or
by double quotes, in which case a semi-colon is permitted. The default is IGNORE=#. That is, in
the absence of IGNORE option, any record whose first character is # is treated as a comment
record.

IGNORE=@ signifies that any data record having an alphabetic character or @ as its first non-
blank character (not just in column 1) should be ignored. Alphabetic characters are the letters A-Z
and a-z. This permits a table file having header lines to be used as an NM-TRAN data set.

26

NM-TRAN Guide - Chapter I1I Control Records $DATA Record

IGNORE= (list) is new with NONMEM 7.

"List" is a list of one or more data item labels, with logical operators and values, of the form
"label=value", "label.EQ.value", "label.NE.value", "label.GT.value", "label.GE.value",
"label.LT.value", and "label.LE.value". (FORTRAN 90 logical operators such as ’==""/=" "<’ ’<=’
>’ ’>="" may also be used.) With NONMEM 7.3, "label. NEN.value" and "label. EQN.value" are
permitted. (There is no FORTRAN 90 operator for this comparison.) If the logical operator is
omitted, the default is "=". With each data record, the value of the data item with the given label
and the value in the list are compared according to the logical operator, and if result is "true", the
record is ignored, i.e. it is not included in the NONMEM data set (see example below). Such
records are called "dropped records". With "=", "==","/=", " EQ." and ".NE.", the value in the data
record and the value in the list are compared as character strings. Otherwise, they are converted to
numeric and compared numerically. (This is the case with .NEN. and .EQN.) This comparison is
made prior to time translation. Hence, the TIME item cannot be compared numerically if it con-

nen

tains non-numeric characters such as ":".

Note: if the data file is a table file from a previous NONMEM run, values that had been integers
(0,1,..) in the original data file will be real values (0.000E+00, 1.000E+00, ...) in the table file. A
comparison for equality or inequality should now be for the real value. E.g.

IGNORE= (OCC==1.000E+00).

A data item label along with a logical operator and value is called a condition. A list may contain
several conditions; these should be separated by commas, and the list should be enclosed in paren-
theses. Up to 100 different conditions altogether can be specified. Multiple IGNORE options with
different lists may be used. A list may span one or more NM-TRAN records. The use of "=" after
IGNORE is optional, but parentheses are required with this form of IGNORE. Values may be
alphabetic or numeric, and may optionally be surrounded by single quotes * or double quotes "
Quotes are required if a value contains special characters such as =. However, a value may not
contain spaces or commas. No format specification is permitted with this form of IGNORE.

A data item type may be dropped from the NONMEM data set by means of the DROP or SKIP
synonym on the $INPUT record, after records are dropped due to a condition based on the data
item type. E.g.,

SINPUT ... GEN=SKIP

SDATA file IGNORE= (GEN='M')
Records having GEN equal to "M’ will be dropped, and the GEN data item type will then be omit-
ted from the NONMEM data set. A dropped data item may be any alphanumeric string (without a
data item delimiter - a blank or a comma).

’

If there is more than one condition, then records satisfying at least one of these conditions will be
dropped. In effect, the conditions for dropping a record are connected by the implied conjunction
"OR.". E.g.

IGNORE=(GEN.EQ.1,AGE.GT.60).
Records having GEN equal to 1 or AGE greater than 60 are dropped. All others are accepted.

ACCEPT= (list)

The ACCEPT list option is identical to the IGNORE list option, except that it specifies conditions
for acceptance of records. An ACCEPT list cannot be used together with an IGNORE list.
E.g.
ACCEPT=(GEN.EQ.1,AGE.GT.60).
Records having GEN equal to 1 or AGE greater than 60 are accepted. All others are dropped.

Suppose it is desired that records be dropped that satisfy the logical ".AND." of several conditions.
This can be implemented by using an ACCEPT list with the negations of the conditions. For
example, suppose that records to be ignored are those having GEN=1 .AND. AGE > 60. This may

27

NM-TRAN Guide - Chapter I1I Control Records $DATA Record

be done as follows:
ACCEPT=(GEN.NE.1,AGE.LE.60)

It is possible to implement more complicated expressions, e.g., with nested parentheses.
See Guide VIII Ignore_accept example.

The PRED_IGNORE_DATA option is new to NONMEM 7.5. Data records may be dropped using by
PRED or PREDPP using the PRED_IGNORE_DATA block of abbreviated code. See Chapter IV.E.6.
This option informs NONMEM that a PRED_IGNORE_DATA pass through the data set is required.
If the abbreviated code uses variables PRED_IGNORE_DATA or
PRED_IGNORE_DATA_TEST, this option is supplied. The explicit option is needed if the use of
the PRED_IGNORE_DATA variables occurs in user-written or verbatim code, so that NMTRAN is
unaware of it.

(See Guide Introduction_7 "PRED_IGNORE_DATA Feature (NM75)")

Option NULL=c, specifies the character used for null data values in the NONMEM data set. Every
occurrence in the NM-TRAN data set of a dot surrounded by blanks/commas/tab characters, or of con-
secutive commas or consecutive tab characters, is replaced by a null data item in the NONMEM data set.
Null data items are also supplied for data items that are missing from the end of an NM-TRAN data
record (there may be several missing from the end of any given record) but that are defined in the
$INPUT record. This null data item consists of the specified character c,, and it occupies the last posi-
tion in the field of the NONMEM data set into which it is placed. The character ¢, can be enclosed by
single quotes or by double quotes. The default for c, is a blank.

The option NOWIDE specifies that the FORTRAN records of the NONMEM data set, generated by NM-
TRAN, are to consist of up to 80 characters. In order to accomplish this NM-TRAN may need to sup-
press space between fields or generate multi-line NONMEM data records. This is the default. The
option WIDE specifies that single-line NONMEM data records are to be generated if possible. These
records always include at least one space between fields. With this option the records can be up to 300
characters. (Note that they will be multi-line if 300 characters is too few.) They comprise a NONMEM
data set which may be more legible than one obtained without using WIDE, and which can be processed
by a program other than NONMEM. With this option, there will be no FINISH (FIN) record in the
NONMEM data set. (A FINISH record is generated with there are more than 99999999 records in the
NONMEM data set.) WIDE also provides an extra character for elapsed times, so that they can accom-
modate the number of hours in (approximately) 4166 days with a leading space. Six digits (XXXXXX.XX)
are provided.

The option CHECKOUT specifies that NONMEM is to run in data checkout mode. In this mode, tables
and scatterplots can be requested, so that the data (as "understood by NONMEM") can be examined, but
no computations involving the model are performed, so that this examination cannot be hindered by
problems with the logic in user-written routines or abbreviated codes. These routines and codes need
only be syntactically correct. The predictions, residuals, weighted residuals, ETA’s and PRED-defined
items that are displayed in tables and scatterplots (see sections B.16 and IV.F) are all 0. CHECKDATA
can be used as an alias.

When the RECORDS=n; option is used, the number n; is the number of data records to be read from the
NM-TRAN data set. Comment records are not counted. If NM-TRAN does not drop any records from
its data set (see IGNORE list and ACCEPT list), then n; is also the number of records written to the
NONMEM data set. If NM-TRAN drops records, then the total number of records written to the NON-
MEM data set is n; minus the number of dropped records. This number must be no more than
99,999,999. When the option is omitted, then there is no limit to the number of data records in the NM-
TRAN data set. In this case the file is read to a FINISH record (see below), or to the physical end of file,
whichever comes first. However, if there are 100,000,000 or more records, then it is suggested that a
FINISH record be used since in this case and when, moreover, the NONMEM data set happens to coin-
cide with the NM-TRAN data set, the NONMEM data set needs a FINISH record.

28

NM-TRAN Guide - Chapter I1I Control Records $DATA Record

RECORDS=label

If the option is coded as RECORDS=label, where label is a data item label, NM-TRAN understands
the data records for the problem to start with the first data record of the NM-TRAN data set (at the
place where the file is positioned before data records are read; see the NOREWIND option), and to
include as well, those and only those subsequent contiguous data records having the same value of
the data item as does the first record. It counts the total number of these data records, minus any
comment or dropped records, and puts this number in the NONMEM control file.

In particular, the ID label may be used (or alternatively, the option may be coded RECORDS=IR,
RECORDS=INDREC, or RECORDS=INDIVIDUALRECORD). If a label other than ID is used, the
$INPUT record must precede the $DATA record. If the data are single-subject data, the ID data
items used to determine the data records for the problem are those labeled ID (not .ID.).

If there is more than one problem specification with a $DATA record that includes an option of the
form RECORDS=label, then either none of these $DATA records may also include a format specifi-
cation, or all of them must include the same format specification.

The LRECL option is only needed when the format is omitted, and when either (i) the operating system
(e.g. IBM/CMS) raises a fatal error when a FORTRAN program tries to read more characters from a log-
ical record than the number of characters in the record, or (ii) the operating system imposes a maximum
record length which is smaller than 999 characters (e.g. CRAY/CTSS). The number n, is the number of
characters in the NM-TRAN data records.

NOREWIND specifies that the file is not to be rewound before it is read, and REWIND specifies that the
file is to be rewound. These options are ignored if used on the $DATA record appearing in the first prob-
lem specification of the NM-TRAN control stream, or on a $DATA record appearing in a subsequent
problem specification when this record contains a file name different from that contained on the $DATA
record of the prior problem specification. In these cases the file is automatically rewound. The REWIND
and NOREWIND options are significant only when there are multiple problem specifications in the NM-
TRAN control stream, and when the $DATA records appearing in two consecutive problem specifica-
tions, corresponding to two problems A and B, contain the same file name. In this situation:

When the REWIND option is used on the the $DATA record for problem B, the first NM-TRAN
data set on the file is re-used for problem B. If NM-TRAN does not modify this data set, then an
instruction to rewind the (same) file is also contained in the NONMEM control stream problem
specification for problem B. If NM-TRAN does modify the data set, then the NONMEM data set
for problem B is placed on FDATA after the last NONMEM data set already present on FDATA,
and no instruction to rewind FDATA is contained in the NONMEM control stream problem specifi-
cation for problem B.

If the NOREWIND option is used on the $DATA record for problem B, or neither option is used,
then the file is not rewound, and the NM-TRAN data set on this file that follows the one used for
problem A is used for problem B. In this case note that the $DATA record with problem A must
have contained the RECORDS option or the NM-TRAN data set used for problem A must end with
a FINISH record. Also in this case, no instruction to rewind the file containing the NONMEM
data set for problem B (whether this file is the file named in the $DATA record or whether it is
FDATA) is contained in the NONMEM control stream problem specification for problem B.

NOOPEN specifies that the file is not to be opened by NM-TRAN. It permits a data file to be created by
one problem and used in a subsequent problem of the same run.

Translation of NM-TRAN data records is a slower process than is translation of NM-TRAN control
records. However, usually during a data analysis, changes are made to the NM-TRAN control records
between runs, but not to the NM-TRAN data records. With large data sets once translation of the data
records has been performed successfully, the output in FDATA can be stored (in a file of a different
name) and used with subsequent NM-TRAN runs. In a subsequent run, use the format specification and

29

NM-TRAN Guide - Chapter I1I Control Records $DATA Record

value for n; found in the problem summary pages of the NONMEM output from the first run. If data
items were dropped or generated, then use the list of "LABELS FOR DATA ITEMS", found in this ear-
lier output, for the list of labels needed in the $SINPUT record. If the data set is single-subject, and ID
data items were generated, use L1 for the label of these data items.

LAST20, BLANKOK, TRANSLATE
See Chapter 11

MISDAT=r....nm74) Defines one or more particular numerical values to indicate a missing data value in
the data set, which is displayed on STABLE outputs, but is safely interpreted as 0 by other steps of NON-
MEM.

REPL=n (NM75) When the REPL=n option of $DATA is coded, the NONMEM data set is considered
to be a template data set. NONMEM itself replicates the template data set n times at the start of the
problem to create an expanded NONMEM data set. The REPL option may be used with the REPL._ data
item. If both are used the REPL_ data item applies first, and the REPL option applies second. The
REPL option and REPL _ data item are meant to be used with SSIMULATION or $DESIGN.

(See Guide Introduction_7 "$DATA REPL (NM75)")

See Introduction to NONMEM 7 and Guide VIII and on-line help.
$INFILE is an alias for SDATA.

When a format is omitted, a FINISH record consists of the characters FIN appearing anywhere in the
record (the other characters are all blank). When a format is provided, a FINISH record must have the
form described in Guide II, section D.2.3.

30

NM-TRAN Guide - Chapter I1I Control Records $SUBROUTINES Record

ILIILB.6. $SUBROUTINES Record

SSUBROUTINES [subnamel =namel] [subname2 = name?2] ...
[SUBROUTINES=kind]

E.g.
$SUBROUTINES PRED=mypred

This record gives names associated with any subroutines which are user-supplied, i.e. for which abbrevi-
ated codes are not given. User-supplied FORTRAN codes are copied to the FSUBS file. The names and
subnames are also listed in the FREPORT file. This file is needed for documentation purposes, and it
also can be used as input to a program such as nmfe that creates system commands for running NON-
MEM.

This record is only required with the first problem specification, and then only if the record contains
some option. It applies to all problem specifications in the control stream, and it must not appear with a
problem specification other than the first.

A subname may be chosen from the list: PRED, CRIT, CONTR, CCONTR, CONPAR, USMETA, SPTWO,
MIX, PRIOR

The names on the right are the names of files containing FORTRAN 90/95 code. These follow the usual
rules for filenames on control records; see A.10 above. An extension such as ".f" or ".f90" may be part of
the file name for descriptive purposes, but the file itself should contain FORTRAN 90/95 code. A file
may contain more than one FORTRAN subroutine. A name could be the same as the subname, but a
subname is generic, and a name which is more specifically related to the actual code comprising the sub-
routine can be more useful. One subname-name pair should be used for each subroutine which is user-
supplied.

If the PRED subroutine is not user-supplied, so that PRED is not used as a subname, then an abbreviated
code must be given for $PRED (unless PREDPP is used; see chapter V). Abbreviated code can also be
given for $MIX; see Chapter IV.L. The $PRIOR record can be used to provide instructions for a gener-
ated PRIOR subroutine in FSUBS; see B.23 below. FORTRAN code must be provided if the remaining
subnames are user-supplied.

There may exist one or more "other" user-supplied subroutines used by one of the subroutines listed
above. The special subname OTHER can be used in conjunction with such a routine; it is set to a name of
a file to be read by NM-TRAN. (A subroutine B, called by subroutine A, can be included in the file con-
taining A. In this case OTHER would not be set to a name for B.) Unlike the other subnames, OTHER
can appear up to forty times in the $SUBROUTINES record, and used for up to forty unique file names.
Here are some examples.

The OTHER option is used to supply the FORTRAN code for user-written functions, e.g., the reserved
functions FUNCA, FUNCB, FUNCC, etc., or, with NONMEM 74, functions declared using the SABBR
FUNCTION option. Suppose there is one such file and its name is funcfile. (File funcfile may contain
more than one FUNCTION.) It should be listed on the $SUBROUTINES record. E.g.,
SSUBROUTINES ... OTHER=funcfile

Another example of the use of OTHER has to do with the NONMEM subroutine CONSTRAINT. The
default version found in NONMEM'’s source directory (source/CONSTRAINT.f90) performs simulated
annealing, and uses information from the SANNEAL record. See section B.29. below. The OTHER
option is not needed if the default version is to be used. See anneal.ctl in NONMEM’s example direc-
tory.

A user-written subroutine CONSTRAINT may be used instead to provide any kind of constraint pattern
on any parameters. Example9.ctl in NONMEM'’s examples directory contains

31

NM-TRAN Guide - Chapter I1I Control Records $SUBROUTINES Record

SSUBROUTINES ... OTHER=aneal.f90
File aneal.f90 contains an alternative version of subroutine CONSTRAINT and is discussed in Introduc-
tion to NONMEM 7 "Example 9: Simulated Annealing For Saem using Constraint Subroutine."

If the SUBROUTINES option is not used, it is understood to be present with the option "kind" equal to
DOUBLE. DP and D are aliases for DOUBLE. SUBS is an alias for SUBROUTINES. The SUBROU-
TINES option may be coded with the part SUBROUT INES= missing.

E.g.
$SUB DP

32

NM-TRAN Guide - Chapter III Control Records $ABBREVIATED Record

IILIIL.B.7. SABBREVIATED Record

SABBREVIATED [COMRES=n,| [COMSAV=n,]
[DERIV2=NO] [DERIV2=NOCOMMON] [DERIV1=NO]
[FASTDER | NOFASTDER]
[C’HECKMU| NOCHECKMU]
[DES=COMPACT | DES=FULL]
[REPLACE left_string = right_string] ...
[DECLARE [type] [DOWHILE] name [(dimension [,dimension])] ...
[PROTECT]
[FUNCTION function_name (input_vector_name,dimension/[,usage])]
[VECTOR input_vector_name (dimension)]

E.g. $SABBREVIATED COMRES=2

Optional. May be used when $PK, $ERROR, or $PRED abbreviated code is present. Must precede all
blocks of abbreviated code. appear. Then it only should appear with the first problem specification, and
before any abbreviated code. With NONMEM 7.4, may also be used when there is no abbreviated code.
For example, SABBR REPLACE may be used for label substitution in NONMEM report files.

Abbreviated code is described in Chapters IV and V.
COMRES ("common reserve") and COMSAV ("common save'")

One use of the option COMRES involves the presence of both abbreviated and user-supplied subroutines.
Values for variables defined in abbreviated codes may be displayed in tables and scatterplots. These vari-
ables are listed (i.e. their values are stored) in a NONMEM MODULE NMPRD4 in the generated sub-
routine. (With versions of NONMEM prior to nm7, NMPRD4 was a named FORTRAN common, hence
the use of options "COM...".) User-supplied FORTRAN routines may also list variables whose values
are to be displayed in NMPRD4. The first n; positions in NMPRD4 are reserved for the use of these rou-
tines; generated subroutines will not list variables defined in abbreviated codes in these positions. If
there are no abbreviated codes, not only is COMRES not needed for this purpose, it may not be used. All
variables listed in NMPRD4 must be double precision. The number n; can be nonnegative, and if the
option is not used, it is understood to be 0. It can also be -1, in which case no variables defined in abbre-
viated codes are listed in NMPRD4. In this regard, see also section IV.H.

All variables defined in an abbreviated code are listed in NMPRD4, whether or not their values are dis-
played. Thus with PREDPP, where there may be more than one abbreviated code, each such variable is
recognized as the same variable in all abbreviated codes in which it is used. If it desireable to avoid this
type of global definition, then the option value -1 can be used. See also section IV.H.

The option COMSAV may be used when the variable COMACT is used in abbreviated code (see section
IV.E.2). It defines the SAVE region of NMPRDA4. In this case the option COMRES should also be used,
and n, must satisfy 0 < n, < n;.

The next two options primarily concern ways to avoid changing and recompiling NM-TRAN or NON-
MEM source code when NM-TRAN produces error messages indicating that certain internal table sizes
are found to be too small for a given problem; see Guide III. In this regard, the option COMRES=-1 can
also be useful (see also section IV.H). With NONMEM 7, NM-TRAN allocates most internal arrays
dynamically as needed. The $SIZES record can be used to make other arrays larger. Internal table sizes
are unlikely to be exceeded. However, when there is a great deal of abbreviated code, the generated code
and the NONMEM load module may be very large, which can slow the execution of NM-TRAN and
NONMEM. The following options may still be useful.

33

NM-TRAN Guide - Chapter III Control Records $ABBREVIATED Record

DERIV2=NO and DERIV2=NOCOMMON

When the option DERIV2=NO is used, code to compute second-partial derivatives with respect to 57 vari-
ables is not generated from abbreviated codes. These derivatives are only needed when the Laplacian
estimation method is used (see section B.14). So in order to save CPU time one might be tempted to use
this option when the Laplacian method is not used. However, when the Laplacian method is not used, the
code computing the second derivatives is never executed. Therefore usually, there is little reason to
include the option. It is generally recommended that the option not appear, so that with generated sub-
routines, a load module that computes these derivatives can also be used in a subsequent run which uses
the Laplacian method. If it does appear, if PREDPP is not used, and if the Laplacian estimation method
is requested in a subsequent run using the same load module, then, in effect, the first-order conditional
estimation method is used in that run, although using somewhat more computer time than is necessary.
However, care should be taken to avoid this situation. If the option appears, and PREDPP is used, then
the Laplacian estimation method must not be requested in a subsequent run using the same load module,
even when all second-partial derivatives that might be computed are uniformly zero (in which case code
computing these zeros is actually not generated whether or not the option appears).

Values of second-partial derivatives of a variable defined in an abbreviated code are stored in other vari-
ables defined in the generated routine. Normally, these variables are listed are also listed in NMPRD4
(see above). When the option DERIV2=NOCOMMON is used, these variables are not listed in NMPRDA4.
In this case these variables are not displayable. In this case also, if PREDPP is used, no variable defined
in the abbreviated code for PK, may be referenced in the abbreviated code for ERROR.

In the generated subroutine, NM-TRAN collects (re-arranges) all code for second derivative computation
so that only a few tests (for MSEC==1; see Chapter IV.E.4) are needed to compute them when NON-
MEM indicates that it needs second-partial derivatives, and skip them otherwise.

FASTDER and NOFASTDER (nm72)

Code to compute first-partial derivatives with respect to 77 variables is always generated from abbreviated
codes. These derivatives are almost always needed by classical NONMEM methods with population
data. However, NONMEM does not always use these derivatives for the newer Bayesian methods. Since
NONMEM 7.2, NM-TRAN collects (re-arranges) all code for first derivative computation so that only a
few tests (for FIRSTEM==1; see Chapter IV.E.4) are needed to compute them when NONMEM indicates
that it needs first-partial derivatives, and skip them otherwise. This is explicitly requested by option
FASTDER, which is the default. The collection (re-arrangement) of first derivative code can be prevented
with option NOFASTDER.

DERIV1=NO (nm74)
With NONMEM 7.4, DERIV1=NO prevents the computation of first derivatives.
CHECKMU and NOCHECKMU (nm73)

Abbreviated code may contain statements for the MU model, which is used in NONMEM 7 EM (Expec-
tation Maximization) methods and Gibbs sampling methods. See Chapter IV K.3. With NONMEM 7.3,
NM-TRAN checks the MU model statements and issues warning messages if they appear to contain mis-
takes. This can take a long time for large control streams. For some models, NM-TRAN may be
unable to do so, or may issue inappropriate warnings. Option NOCHECKMU can be used to prevent NM-
TRAN from attempting to check the MU model statements. Option CHECKMU requests that MU model
statements be checked, and is the default. Neither option affects the generated code.

DES=FULL

Requests that arrays of the DES routine are stored in non-compact form. With $ESTIMATION
METHOD=COND LAPLACIAN, the option NUMERICAL is also required. DES=FULL is the default
with ADVAN9 and ADVANI15 and ADVANI17. (Prior to NONMEM 7.4, FULL was required with
ADVANI13.)

34

NM-TRAN Guide - Chapter III Control Records $ABBREVIATED Record

DES=COMPACT

Arrays of the DES routine are stored in compact form. Required with Laplacian method; optional other-
wise. This is the default, except with ADVAN9 and ADVAN15 and ADVAN17.

SABBREVIATED REPLACE option (nm73)

Any character string may be replaced in abbreviated code. In particular, this allows for symbolic labeling
of thetas, etas, and epsilons. For example,

SABBR REPLACE ETA (CL)=ETA(5)

The characters ETA (CL) are replaced by ETA (5) where ever they appear in abbreviated code.

See Guide VIII for more features of SABBR REPLACE.

See SOMEGA and $SIGMA record for an alternate way of naming the ETA and EPS using NAMES and
VALUES options.

With NONMEM 74, use of this option may affect the NONMEM report file, even when there is no
abbreviated code.

Either ETA(CL) or ETAS may be listed in the $TABLE or $SCATTER records, and the label in the
NONMEM report file is "ETA (CL) ". This is called label substitution.

The SESTIMATION, $TABLE, $SCATTER, and $DEFAULT records all have an option NOSUB that can
be used to control label substitution for that portion of the report. In general, with NOSUB=0, label sub-
stitution occurs. E.g., the label in the NONMEM report file is "ETA (CL) ". This is the default. With
NOSUB=1, label substitution is turned off. E.g., the label is "ETA5".

Label substitution is never made in the additional output files *.ext, ,phi, etc., to maintain their third party
software readability.

Compartment names may be explicitly replaced. For example,
SABBR REPLACE A (DEPOT)=A(1)
SABBR REPLACE DADT (DEPOT)=DADT (1)

SDES
DADT (DEPOT) =—KA*A (DEPOT)

This is called "explicit" compartment name substitution. With NONMEM 7.5, compare the "implicit"
compartment name substitution feature of the $MODEL record.

The REPLACE option also allows replacement with selection. This provides a compact way of writing
complicated abbreviated code. Here is an example of replacement with selection by data item. Suppose
OCC is a data item.

SABBR REPLACE THETA (OCC)=THETA (4, 7)
Supppose the abbreviated code is:

TVCL=THETA (OCC)

The generated code is:

IF (OCC==1) TVCL=THETA (4)
IF (OCC==2) TVCL=THETA(7)

Here is an example of replacement with selection by data item and parameter:

SABBR REPLACE THETA (SID_KA)=THETA (4, 6)
SABBR REPLACE THETA (SID_CL)=THETA(5,7)

SPK
KA=THETA (SID_KA)

35

NM-TRAN Guide - Chapter III Control Records $ABBREVIATED Record

CL=THETA (SID_CL)

The generated code is

IF (SID==1) KA=THETA (4)
IF (SID==2) KA=THETA(6)
IF (SID==1) CL=THETA(S)
IF (SID==2) CL=THETA(7)

A short-hand notation may be used to describe a series of values, e.g.,
SABBR REPLACE THETA (SID_KA)=THETA(,4 to 13 by 3)
is equivalent to

SABBR REPLACE THETA (SID_KA)=THETA(4,7,10,13)

SABBREVIATED DECLARE option (nm73)
Integers and arrays may be declared and used in abbreviated code:

SABBR DECLARE DOSE (100),DOSETIME (100)
SABBR DECLARE INTEGER I
SABBR DECLARE DOWHILE I

One or names may be coded. They are referred to as declared variables. If INTEGER or DOWHILE is
coded, the type of the variable is integer. Otherwise, the type of the variable is double precision. If
one or two dimensions are declared, the variable being declared is an array. Declared variables are
global, i.e., are defined in all blocks of abbreviated code. Declared variables that are not INTEGER or
DOWHILE will be random variables if they are assigned in a statement whose right-side involves ETA’s
or EPS’s. Declared variables are not known to or used by NONMEM or PREDPP.

See IV.K.2 for an example.

SABBREVIATED FUNCTION option (nm74)

In NONMEM 7.4 the $ABBR FUNCTION option allows user-defined function names and user-defined
argument vector names. The dimensions of the argument vector and the maximum number of times a
given function name may appear in abbreviated code is user-specified.

See Chapter IV Section IV.J.7 $ABBR FUNCTION and $ABBR VECTOR
SABBREVIATED VECTOR option (nm74)

In NONMEM 7.4 the SABBR VECTOR option allows user-defined vector names to be defined indepen-
dently of any function.

See Chapter IV Section IV.J.7 $ABBR FUNCTION and $ABBR VECTOR
SABBREVIATED PROTECT option (nm74)

With NONMEM 7.4, a series of routines are available that protect against domain violations,
divide by zero, and floating point overflows. Each of these routines start with the letter P, followed
by the name of the mathematical operation they are to perform. For example, PLOG is the protec-
tive code routine that performs the LOG operation. With SABBR PROTECT, NMTRAN will auto-
matically replace all relevant function names with the P name.

See Chapter IV Section IV.J.6. PROTECT functions

36

NM-TRAN Guide - Chapter I1I Control Records $PRED Record

IILIIL.B.8. $PRED Record

SPRED
the abbreviated code

This record gives an abbreviated code for the PRED routine. The syntax of an abbreviated code is
described in chapter IV.

This record is optional. If it appears, it must be with the first problem specification, and only with this
problem specification.

37

NM-TRAN Guide - Chapter III Control Records $THETA Record

IILIILB.9. $THETA Record

STHETA value; [value,] [values] ...
[(valuey)xn]
[label=value... FIXED]
[NAMES (label ...)value ...]
[NUMBERPOINTS=n]
[ABORT|NOABORT|NOABORTFIRST]

E.g. $STHETA (.1,3.,5.) (.008,.08,.5) (.004,.04,.9)

This record gives initial estimates for 8’s, as well as bounds on the final estimates.

This record is required only if the statistical model contains 8 parameters (most models do). When a
$MSFI record appears in the problem specification, the $THETA record should not appear.

A value has one of four forms:

1 init [FIXED]

2 (low, init, [up] [F IXED])
3 (low,,up)

4 (value)xn

where init is the initial estimate, and low and up are lower and upper bounds respectively. The lower
bound can be —INF, i.e. —00, and the upper bound can be INF, i.e. 0o, unless form 3 is used, in which
case both bounds must be finite numbers. Form 3 is used when the user requires some help in obtaining
an initial estimate for the parameter. Usually, though, the user should be able to develop a reasonable ini-
tial estimate, and when he can, there is some savings in computation time. An initial estimate equal to 0
is not allowed, unless the FIXED option is used. Use of this option indicates that the final parameter
estimate is to be constrained to equal the initial parameter estimate. If this option is used with form 2,
then low, init and up must all be equal.

Another example:
STHETA 3 FIXED (-INF, .08,.5) (.004,,.9)

where the three forms used are 1,2 and 3, in that order.

Parentheses around init with form 1 are optional. The designation INF can also be coded INFINITY,
INFIN, or 1000000. The character +’ can precede INF, as can the character —’. Integers need not
have decimal points.

With NONMEM 7.2, form 4 may be used. Any initial value or group of initial values may be enclosed
in parentheses and followed by "xn", which means to replicate the values within parentheses n times
("repeated value"). The values within the parenthesis may have any of the above forms. For example,
the following two are equivalent:

STHETA 2 2 2 2 (0.001,0.1,1000) (0.001,0.1,1000) (0.001,0.1,1000)

(0.5 FIXED) (0.5 FIXED)
STHETA (2)x4 (0.001,0.1,1000)x3 (0.5 FIXED)x2

38

NM-TRAN Guide - Chapter III Control Records $THETA Record

If form 3 is used, a search for an initial estimate is undertaken by NONMEM (not NM-TRAN). A num-
ber of points in a subspace of the & parameter space will be examined. This subspace consists of the
multidimensional rectangle formed by the lower and upper bounds for all parameters whose values are of
form 3. The number of points examined will be automatically determined by NONMEM, or it can be
specified by the number n with the NUMBERPOINTS option. The options ABORT and NOABORT and
NOABORTFIRST apply during the search. For information concerning these option, see section IV.G.

Aliases for NUMBERPOINTS are: NUM, NUMPTS, NUMBERPTS. This option can occur at the end of the
record, or at the beginning, or between two values. THTA is an alias for THETA.

With NONMEM 7.4, when initial thetas are to be estimated, evaluations can now be done for FOCE
and LAPLACE, not just for FO.

Commas between values are optional, except with form 3.

Records $STHETAI and $STHETAR may be used to generate subroutines that transform the initial and
final values of THETA. See Chapter IV Sections M and N.

With NONMEM 7.5, the $STHETA record may specify symbolic label substitution. For example,

STHETA CL=(0.0,7.0) V1=(5.0 fixed)
This is equivalent to

SABBR REPLACE THETA (CL)=THETA (1)
SABBR REPLACE THETA (V1)=THETA (2)
STHETA (0.0,7.0) (5.0 fixed)

The symbolic subscript may be used for THETA in abbreviated code, and will also identify this element
of THETA in the NONMEM output. (Only the first 9 characters of the label will appear).

With NONMEM 7.5, the $STHETA record can define one or more thetas and initial values in a compact
way. For example,

$THETA NAMES (V1,CL,Q,V2) (0.0,7.0) (0.0,7.0) (0.0,7.0) 7

39

NM-TRAN Guide - Chapter I1I Control Records $OMEGA Record

IIL.III.B.10. $OMEGA Record

$OMEGA [DIAGONAL (n) | BLOCK (n) | BLOCK (n) SAME (m) | BLOCK SAME (m)]
[[value;] [value,] [values]
[(value,value...) xn]
[BLOCK (n) VALUES (diag,odiag)]
[label=value]
[BLOCK (n) [NAMES (label;, ...,label,)] [VALUES (diag,odiag)]
[FIXED] [UNINT]
[VARIANCE | STANDARD] [COVARIANCE | CORRELATON] [CHOLESKY]

E.g.
$OMEGA BLOCK(3) 6. .005 .3 .0002 .006 .4

This record gives initial estimates for elements of the Q matrix, i.e. the variances and covariances of the
n variables in the statistical model. Constraints on Q are also indicated.

This record should appear only if the statistical model contains ;7 variables. If it appears, then there must
be one such record corresponding to each block of Q, and the order of these records in the control stream
must correspond to the order of the blocks. The values in an $OMEGA record are the initial estimates
for the elements of the corresponding block. Under some circumstances SOMEGA records may or may
not appear, and the equivalent effect is achieved in either case (see below). When a $MSFI record
appears, no SOMEGA records should appear. When PREDPP is used, and a $PK record does not appear,
while a SERROR record does appear, certain care must be taken with the SOMEGA record; see section
V.6.

Q can be considered to be in block diagonal form with blocks B, B,, ..., B, (submatrices of Q):

B, O 00
00 B, 0O
O O
O O
0o o B,, [

This form need not be unique, and there may be only one block (which is most usual). The following
description applies to the ith block,i=1,---, m.

If the DIAGONAL option is used, it must precede the values. In this case B; is constrained to be diagonal,
and the values are the initial estimates of its diagonal elements given in the diagonal order. The number n
is the dimension of B;. In addition, a final estimate of an individual element of a diagonal block can be
constrained to be equal to the initial estimate of the element by using the FIXED option. The value giv-
ing the initial estimate should be coded with any one of the forms:

init FIXED

(init FIXED)

(FIXED init)

If the BLOCK option is used, it must precede the values. In this case the form of B, is unconstrained, and
the values are the initial estimates of its lower triangle elements given in row-wise order. The number n
is the dimension of B;. If FIXED option is used, all the final estimates of the elements of B; are con-
strained to be equal to the initial estimates of these elements.

If the BLOCK (n) SAME or BLOCK SAME option is used, B; is constrained to be equal to B;_;. In this
case i must be greater than 1, the number n (if it is given) must be the dimension of B;_;, and values are
not given.

40

NM-TRAN Guide - Chapter I1I Control Records $OMEGA Record

With NONMEM 7.3, SAME(m) is permitted . If m is present, then this record is equivalent to m identical
records without (m). E.g.,

SOMEGA BLOCK (2) SAME (3)

is equivalent to

SOMEGA BLOCK (2) SAME

SOMEGA BLOCK (2) SAME

SOMEGA BLOCK (2) SAME

If some of the values in a record are omitted (other than a record with the BLOCK (n) SAME or BLOCK
SAME option), then all values in the record must be omitted, and NONMEM will try to obtain initial esti-
mates for the elements of the block. In this case, if the DIAGONAL option is used, it must appear explic-
itly in the record. Often, though, the user should be able to develop reasonable initial estimates, and
when he can, there may be a little savings in computation time.

If no SOMEGA records appear, if no $SMSFI record appears, but ;7 variables are used in an abbreviated
code, then it is assumed that a record

SOMEGA DIAGONAL (n)

where n is the largest index used with an 7 variable in all abbreviated codes, might have equivalently
been used. (If, though, with PREDPP an abbreviated code for PK is not used, while an abbreviated code
for ERROR is used, see section V.6.)

With the BLOCK option, the FIXED option can occur anywhere among the list of values. These values
(of the lower triangle) are given in row-wise order, i.e. B; 11, B2, Bi22, ..., Bints Binzs - Binn-

Commas between values are optional.

An initial estimate of an element of a diagonal block must be >0, or it can be 0 if the FIXED option is
used with it. An initial estimate of a non-diagonally-constrained block must be positive definite, or it can
be (uniformly) O if the FIXED option is used with it. (In any case the initial estimates of Q and ¥ cannot
both be 0 unless the Simulation Step is the only step implemented.)

The NM-TRAN translation of SOMEGA records is such that new blocks in addition to B;, B,, etc. may
be created. This should be transparent to the user, except that he will see additional blocks listed in the
problem summary output by NONMEM.

With NONMEM YV, an initial estimate of a diagonal block of either the OMEGA or SIGMA matrices
may have a band symmetric form, in which case the final estimate has the same form. That is, given the
diagonal and a group of contiguous subdiagonals symmetrically ocurring across the diagonal, the ele-
ments off both the diagonal and the subdiagonals are constrained to be zero. To specify the initial esti-
mates of such a block, the initial estimates of those elements that are to be constrained to O should be
given as 0, while all other initial estimates should be given as nonzero. E.g., with these structures for
$OMEGA BLOCK(3), the 0’s are preserved:

X

0x

00x

X
XX
Oxx

With NONMEM 7.3 if the initial estimate of a block is not positive definite because of rounding errors, a
value will be added to the diagonal elements to make it positive definite. A message in the NONMEM
report file will indicate that this was done. E.g.,

41

NM-TRAN Guide - Chapter I1I Control Records $OMEGA Record

DIAGONAL SHIFT OF 1.1000E-03 WAS IMPOSED TO ENSURE POSITIVE DEFINITE-
NESS

With NONMEM 7.3, (value)xn is permitted, so that repeated inputs of SOMEGA may be entered easily.
Any initial value or group of initial values may be enclosed in parentheses and followed by "xn" which
means to replicate the items n times ("repeated values"). The item to be repeated must always be in
parentheses, and the xn must always be immediately after the item, not before it (4x(0.2) is not permit-
ted). Here is an example:

SOMEGA BLOCK (6)

0.1

0.01 0.1
(0.01)x2 0.1
(0.01)x3 0.1
(0.01)x4 0.1
(0.01)x5 0.1

With NONMEM 7.3, new options are available.
SOMEGA BLOCK (n) VALUES(diag,odiag)

This supplies initial values for a block such that the initial estimates of the diagonal elements are all the
same, specified by "diag", and the initial estimates of the off-diagonal elements are all the same, speci-
fied by "odiag". If present, VALUES must follow BLOCK.

The above example could be coded
SOMEGA BLOCK (6) VALUES(0.1,0.01)

For fixed block (such as for omega priors):
SOMEGA BLOCK (6) FIX VALUES(0.15,0.0)

The following options may follow VALUES or be placed between BLOCK and VALUES.

VARIANCE indicates that all initial estimates given for diagonal elements are understood to be initial
estimates of variances of etas. This is the default.

STANDARD indicates that all initial estimates given for diagonal elements are understood to be initial
estimates of standard deviations of etas. May also be coded SD.

COVARIANCE indicates that all initial estmates given for off-diagonal elements are understood to be ini-
tial estimates of covariances of etas. This is the default.

CORRELATON indicates that all initial estmates given for off-diagonal elements are understood to be ini-
tial estimates of correlations of etas.

CHOLESKY indicates that the block is specified in its Cholesky form.

Options VARIANCE or STANDARD may be combined with COVARIANCE or CORRELATON.

Note that NONMEM converts all initial estimates to variance and covariances. The values desplayed in
the NONMEM report and in the raw and additional output files are always variances and covariances.

With NONMEM 7.5, the SOMEGA record may specify symbolic label substitution. For example,
SOMEGA label=value (NM75)

This is a compact method of defining an ETA (an element of OMEGA) specifying its initial estimate, and
specifying a label for the subscript for this element of OMEGA. The label may be used as a subscript for

42

NM-TRAN Guide - Chapter I1I Control Records $OMEGA Record

ETA in abbreviated code, and will also identify this element of OMEGA in the NONMEM output. If
new SOMEGA records change the ordering, the abbreviated code does not have to be changed. For
example, suppose the first element of OMEGA that is defined happens to be

SOMEGA ECL=.4

The NONMEM report will describe the relationship, e.g.,

LABELS FOR ETAS

ETA (1)=ETA (ECL)

and ETA(CL) rather than ETA1 will appear in the NONMEM report. The abbreviated code can use this
symbolic subscript instead of the numeric subscript. Then, these take effect on both ETA’s and MU_’s.

For example, suppose the following code is present for the first elements of THETA and ETA. Note that
$OMEGA and $THETA records must be placed ahead of any records that use the symbolic label.

STHETA CL=(0.0,7.0)
SOMEGA ECL= 0.3

SPK

MU_ECL=THETA (CL)

CL=EXP (MU_ECL+ETA (ECL))

This is equivalent to

STHETA (0.0,7.0)

$OMEGA .3

SPK

MU_I1+THETA (1)

CL=EXP (MU_1+ETA (1))

Another example defines symbolic labels for a block of OMEGA:
SOMEGA BLOCK (4)

ECL= 0.3

Evi= 0.01 0.35

EQ= 0.01 0.01 0.54
Evz2= 0.01 0.01 0.01 0.67

Or, for diagonals,

SOMEGA

ECL= 0.3
EV1= 0.35
EQ= 0.54
EV2= 0.67

With NONMEM 7.5, Symbolic label substitution may be specified for an entire block using the NAMES
option.
$OMEGA BLOCK (n) NAMES (label,,...,]label,)) VALUES (odiag,diag) (NM75)

This is a compact way of defining one or more etas with labels and, when combined with VALUES, with
initial values. For example

SOMEGA BLOCK (4) NAMES (ECL,EV1,EQ,EV2) VALUES(0.03,0.01)
This is equivalent to

SOMEGA BLOCK (4)

ECL= 0.03

EVi= 0.01 0.03

EQ= 0.01 0.01 0.03
Ev2= 0.01 0.01 0.01 0.03

43

NM-TRAN Guide - Chapter I1I Control Records $OMEGA Record

If both are present, VALUES() must come after NAMES().
SPECIAL CASE (NONMEM 7.3)

If all diagonal elements of SOMEGA are "1.0E+06 FIXED", then NONMEM describes the data as
ANALYSIS TYPE: POPULATION WITH UNCONSTRAINED ETAS

Structurally NONMEM sees the analysis as population, but mathematically, the population density por-
tion of the total likelihood is not included. This allows a population data set to be analyzed as if the data
from each individual were single-subject data. Furthermore, some theta parameters could be shared
across subjects ("pooled fit parameters"), whereas etas are free to fit each individual without any popula-
tion constraint. Parallelization is possible.

44

NM-TRAN Guide - Chapter I1I Control Records $SIGMA Record

IILIIL.B.11. $SIGMA Record

$SIGMA [DIAGONAL (n) | BLOCK (n) | BLOCK (n) SAME (m) | BLOCK SAME (m)]
[[value;] [value,] [values]
[(value,value...) xn]
[BLOCK (n) VALUES (diag,odiag)]
[label=value]
[BLOCK (n) [NAMES (label;,...,label,)] [VALUES (diag,odiag)]
[FIXED] [UNINT]
[VARIANCE | STANDARD] [COVARIANCE | CORRELATON] [CHOLESKY]

E.g.
$SIGMA BLOCK(3) 6. .005 .3 .0002 .006 .4

This record gives initial estimates for elements of the > matrix, i.e. the variances and covariances of the
€ variables in the statistical model. Constraints on 2 are also indicated.

This record should appear only if the statistical model contains ¢ variables. If it appears, then there must
be one such record corresponding to each block of Z, and the order of these records in the control stream
must correspond to the order of the blocks. The values in an $SIGMA record are the initial estimates for
the elements of the corresponding block. Under some circumstances $SIGMA records may or may not
appear, and the equivalent effect is achieved in either case (see below). When a $MSFI record appears,
no $SIGMA records should appear.

2 can be considered to be in block diagonal form with blocks By, B,, ..., B,,, (submatrices of):

B, O 00
0o B, o4
O O
O O
0o o B, O

This form need not be unique, and there may be only one block (which is most usual). The following
description applies to the ith block,i=1,:--, m.

If the DIAGONAL option is used, it must precede the values. In this case B; is constrained to be diagonal,
and the values are the initial estimates of its diagonal elements given in the diagonal order. The number n
is the dimension of B;. In addition, a final estimate of an individual element of a diagonal block can be
constrained to be equal to the initial estimate of the element by using the FIXED option. The value giv-
ing the initial estimate should be coded with any one of the forms:

init FIXED

(init FIXED)

(FIXED init)

If the BLOCK option is used, it must precede the values. In this case the form of B, is unconstrained, and
the values are the initial estimates of its lower triangle elements given in row-wise order. The number n

is the dimension of B;. If FIXED option is used, all the final estimates of the elements of B; are con-
strained to be equal to the initial estimates of these elements.

If the BLOCK (n) SAME or BLOCK SAME option is used, B; is constrained to be equal to B;_;. In this
case i must be greater than 1, the number n (if it is given) must be the dimension of B;_;, and values are
not given.

With NONMEM 7.3, SAME(m) is permitted . If m is present, then this record is equivalent to m identical
records without (m). E.g.,

45

NM-TRAN Guide - Chapter I1I Control Records $SIGMA Record

SSIGMA BLOCK (2) SAME (3)
is equivalent to

SSIGMA BLOCK (2) SAME
SSIGMA BLOCK (2) SAME
SSIGMA BLOCK (2) SAME

If some of the values in a record are omitted (other than a record with the BLOCK (n) SAME or BLOCK
SAME option), then all values in the record must be omitted, and NONMEM will try to obtain initial esti-
mates for the elements of the block. In this case, if the DIAGONAL option is used, it must appear explic-
itly in the record. Often, though, the user should be able to develop reasonable initial estimates, and
when he can, there may be a little savings in computation time.

If no $SIGMA records appear, if no $MSFI record appears, but & variables are used in an abbreviated
code, then it is assumed that a record

SSIGMA DIAGONAL (n)

where n is the largest index used with an ¢ variable in all abbreviated codes, might have equivalently
been used. (If, though, with PREDPP an abbreviated code for PK is not used, while an abbreviated code
for ERROR is used, see section V.6.)

With the BLOCK option, the FIXED option can occur anywhere among the list of values. These values
(of the lower triangle) are given in row-wise order, i.e. B; 11, B2, Bi22, ..., Bints Binz, - Binn-

Commas between values are optional.

An initial estimate of an element of a diagonal block must be >0, or it can be 0 if the FIXED option is
used with it. An initial estimate of a non-diagonally-constrained block must be positive definite, or it can
be (uniformly) O if the FIXED option is used with it. (In any case the initial estimates of Q and % cannot
both be 0 unless the Simulation Step is the only step implemented.)

The NM-TRAN translation of $SIGMA records is such that new blocks in addition to B, B,, etc. may be
created. This should be transparent to the user, except that he will see additional blocks listed in the
problem summary output by NONMEM.

With NONMEM 'V, an initial estimate of a diagonal block of either the OMEGA or SIGMA matrices
may have a band symmetric form, in which case the final estimate has the same form. That is, given the
diagonal and a group of contiguous subdiagonals symmetrically ocurring across the diagonal, the ele-
ments off both the diagonal and the subdiagonals are constrained to be zero. To specify the initial esti-
mates of such a block, the initial estimates of those elements that are to be constrained to O should be
given as 0, while all other initial estimates should be given as nonzero. E.g., with these structures for
$SIGMA BLOCK(3), the 0’s are preserved:

X

Ox

00x

X
XX
0Oxx

With NONMEM 7.3 if the initial estimate of a block is not positive definite because of rounding errors, a
value will be added to the diagonal elements to make it positive definite. A message in the NONMEM
report file will indicate that this was done. E.g.,

DIAGONAL SHIFT OF 1.1000E-03 WAS IMPOSED TO ENSURE POSITIVE DEFINITE-
NESS

46

NM-TRAN Guide - Chapter I1I Control Records $SIGMA Record

With NONMEM 7.3, (value)xn is permitted, so that repeated inputs of $SIGMA may be entered easily.
Any initial value or group of initial values may be enclosed in parentheses and followed by "xn" which
means to replicate the items n times ("repeated values"). The item to be repeated must always be in
parentheses, and the xn must always be immediately after the item, not before it (4x(0.2) is not permit-
ted). Here is an example:

$SIGMA BLOCK (6)
0.1

0.01 0.1
(0.01)x2
(0.01)x3
(0.01) x4
(0.01) x5

With NONMEM 7.3, new options are available.
$SIGMA BLOCK (n) VALUES(diag,odiag)

S O O O
[SN N)

This supplies initial values for a block such that the initial estimates of the diagonal elements are all the
same, specified by "diag", and the initial estimates of the off-diagonal elements are all the same, speci-
fied by "odiag". If present, VALUES must follow BLOCK.

The above example could be coded
SSIGMA BLOCK(6) VALUES(0.1,0.01)

For fixed block (such as for SIGMA priors):
SSIGMA BLOCK (6) FIX VALUES(0.15,0.0)

The following options may follow VALUES or be placed between BLOCK and VALUES.

VARIANCE indicates that all initial estimates given for diagonal elements are understood to be initial
estimates of variances of etas. This is the default.

STANDARD indicates that all initial estimates given for diagonal elements are understood to be initial
estimates of standard deviations of etas. May also be coded SD.

COVARIANCE indicates that all initial estmates given for off-diagonal elements are understood to be ini-
tial estimates of covariances of etas. This is the default.

CORRELATON indicates that all initial estmates given for off-diagonal elements are understood to be ini-
tial estimates of correlations of etas.

CHOLESKY indicates that the block is specified in its Cholesky form.

Options VARIANCE or STANDARD may be combined with COVARIANCE or CORRELATON.

Note that NONMEM converts all initial estimates to variance and covariances. The values desplayed in
the NONMEM report and in the raw and additional output files are always variances and covariances.
The symbolic label substitution feature is new with NONMEM 7.5.

SSIGMA label=value (NM75)

It is similar to the symbolic label substitution feature for SOMEGA. It is a compact method of defining
an EPS (an element of SIGMA) specifying its initial estimate, and specifying a label for the subscript for
this element of SIGMA. The label may be used as a subscript for EPS in abbreviated code, and will also
identify this element of SIGMA in the NONMEM output. If new $SIGMA records change the ordering,
the abbreviated code does not have to be changed. For example, suppose the first element of SIGMA

47

NM-TRAN Guide - Chapter I1I Control Records $SIGMA Record

that is defined happens to be

$SIGMA RSW=0.6

The NONMEM report will describe the relationship, e.g.,

LABELS FOR EPS

EPS (1)=EPS (RSW)

and EPS(RSW) rather than EPS1 will appear in the NONMEM report. The abbreviated code can use this
symbolic subscript instead of the numeric subscript.

As with SOMEGA, $SIGMA and $THETA records (if elements of THETA are used) must be placed
ahead of any records that use the symbolic label.

Another example defines symbolic labels for a block of SIGMA:

$SIGMA BLOCK (2)
RSw= 0.3
EX= 0.01 0.35

Or, for diagonals,

SSIGMA
RSW= 0.3
EX= 0.35

With NONMEM 7.5, Symbolic label substitution may be specified for an entire block using the NAMES
option.
$SIGMA BLOCK (n) NAMES (labely,...,label,) VALUES (odiag,diag) (NM75)

This is a compact way of defining one or more &s with labels and, when combined with VALUES, with
initial values. For example

SSIGMA BLOCK (2) NAMES (RSW,EX) VALUES (0.03,0.01)
This is equivalent to

SSIGMA BLOCK (2)
RSw= 0.03
EX= 0.01 0.03

If both are present, VALUES() must come after NAMES().

48

NM-TRAN Guide - Chapter I1I Control Records $MSFI Record

IILIILB.12. $MSFI Record

SMSFI filename [NORESCALE|RESCALE] [NPOPETAS [=n]]
[ONLYREAD] [NOMSFTESTMSFTEST]
[VERSION=n]

[NEW]

E.g.
SMSFI MSF13

This record gives the name of a Model Specification File to be input. Such a Model Specification File is
a file output by a previous NONMEM run, which contains certain model information pertaining to that
run. It also contains other information which allows (i) the minimization search in that run, if terminated
unsuccessfully because the limit on the allowable number of objective function evaluations was attained,
to be smoothly continued in the current run, and (ii) Covariance, Table, and Scatterplot Steps in the cur-
rent run, which follow the successful termination of that search (in the current run or the previous run) to
be implemented.

Starting with NONMEM V, a MSFI may be used to repeat the Estimation Step using a method other
than the one used to write the MSF. This is possible if the MSFI contains the results of a search that ter-
minated successfully.

This record is required only if a Model Specification File is to be input. With PREDPP, if a $PK record
is not used, while a SERROR record is used, the $MSFI record must precede the SERROR record.

The filename must be the first option on the record.

If the search is continued in the current run (see section B.14), use of the NORESCALE option means that
the search is continued just as it would have been continued in the previous run had the limit on the num-
ber of function evaluations not been attained. Use of the RESCALE option means that before the search
is continued, the final estimates of the UCP (Unconstrained Parameters) from the previous run are
rescaled so that they are all 0.1. (See Guide I, section C.3.5.1, where the UCP are referred to as STP. For
repeating and rescaling, see Guide II, section F, where the UCP are referred to as RCP).

When the $MSFI record is used in a problem specification, STHETA, $OMEGA, and $SIGMA records
should not appear for that specification.

The number n with the NPOPETAS option is the number of ;7 variables used with population data. When
n is 0, then the data are regarded as single-subject data (see section II.C.4). It is a good practice to
include the NPOPETAS option; it is a simple thing to do. However, the NPOPETAS option is only
needed when the data should be regarded as population data and: (i) a $PRED record is not used and the
label L1 is not used in the $INPUT record (or if PREDPP is used, (ii) $PK and $ERROR records are not
used and the label L1 is not used in the $INPUT record, or (iii) a $PK record is not used, while a
$ERROR record is used).

POPETAS or any of its abbreviations are aliases for NPOPETAS.
With NONMEM VI and 7.x, other options are available.
ONLYREAD NOMSFTEST MSFTEST VERSION NEW

These are described in Guide VIII On-line help

49

NM-TRAN Guide - Chapter I1I Control Records $SIMULATION Record

IILIILB.13. $SIMULATION Record

$SIMULATION (seedl [seed2] [NORMAL|UNIFORM|NONPARAMETRIC] [NEW])
[SUBPROBLEMS=n] [ONLYSIMULATION] [OMITTED]
[REQUESTFIRST] [REQUESTSECOND] [PREDICTION|NOPREDICTION]
[TRUE=INITIAL|FINAL|PRIOR]
[BOOTSTRAP=n [REPLACE | NOREPLACE] [STRAT=label] [STRATF=labell]]
[NOREWIND | REWIND] [SUPRESET | NOSUPRESET]
[RANMETHOD=[n|S|m|P]]
[PARAFILE=[filename | ON| OFF]

E.g. S$SIMULATION (889215690) (2239177789 UNIFORM)

This record requests that the Simulation Step be implemented.
This record is optional.

Data are generated according to a statistical model. The DV data items of (NONMEM'’s internal copy
of) the data set are replaced by generated DV items. The model is that specified in the code for PRED
(for PK, ERROR, etc. if PREDPP is used). The data are simulated using the parameter values given as
initial estimates; see sections B.9-11. Initial estimates must be given for all parameters of the model.

The model used for data simulation may be complicated. It may involve covariables and random
interindividual and intraindividual random effects. It may be the very model used for data analysis. One
reason to simulate with such a model is to explore the information content of data obtained according to
some particular design. The design is encoded into the data set. The Simulation and Estimation Steps,
and possibly the Covariance Step too, are implemented, so that one can assess how well the true parame-
ter values of the data analysis model can be estimated. This technique can be used during the course of a
data analysis when the adequacy of the design has become suspect. However, it can also be used before
the data are actually obtained to explore design choices.

If only a simulation of the structural part of the model is desired, i.e. the model without statistical compo-
nents, the model need not involve random effects. In this case the SSIMULATION record need not even
appear. If it does appear, the DV items are replaced with generated DV items based only on the structural
model. If it does not appear, the DV items are not replaced, but prediction items, i.e. predictions returned
by PRED, may still be displayed. To simulate only the structural part of the model when a full statistical
model has already been specified, fix the initial estimates of the variances of the random effects, i.e. the
initial estimates of Q and Z, to zero.

Data can be simulated with one model and analyzed with another. There are two approaches. With the
first approach, data are simulated in the Simulation Step and output in the Table Step (see section B.16).
The table serves as the data set for a subsequent NONMEM run. (The DROP label can be used with the
prediction, residual, and weighted residual data items of the table; see section B.2.) In the subsequent
run the data are analyzed using the analysis model. With the second approach, codes for both models are
given in PRED, but with any particular call to PRED, one or the other code is executed according to the
value of a special variable (ICALL) that signals whether PRED is being called during the Simulation
Step or a data analysis step (see section IV.D). The advantage of the first approach is that it is a bit more
flexible. The advantage of the second is that data sets and the analyses performed on them can be more
easily replicated; see the discussion below concerning the option SUBPROBLEMS.

A random source is an infinite sequence of pseudo-random numbers. At most 10 random sources can be
defined for a single problem. The sources are numbered according to the ordering of their definitions in
the record. The information coded within each set of parentheses defines the attributes of a single ran-
dom source. A random source can be used with the problem for which it is defined. The same source

50

NM-TRAN Guide - Chapter I1I Control Records $SIMULATION Record

can be defined for different problems. A source defined for one problem can be continued in a subse-
quent problem; see below. Unless a random source is explicitly defined for a given problem, it cannot be
used with that problem.

When the model, i.e. either the simulation model or the data analytic model, uses ;7 variables, or both
and ¢ variables, and the Simulation Step is implemented, at least one random source must be defined
(unless the variances of these variables are 0; see below). When the model is a mixture model and the
Simulation Step is implemented, at least one random source must be defined. The first source is used by
NONMEM to generate realizations of the /7 and ¢ variables and/or to randomly mix individuals into dif-
ferent subpopulations according to the mixing parameter. Only the NORMAL attribute can be used with
this source, i.e. during simulation the ;7 and ¢ variables are understood to be normally-distributed. (Mix-
ing, though, does not involve normal pseudo-random numbers.) The NEW attribute cannot be used with
any source other than this first source (see below).

The remaining defined random sources are used exclusively by the PRED subroutine (by the PK and
ERROR subroutines if PREDPP is used). If no n variables appear in the model and a mixture model is
not used, then all defined random sources can be used by PRED. On the other hand, in this case, no
sources need even be defined. If /7 (and possibly ¢) variables appear in the simulation model, but the ini-
tial estimates of Q (and X) are 0, and if a mixture model is not used, then again, no sources need be
defined. A random source not used by NONMEM per se is called a user random source . Such a source
can use either the NORMAL or UNIFORM attribute (see below).

Numbers from user random sources are obtained via the NONMEM utility RANDOM. An abbreviated
code or a user-supplied FORTRAN code can use RANDOM by executing the FORTRAN statement

CALL RANDOM (K, R)

Each time RANDOM is called with K set to the index of a given user source, the routine returns the next
number from that source. This number is returned in R, and is always a single-precision number.

Seed1 and seed?2 together initiate the random source. Seed?2 is used only seldomly (see below), and each
seed is an integer between 0 and 21474836447. Two sources are the same if they are initiated with the
same seeds.

Suppose that the current problem specification is not the first problem specification in the control stream,
that the source is the ith source, S;, and that the last problem to use as many as i sources was problem
number m. Then seedl can be -1, indicating that S; is the continuation of the ith source, R;, defined with
problem m. That is, if the last number used from R; was x;, then S; is the infinite tail sequence of R;
starting with xyq.

Seed?2 is used when it is desired that the current problem make use of a continuation of a random source
defined in a preceding NONMEM run. Examine the NONMEM output from the Simulation Step of the
last problem in the earlier run using this source. Two ending seeds are printed in this output; often the
second seed is 0. The continuation in the current problem is defined using these two seeds as seedl and
seed2. When the second seed is 0, it need not be given.

Use of the NORMAL option means that the numbers of the source are to be pseudo-normal with mean O
and variance 1 (unless the source is the first and used to generate ;7 and ¢ realizations, in which case the
variance-covariance of these variables is that specified in the SOMEGA and $SIGMA records). Use of
the UNIFORM option means that the numbers of the source are to be pseudo-uniform on the interval
[0,1].

During the Simulation Step PRED has access to simulated values for the ;7 variables via the NONMEM
utility routine SIMETA. When PRED is called with a data record from a given individual record, PRED
can execute the abbreviated code or FORTRAN statement

51

NM-TRAN Guide - Chapter I1I Control Records $SIMULATION Record

CALL SIMETA (ETA)

which results in appropriate values being stored in the one-dimensional ETA array; see section IV.A.
These values will arise from a multivariate normal pseudo-random distribution with mean 0 and variance-
covariance as specified with the §OMEGA record. By default, no matter how many times this statement
is executed, as long as the individual record is the same, the same values are stored. If, though, the NEW
option is used, each time the statement is executed, new values are stored. Thus, for example, when
PRED is called with the first data record of an individual record, PRED can in turn call SIMETA multiple
times until values are obtained such that none are larger than 5 in absolute value, i.e. values can be
obtained from a truncated distribution. (To pursue this example, see section IV.1.)

During the Simulation Step PRED has access to simulated values for the ¢ variables via the NONMEM
utility routine SIMEPS. When PRED is called, it can execute the abbreviated code or FORTRAN state-
ment

CALL SIMEPS (EPS)

which results in appropriate values being stored in the one-dimensional EPS array; see section IV.A.
These values will arise from a multivariate normal pseudo-random distribution with mean 0 and variance-
covariance as specified with the $SIGMA record. By default, no matter how many times this statement is
executed within the same call to PRED (or more precisely, as long as PRED is being called with a data
record from the same level-two record; see Guide I, section B.1), the same values are stored. If, though,
the NEW option is used, each time the statement is executed, new values are stored.

Values of 77°s and ¢’s are obtained by calls to SIMETA and SIMEPS occuring in the generated subrou-
tine. When the data are population data and the Simulation Step is implemented, SIMETA is called once
per individual record, and SIMEPS is called once every call to PRED (once every call to ERROR if
PREDPP is used). When the data are single-subject data and the Simulation Step is implemented,
SIMETA is called once every call to PRED (once every call to ERROR if PREDPP is used). These calls
are implemented so that even if the Simulation Step is not implemented, the load module resulting from
using an abbreviated code for PRED (for PK or ERROR if PREDPP is used) can be reused with a run
implementing the Simulation Step. For multiple calls to SIMETA or SIMEPS making use of the NEW
option, additional calls can be used either in PRED (or PK or ERROR) or in the abbreviated code.

If the SUBPROBLEMS option is used, the entire problem is repeated n times in succession. Each repeti-
tion of the problem is called a subproblem . Each subproblem includes the Simulation Step, and any oth-
er steps requested in the problem specification, but each of the random sources are continued from sub-
problem to subproblem. This allows the effects of sampling variability to be directly assessed. If
n =0 or 1, the result is the same as if the SUBPROBLEMS option is omitted.

By default, when the Simulation Step is implemented, various statistics used for data analysis are always
computed from the simulated data. These are the value of the objective function at the initial parameter
estimates and if a table is requested, the weighted residuals based on these estimates. The data may be
simulated in a way that gives rise to a problem with computing these statistics. For example, perhaps the
simulation model is not appropriate for data analysis using the NONMEM default objective function.
For this reason, or for some other, the Simulation Step can be implemented so that these statistics are not
computed. This is accomplished by including the option ONLYSIMULATION. In this case the Estima-
tion and Covariance Steps are not implementable in the problem.

If the option ONLYSIMULATION is used, a PRED-defined item (see section IV.F) that depends on values
of n’s and/or ¢’s is displayed in tables and scatterplots using simulated values for the 77’s and €’s. See
sections B.16 and IV.F for a description of the appropriate label to use. Starting with NONMEM VI,
simulated values of an 77 variable are displayable by using ETA labels in $STABLE or $SCATTERPLOT
records.

52

NM-TRAN Guide - Chapter I1I Control Records $SIMULATION Record

Otherwise, the item is displayed either using zero values, or if it depends on /7’s and conditional estimates
are available, it is displayed using conditional estimates for the 77’s (see section B.14).

Another way to display a quantity computed in PRED that uses simulated values of 1’s and/or &£’s is to
store the quantity in the data array; data items are always displayable.

Transgeneration of data items is allowed during the Simulation Step. (Transgenerated items are stored in
the internal copy of NONMEM'’s data set.) This is a way, therefore, to display the quantity even when
ONLYSIMULATION is not used. Starting with NONMEM YV, one can store quantities in the data array
using abbreviated code (see section IV.A). For earlier versions, either a user-supplied PRED must be
used (for an example with a user-supplied PK, see Guide VI, Figure 2 and the accompanying discussion
in section III.L.1), or verbatim code must be used (for an example of transgeneration using verbatim
code, see section IV.I). These examples are still of interest.

If the OMITTED option is used, the Simulation Step is not implemented, even though the
$SIMULATION record appears. When used, no other option should be used.

When the Simulation Step is implemented, initial estimates must explicitly appear for all parameters of
the statistical model.

Seed1 must occur first among the attributes of a random source. All the other attributes can occur in any
order. Any two attributes can be separated by spaces or a comma.

SIML is an alias for SIMULATION.
REQUESTFIRST and REQUESTSECOND

REQUESTEFIRST

NONMEM sets a variable IFIRSTEM in Module ROCM_INT (referenced as FIRSTEM in abbre-
viated code) informing PRED whether or not PRED needs to compute first-partial derivatives with
respect to eta. Normally, during the Simulation Step, these derivatives are not needed, either by
NONMEM or by the user. However, the user may want the first-partial eta derivatives of a PRED-
defined item and may want FIRSTEM to reflect this. With the REQUESTFIRST option, the
FIRSTEM variable is set so to inform PRED that the derivatives need to be computed. In this case,
if an abbreviated code is used to compute the PRED-defined item, the item should not be computed
within a simulation block, because NM-TRAN does not provide derivatives for PRED-defined
items in a simulation block.

REQUESTSECOND

NONMEM sets a variable ISECDER in Module ROCM_INT (referenced as MSEC in abbreviated
code) informing PRED whether or not PRED needs to compute second-partial derivatives with
respect to eta. Normally, during the Simulation Step, these derivatives are not needed, either by
NONMEM or by the user. However, the user may want the second-partial eta derivatives of a
PRED-defined item and may want the MSEC variable to reflect this. With the REQUESTSECOND
option, the MSEC variable is set so to inform PRED that the derivatives need to be computed. In
this case, if an abbreviated code is used to compute the PRED-defined item, the item should not be
computed within a simulation block, because NM-TRAN does not provide derivatives for PRED-
defined items in a simulation block. REQUESTSECOND implies REQUESTFIRST.

PREDICTION

Permitted only with ONLYSIM, and is the default.

With or without ONLYSIM, unless the NOPREDICTION is used, the simulated observation is
taken to be the quantity to which the Y variable (with NM-TRAN abbreviated code) or F variable
(with a user-supplied PRED or ERROR routine) is set. In a simulation block, the DV variable may
be directly set to the simulated observation, but the Y (or F) variable should also be set to this
observation. E.g., if a line of code DV=. .. is used in a simulation block, be sure to follow this
line with the additional line Y=DV.

53

NM-TRAN Guide - Chapter I1I Control Records $SIMULATION Record

With the Simulation Step, PRED may return the simulated observation as the DV data item, rather than in
the argument F. With odd-type data the simulated observation must be returned as the DV data item.

NOPREDICTION
Permitted only with ONLYSIM.
Indicates that the simulated observation will be taken to be the value to which the DV variable is
set. The code Y=. . . is permitted inside or outside a simulation block, but if such code appears in
a simulation block, be sure to also include e.g. DV=Y. Also, etas (if any) are understood to be pop-
ulation etas, even if epsilons do not appear.

With NONMEM VI and 7, other options are available.

54

NM-TRAN Guide - Chapter I1I Control Records $SESTIMATION Record

IILIIL.B.14. SESTIMATION Record

SESTIMATION [METHOD=kind] [NOINTERACTION|INTERACTION] [NOLAPLACIAN|LAPLACIAN]
[NOPOSTHOC|POSTHOC] [SIGDIGITS=n;] [MAXEVALS=n,] [PRINT=n;]
[ABORT|NOABORT] [MSFO=filename] [NOREPEAT|REPEAT] [OMITTED]
[PREDICTION|LIKELIHOOD|-2LOGLIKELIHOOD]

[NOSUB=0 | NOSUB=1]

E.g. SESTIMATION MAXEVAL=450 PRINT=5

This record requests that the Estimation Step be implemented.
This record is optional.

With versions of NONMEM through VI, multiple SESTIMATION records in the same problem were
considered to continue a single SESTIMATION record. With NONMEM 7, a sequence of two or more
SESTIMATION records within a given problem will result in the sequential execution of separate NON-
MEM Estimation Steps. (A given SESTIMATION record may still be continued if *$ESTIMATION” is
omitted from subsequent records in the block.) If STABLE statements succeed multiple $EST statements
within a run, the table results (as well as scatter plots if requested via $SCATTER) will pertain to the last
analysis.

The following section describes the classical methods. All estimation methods obtain parameter esti-
mates by minimizing an objective function whose arguments are the parameters of the model. The meth-
ods differ from each other because they use different types of objective functions (see Guide VII).

If the METHOD option is omitted, then the first-order estimation method is used. With single-subject
data, and when a CONTR routine is not supplied by the user, this particular method is simply the
extended least squares method. If the option is used, then the option value (kind) can be ZERO, in which
case the first-order estimation method is used, or it can be CONDITIONAL, in which case a conditional
estimation is used.

The INTERACTION option can be used when the statistical model includes ¢ variables (see end of chap-
ter II for a discussion about where it does not) and where the variance of some observation, conditional
on the values of the ;7 variables, depends on these values. In this case the first-order conditional estima-
tion method with interaction is used.

If the LAPLACIAN option is used, the Laplacian (conditional) estimation method is used. This option
cannot also be used with the INTERACTION option.

Conditional estimates of individual-specific /7 values may be obtained and displayed. These estimates are
empirical Bayesian estimates, conditional not only on the data, but, importantly, also on values for the
population parameters. If the first-order estimation method is used, they may be obtained after the popu-
lation parameter estimates have themselves been obtained. To obtain them, include the option
POSTHOC. The term ’posthoc estimates’ is commonly applied to these particular conditional estimates.
When the first-order estimation method is used, and a mean-variance intraindividual model is used, the
posthoc estimates are computed under the assumption that the variance model is that of the mean individ-
ual; see Guide VII. To obtain posthoc estimates without this assumption use the final estimates as initial
estimates and the options MAXEVALS=0, METHOD=CONDITIONAL, INTERACTION (see below).

If a conditional estimation method is used, the conditional estimates are obtained simultaneously with the
population parameter estimates. In this case the option POSTHOC is superfluous, but it may be used.
The term ’conditional estimates’ applies when empirical Bayesian estimates are obtained, whether or not
a conditional estimation method is used, and no matter what values are used for population parameters.
For example, the term can apply to the conditional estimates associated with using the first-order condi-
tional estimation method and using the initial estimates of the population parameters (to see how to

55

NM-TRAN Guide - Chapter I1I Control Records $SESTIMATION Record

obtain these; see below).

The number n; is the number of significant digits required in the final parameter estimate. If the
SIGDIGITS option is omitted, n; defaults to 3. If the option is used, n; must be a positive integer less
than 9.

The number n, is the maximum allowable number of evaluations of the objective function which can
occur during the minimization search. If the MAXEVALS option is omitted, n, defaults to a generous
number.

The number n, can be 0. In this case the Estimation Step is not implemented. However, a number of sta-
tistics can be obtained:

The value of the objective function is obtained using the initial parameter estimates, unless an
$MSFI record is used, in which case the function is computed using the final parameter estimates
from the earlier problem producing the Model Specification File. The options METHOD, INTER—
ACTION and LAPLACIAN can be used to specify the objective function to be used (unless an
$MSFI record is used, in which case these options are ignored, and the objective function specified
by these options, as they were used with the problem generating the Model Specification File, is the
one that is used). The rules governing the use of these options are as given above.

The output from the Covariance Step is obtained if requested. A $MSFI record must be used, and
the computations are based on the final parameter estimates from the earlier problem. The options
METHOD, INTERACTION and LAPLACIAN are ignored; the objective function specified by these
options, as they were used with the problem generating the Model Specification File, is the one that
is used. The SIGDIGITS option may be omitted, in which case the usual default value for n; (i.e.
3) is used in these computations. The value used with the current problem must be no greater than
the number of digits actually obtained in the final estimate from the earlier problem. If the value 4,
say, was used in the earlier problem, and 4.4 digits were actually obtained, then although the value
3 could be used in the current problem, it would be much better to again use 4. The SIGDIGITS
option can be used, and n; can be any positive integer less than 9.

Conditional estimates may be obtained and may be displayed. These estimates are based on the
initial population parameter estimates, unless a SMSFI record is used, in which case they are based
on the final parameter estimates from the earlier problem. If posthoc estimates are desired, use the
option POSTHOC. If conditional estimates associated with some particular conditional estimation
methods are desired, use METHOD=CONDITIONAL along with INTERACTION or LAPLACIAN
if necessary (unless a $MSFI record is used, in which case these options are ignored, and the
effects of these options on conditional estimates, as these options were used with the problem gen-
erating the Model Specification File, are the ones that result). The rules governing the use of these
options are as given above. Variables defined in PRED (in PK or ERROR if PREDPP is used) that
depend on 77’s are displayed using the conditional estimates.

The number n, can be -1 if a SMSFI record is used. Then the maximum allowable number of objective
function evaluations is the same as that used in the problem that produced the Model Specification File.

The number n3 — 1 is the number of iterations skipped between iteration summaries. When ny =0, no
iteration summaries are printed. If the PRINT option is omitted, ny defaults to 9999 so that iteration
summaries for only the Oth and last iterations are printed.

NOSUB is a new option with NONMEM 7.4 that controls a new feature, label substitution.
For information concerning the options ABORT and NOABORT, see section IV.G.

If the MSFO option is used, a Model Specification File is output. The name of the file is given. This
name should not include embedded spaces, commas, semicolons, or parentheses. The file contains cer-
tain model information pertaining to the problem, and it contains other information which allows the
minimization search in this problem, if terminated prematurely and unsuccessfully because the limit n, is

56

NM-TRAN Guide - Chapter I1I Control Records $SESTIMATION Record

attained, to be smoothly continued in a succeeding run. It also contains information which allows the
Covariance, Table, and Scatterplot Steps which follow the successful termination of the search in this run
to be implemented in a succeeding run. A Model Specification File should not be output when a $SIMU-
LATION record appears and the number of subproblems exceeds 1.

If the NOREPEAT option is used, the estimate obtained at the end of the minimization search is taken to
be the final parameter estimate. If the REPEAT option is used, then upon successful termination of the
search, the search is repeated after the UCP are first rescaled so that they are all 0.1. (See Guide I, sec-
tion C.3.5.1, where the UCP are referred to as STP. For repeating and rescaling, see Guide II, section F,
where the UCP are referred to as RCP). In this case n, is used to limit the number of objective function
evaluations over both searches combined, and a Model Specification File, if output, contains the informa-
tion holding at the termination of the second search.

The LIKELIHOOD and —2LOGLIKELIHOOD] options are used with odd-type data, discussed in Chap-
ter [I.LD. PREDICTION is the default.

If the OMITTED option is used, the Estimation Step is not implemented, even though the SESTIMATION
record appears. When used, no other option should be used.

ESTM is an alias for ESTIMATION. The numbers O and 1 can be used with the METHOD option instead
of ZERO and CONDITIONAL, respectively. LAPLACEAN (and hence its abbreviation LAPLACE) is an
alias for LAPLACIAN.

Many additional methods and options are available. These are described in Guide VIII and On-line help.
(See Guide Introduction_7 "$ESTIMATION Record (NM75)")

57

NM-TRAN Guide - Chapter I1I Control Records $COVARIANCE Record

IILIIL.B.15. $COVARIANCE Record

SCOVARIANCE [SPECIAL] [MATRIX=][PRINT=[E][R][S]
[COMPRESS]

[SLOWNOSLOW|FAST]

[SIGL=n] [SIGLO=n]

[NOFCOV]

[PARAF ILE=[filename|ON|OFF]

[RESUME]
[CONDITIONAL|UNCONDITIONAL]

[

OMITTED]

E.g.
SCOVARIANCE

This record requests that the Covariance Step be implemented.
This record is optional.

The SPECIAL option should be used if the data are single-subject and a recursive PRED subroutine
(such as PREDPP) is used. A recursive PRED subroutine is such that the PRED computation with a data
record depends on the PRED computation(s) with previous data records. With PREDPP and single-sub-
ject data, this option is the default.

The character c is either R or S. Use of R or S means that the covariance matrix is taken to be the inverse
of the R or S matrix, respectively. The R and S matrices are two matrices from statistical theory, the Hes-
sian and Cross-Product Gradient matrices respectively. See Guide II, section D.2.5. If R is used, the
SPECIAL option need not (and best not) be used. If the MATRIX option is omitted, the covariance
matrix is taken to be R”'SR™".

When the Covariance Step is implemented, standard error estimates are always printed, along with the
covariance matrix (upon which the standard error estimates are based), the inverse covariance matrix, and
the correlation form of the covariance matrix. When the PRINT option is used, other outputs are also
available. The characters E, R, and S, represent the eigenvalues of the covariance matrix, the R matrix,
and the S matrix, respectively. When the PRINT option is used, one or more of these characters should
be chosen. The chosen characters need not be separated, but a comma or spaces can separate two charac-
ters: e.g. PRINT=ER, or =E R, or =E, R. If the character c is chosen to be R (S) with the MATRIX
option, then this character need not be chosen with the PRINT option; in this case the covariance matrix
is the R (S) matrix.

If the CONDITIONAL option is used, the Covariance Step is implemented only when either the Estima-
tion Step terminates successfully, or a Model Specification File is input and the Estimation Step is not
implemented. If the UNCONDITIONAL option is used, then the Covariance Step is implemented when
either the Estimation Step is implemented or a Model Specification File is input.

If the OMITTED option is used, the Covariance Step is not implemented, even though the
$COVARIANCE record appears. When used, no other option should be used.

Many additional methods and options are available. These are described in Guide VIII and On-line help.

58

NM-TRAN Guide - Chapter III Control Records $TABLE Record

IIL.ITI.B.16. $TABLE Record

STABLE [listl] [BY list2]
[PRINT|NOPRINT] [FILE=filename]
[NOHEADER|ONEHEADER] [ONEHEADERALL)]
[NOTITLE|NOLABEL]
[FIRSTONLY|LASTONLY|FIRSTLASTONLY]
[NOFORWARD|FORWARD]
[APPEND|NOAPPEND]
[FORMAT=s,] [LFORMAT=s,] [RFORMAT=S,]
[IDFORMAT=s,]
[NOSUB=[0] 1]]
[EXCLUDE_BY list3]
[PARAF ILE=[filename|ON|OFF]
[ESAMPLE=n,|[WRESCHOL]
[SEED=n,][CLOCKSEED=[0]|1]]
[RANMETHOD=[n|S|m]]
[VARCALC=[0|1|2]]
[FIXEDETAS= (list)]
[UNCONDITIONAL|CONDITIONAL] [OMITTED]

E.g. STABLE ID DOSE WT TIME

This record requests that the Table Step be implemented.

This record is optional. There should be one $TABLE record per table, up to ten $STABLE records per
problem (not counting continuation records). A $TABLE record cannot be continued by series of con-
tiguous blocks; each contiguous block defines a different table.

A table is a two-dimensional array. There is a one-to-one correspondence between the rows of a table
and the data records of the data set. The elements of a row, the row items , are items associated with the
corresponding data record. With NONMEM 7.4, some data records may be excluded from the table; see
EXCLUDE_BY below.

Listl is a list of up to eight labels (and synonyms), unless the NOAPPEND option is used (see below), in
which case the list may be up to 12 labels, or the the NOPRINT option is used (see below), in which case
the list can be as long as the value of constant PDT in resource/SIZES (default is 500). The list may
include labels used in the $INPUT record for different data item types. It may include labels chosen
from the list ETA1, ETA2, ..., ETA9, ETA10,..., ETA99,ETA100,..., ETA999 which label conditional
estimates of the 77’s (called 77 items). (There can be at most LVR 7’s in the model, where LVR is a con-
stant in resource/SIZES)

The list may include labels for PRED-defined items; for a description of these labels see below and also
section IV.F.

The row items of a given row are those with labels specified in listl, along with the the dependent vari-
able (DV), prediction (PRED), residual (RES), and weighted residual (WRES) row items. These last four
items always appear as the last four row items. If listl is omitted, only these four types of items appear
in the table. With NONMEM YV, option NOAPPEND may be used to request that these four items not be
appended to the list, in which case each of them may be listed individually anywhere in list]l and will
appear where it is listed. All four may also be explicitly appended to the list using option APPEND,
which is the default. With NONMEM 7, related special diagnostic items may also be listed; these are

59

NM-TRAN Guide - Chapter III Control Records $TABLE Record

described in the Guide Introduction to NONMEM 7 and Guide VIII and on-line help for $TABLE.t
With NONMEM 7.3, MDVRES ("missing dependent variable MDV for residual RES") is a reserved vari-
able in abbreviated code. When MDVRES is set to 1 in abbreviated code for a particular record, the val-

ues of RES, and WRES and related special diagnostic items are O in tables and scatterplots. See Chapter
IvJa2.

If the BY option is omitted, the order of the labels in list] determines the order in which the items with
these labels appear in the rows.

Prediction items are always population predictions, i.e. they are computed at the mean value of 17 (0).
Residual items are always based on these predictions, as are weighted residual items, and with the latter
the weights are also computed at 7 = 0. With a mixture model, each individual is classified into one of
the subpopulations of the mixture according to an empirical Bayesian computation, conditional on the
individual’s data and on the final estimates of the population parameters. For a data record from the indi-
vidual record, the prediction, residual, weighted residual, and 7 items in the corresponding row are based
on the submodel defining the subpopulation into which the individual is classified.

List2 is a list comprised of labels from listl. The BY option should be used only if the rows of the table
are to be sorted on the items of particular types. The rows of the table are sorted on the items corre-
sponding to the 1st label in list2, then secondarily sorted on the items corresponding to the 2nd label in
list2, etc. The items corresponding to the labels in list2, appear in the first consecutive columns of the ta-
ble, and the order of the labels in list2 determines the order of these columns. The items corresponding
to the labels in list] which are not in list2 appear in the next consecutive columns of the table, and the
order of these labels in list] determines the order of these columns.

If the PRINT option is used, the table is printed in the NONMEM report. This is the default. If the
NOPRINT option is used, the table is not printed; it is written to a formatted file and can be used as NM-
TRAN or NONMEM data sets, or can be used with other computer programs. If this option is used the
FILE option (see below) must also be used. To obtain both printed copies and the formatted file, use the
PRINT option along with the FILE option. If the NOPRINT option is used, the maximum number of
labels in list] is given by constant PDT in resource/SIZES .90; default is 500. However, if the number of
labels exceeds 8 with a particular table, the rows of that table cannot be sorted.

The FILE option gives the name of a formatted file to which tables may be written. The name may not
include embedded spaces, commas, semicolons, or parentheses. The file is called a table file.

Options FORMAT, LFORMAT, RFORMAT, and IDFORMAT can be used to override the default format for
the table file, which is s1PE11.4.
See Introduction to NONMEM 7 and Guide VIII and on-line help.

Options NOFORWARD and FORWARD affect the positioning of the file. With NOFORWARD, when the ta-
ble file is opened during a given problem, it is positioned at the start of the file. This is the default. With
FORWARD, when the table file is opened during a given problem, it is forwarded to the end of the file.
This allows a table file to accumulate tables from multiple problems.

See Introduction to NONMEM 7 and Guide VIII and on-line help.

Tables are split into segments of 900 rows each. Of course, a table may need only one segment. Seg-
ments usually have headers comprised of two records. Text in the first record identifies the table and seg-
ment, and text in the second record gives the labels for the tabled items. If the NOHEADER option is
used, the headers do not appear. This may be useful when a table is to be read by another computer pro-
gram. If the ONEHEADER option is used, only the first segment of each table has a header. This may be

T The special diagnostic items are:

NPRED, NRES, NWRES, PREDI, RESI, WRESI, CPRED, CRES, CWRES, CPREDI, CRESI, CWRESI
CIPRED, CIRES,CIWRES, CIPREDI, CIRESI,CIWRESI, NIPRED, NIRES, NIWRES,

IPREDI, IRESI,IWRESI,IPRD, IRS,IWRS, EPRED, ERES, EWRES, ECWRES,

EIPRED, EIRES,EIWRES, NPDE, NPD, OBJI

60

NM-TRAN Guide - Chapter III Control Records $TABLE Record

useful in order to separate tables from each other.
ONEHEADERALL (nm74) is used only with the FILE option and FORWARD. Only the first line of the
table file is a header line. May also be coded ONEHEADERPERFILE.

Similar options are NOTITLE and NOLABEL which suppress table titles and column labels respectively.
With FIRSTONLY, only information corresponding to the first data record from each individual record
appears in the table.

With LASTONLY and FIRSTLASTONLY (nm74) only information corresponding to the last data record
from each individual record, or from the first and last records, appear in the table.

If the UNCONDITIONAL option is used, the Table Step is always implemented. If the CONDITIONAL
option is used, the Table Step is implemented only when either the Estimation Step terminates success-
fully, or the Estimation Step is not implemented.

If the OMITTED option is used, the Table Step is not implemented, even though the $TABLE record
appears. When used, no other option should be used.

Parentheses surounding a list are optional. However, they should be used when a label can be confused
with an alias for an option, e.g. when a label COND is used. Two list items may be separated by a comma
or spaces. Options cannot be coded among the labels of either list] or list2.

Synonyms for the prediction, residual, and weighted residual item types can be defined with the $STABLE
record in the same manner as synonyms for data item types can be defined with the SINPUT record. The
reserved labels for these item types are PRED, RES, and WRES. If for example, the synonym PR is to be
defined for the prediction item type, then PR=PRED should occur among the labels in listl. The syn-
onym will be used in all tables and scatterplots, and control records following the $STABLE record defin-
ing the synonym can use the synonym. Synonyms may also be used for the special diagnostic items.

Options PRINT, NOPRINT, HEADER, NOHEADER, NOLABEL, FILE, FIRSTONLY, FORWARD,
NOFORWARD, APPEND, NOAPPEND, FORMAT apply to the individual $TABLE record. They must be
specified for each table to which they apply.

For 7 items, the label ETA (n) can be used instead of ETAn. However, the labels in the table will be
ETA1 through ETA9 followed by ET10 through ET999.

With NONMEM 7.3, instead of requesting each ETA specifically a range of etas may be requested:
ETAS (k:n) is equivalent to ET2K, ..., ETAn (where n > k).

LAST can be used in place of n, and requests the last (highest numbered) 7 in the problem , e.g.
ETAS (1:LAST). If :LAST is omitted, it is assumed, so that ETAS (1) is equivalent to
ETAS (1:LAST). Note that ETA (1) requests a single 77;, but ETAS (1) requests all the 7’s.

With NONMEM 7.4, a more flexible syntax is available:

The word TO may be used in place of ":".

The BY expression may be used:

ETAS(1 TO 10 by 3) prints out etas 1,4,7,10

ETAS(LAST TO 1 by -3) prints out etas 10,7,4,1 (assuming LAST=10)

With NONMEM 7.4, a symbolic label specified in SABBR REPLACE may be listed in $STABLE. For
example:
SABBR REPLACE ETA (CL)=ETA(1)

STABLE ETA (CL)

A PRED-defined item is a value stored in some variable defined in PRED (in PK, ERROR, etc. if
PREDPP is used); see section IV.F. It may be displayed provided the variable is listed in MODULE
NMPRD4. If the variable is defined in abbreviated code, it is normally listed in NMPRD4 (for excep-
tions see sections III.B.7 and IV.H). The label used in the STABLE record for the values of the variable

61

NM-TRAN Guide - Chapter III Control Records $TABLE Record

can be the variable name. However, if the name is longer than 9 characters, the label used in the table
itself is comprised of the first nine characters only. Alternatively, a synonym for the label in the $STABLE
record can be defined in the same manner as synonyms for labels of data item types can be defined with
the $INPUT record. E.g., suppose there is a user-defined variable CLEARANCE_M. The $TABLE record
may list CLEARANCE_M=CLM, in which case the label in all tables is CLM rather than truncated as
CLEARANCE.

Pred-defined elements in a list may include elements of vectors used in abbreviated code: VECTRA (1),
VECTRA (2), ... ,VECTRA (9), or alternatively, labels VA_1, VA_2, ... ,VA_9, corresponding to VEC-
TRA(1), VECTRA(2), ..., VECTRA(9). The labels in the output will be VA_1, VA_2, ..., VA_9. Simi-
larly, for VECTRB and VECTRC. See Chapter IV, and Introduction to NONMEM 7 and Guide VIII and
on-line help. Pred-defined elements in a list may include elements of G and H. E.g.,

STABLE G11 G21 G31 H11 H21.

See Guide VIII $TABLE .ctl

The definition of a variable in an abbreviated code can generate additional definitions of other variables,
called generated variables , appearing in the generated code, but not appearing in the abbreviated code.
The names of generated variables are all six characters long. Certain generated variables symbolize the
values of partial derivatives and are normally listed in NMPRD4 so that their values can be displayed like
other PRED-defined items. The names of these variables, and the four character labels used in the tables
for the values of these generated variables, are described in section IV.F. They can look strange and unin-
formative, e.g. A00004 and 0004. Either the six or four character label can be used in the $TABLE
record. A synonym for the label used in the STABLE record can be defined in the same manner as syn-
onyms for labels of data item types can be defined with the $INPUT record. E.g. DCL.2=A00004, in
which case the label in the table is DCL2 rather than 0004. Use of a synonym in this case can be partic-
ularly helpful.

If a variable is defined in a user-supplied code, its values may be displayed provided the variable is listed
in MODULE NMPRD4. Its name is not known to NM-TRAN. Instead, it is identified by its position in
the MODULE. If it is the Ith variable listed in the MODULE, then the label used in the $TABLE record
for its values can be either COM (I) or the four character label : . . I, where the dots indicate leading O
digits if needed. The latter label is the one used in the table. If I exceeds 999, then the label in the $TA-
BLE record must be COM (I), and the label used in the table is : . .K, where K is I (mod 1000). A syn-
onym for a label used in the table can be defined with the $TABLE record in the same manner as syn-
onyms for labels of data item types can be defined with the $INPUT record. E.g. SIZE=COM (20), in
which case the label STIZE is used in the table rather than : 020. Use of a synonym in this case too can
be particularly helpful.

If no abbreviated code is present, then all the variables listed in NMPRD4 may be labeled in the $TABLE
record and in the tables themselves in the manner just described. The COMRES option in the SABBRE-
VIATED record is set equal to the length of NMPRD4, and the option is unnecessary and, in fact, must
not be used.

If any abbreviated code is also used, the COMRES option in the SABBREVIATED record must be used to
reserve n positions in NMPRD4 for the variables defined in user-supplied code; see section B.7. On the
$TABLE record, labels for variables defined in abbreviated code and labels for variables defined in user-
supplied code may both be used. However, labels of the form COM (I) for variables defined in user-sup-
plied code must refer only to the reserved portion of the MODULE, i.e. it must be true that I < n.

A label for a PRED-defined item defined in an abbreviated code may be given in a $TABLE (or $SCAT-
TERPLOT) record of a problem specification beyond the first problem specification.

The number of different types of PRED-defined items that may be displayed in all tables and scatterplots
is given by constant PDT in resource/SIZES.f90; default is 500.

62

NM-TRAN Guide - Chapter III Control Records $TABLE Record

If a synonym is defined for an item type, a different synonym for the same item type cannot be defined on
another STABLE or $SCATTERPLOT record for the same problem.

With NONMEM 7.4, it is possible to exclude data records (i.e., rows) from a table file, using the
EXCLUDE_BY option. List3 is comprised of one or more items that are permitted in listl, e.g., data item
labels and labels of PRED-defined items in MODULE NMPRD4. Labels in list3 are called exclusion
variables. If one or more of them have a non-zero value for a given data record, the row of the table cor-
responding to that data record will be excluded from the table file. Exclusion variables are not listed in
the table file. They have no effect on the printed table and scatters in the NONMEM output, e.g., they do
not cause any rows to be deleted from the printed table and are displayed in the printed table.

For example,

SPK

EXCL=0

IF(ID.GE.45.AND.ID.LE.53) EXCL=1

STABLE ID TIME DV IPRED CL V1 Q V2 ETAS(1:LAST) EXLUDE_BY EXCL
NOAPPEND FILE=exctable.par NOPRINT

The table file exctable.par will not contain records from subjects 45 to 53.
See Guide Introduction to NONMEM 7 and Guide VIII and on-line help for $STABLE.
NOSUB is an option of $TABLE that is similar to the same option of SESTIMATION.

Options ESAMPLE, WRESCHOL, SEED, CLOCKSEED, RANMETHOD, PARAFILE, VARCALC,
FIXEDETAS are beyond the scope of this guide. See Guide Introduction to NONMEM 7 and Guide
VIII and on-line help for STABLE

63

NM-TRAN Guide - Chapter III Control Records $SCATTERPLOT Record

IILIILB.17. $SCATTERPLOT Record

$SCATTERPLOT listl VS list2 [BY list3]
[FROM n;] [TO n,] [UNIT]
[ORDO|NOORDO] [ABSO|NOABSO] [FIRSTONLY] [OBSONLY]
[NOSUB=0 | NOSUB=1]
[UNCONDITIONAL|CONDITIONAL] [OMITTED]

E.g.
SSCATTERPLOT (RES WRES) VS TIME BY ID

This record requests that the Scatterplot Step be implemented. Each such record defines families of scat-
terplots. At most 20 families can be defined by all $SSCATTERPLOT records in a single problem specifi-
cation.

This record is optional.

Listl1, list2, and list3 are each lists of item labels. The same labels that may be used in a $TABLE record
(see section B.16) may be used in any list of the $SCATTERPLOT record. Synonyms may be defined in
these lists. If a synonym is defined for an item type, a different synonym for the same item type cannot
be defined on another STABLE or $SCATTERPLOT record for the same problem.

A base plot is defined by each pair of labels, (A,B), where A is from listl and B is from list2. Each data
record has associated with it a pair of items (a,b), where a and b have the labels A and B, respectively.
The items are also refered to as the values of A and B. The base plot consists of all such pairs of values,
except that if A or B is DV, RES, or WRES (see section B.16), or a synonym of one of these labels, and if
the MDV data item of the data record is 1, then the pair is excluded from the plot. Unless the base plot is
partitioned (see below), the values a are plotted on the ordinate axis of the base scatterplot (the long axis
on the printed output), and the values b are plotted on the abscissa axis of the base scatterplot (the short
axis on the printed output). The values that are plotted are the same ones that would appear in a table
were the values tabled; see section B.16.

List3 is a list of at most two item labels. If list3 is empty, i.e. if the BY option is not used, as many scat-
terplot families are defined by a $SSCATTERPLOT record as are the number of base plots; each family
consists of a single base plot. If list3 contains one label, C, this label is used as a separator with each of
the base plots. The base plot is not actually output; rather, each base plot is separated into a one-way
partitioned family of scatterplots, each of which is output. A different scatterplot of the family is defined
for each distinct value c of C. It consists of all pairs (a,b) of the base plot such that the value of C for the
data record associated with (a,b) equals c. For example, if C is ID, the base plot A vs B is partitioned in-
to different scatterplots, where all the points of a given scatterplot are all those associated with a particu-
lar individual. If there are many individuals in the data set, it may not be wise to output a one-way parti-
tioned family using ID as a separator. If list3 contains two labels, these labels are used as a pair of sepa-
rators with each of the base plots; each base plot is separated into a two-way partitioned family of scatter-
plots.

If the UNIT option is used, a 45 degree line (i.e. a line of unit slope) is superimposed on the families of
scatterplots. If the ORDO option is used, a horizontal line through the zero value on the ordinate axis is
superimposed on the families of scatterplots. If the ABSO option is used, a vertical line through the zero
value on the abscissa axis is superimposed on the families of scatterplots. If the FIRSTONLY option is
used, only the first data record from each individual record may contribute a point to the scatterplot.
If the OBSONLY option is used, the scatterplot will only use data records with MDV=0. This option
applies independently of FIRSTONLY. Itis not necessary when either DV, RES, or WRES is plotted.

64

NM-TRAN Guide - Chapter III Control Records $SCATTERPLOT Record

All scatterplots resulting from a $SCATTERPLOT record usually use only the data records from N; to
N,, where N; = 1 and N, = may be as large as the total number of data records.f That is, only points
corresponding to these data records are included in a scatterplot. The number of points in the scatterplot
may be fewer than N, — N; + 1 if any point is excluded as described above, or if the scatterplot is parti-
tioned. Points from records beyond N,, if any, may be displayed by using options FROM and TO.

If the FROM option is used, N; is set to n;. If the TO option is used, N, is set to n,. Of course, n, must
not be less than n;.

The NOSUB option is the same as the NOSUB option of the $ESTIMATION and $TABLE records.

If the UNCONDITIONAL option is used, the Scatterplot Step is always implemented. If the
CONDITIONAL option is used, the Scatterplot Step is implemented only when either the Estimation Step
terminates successfully, or the Estimation Step is not implemented.

If the OMITTED option is used, the Scatterplot Step is not implemented, even though the
$SCATTERPLOT record appears. When used, no other option should be used.

Parentheses surounding a list are optional. However, they should be used when a label can be confused
with an alias for an option, e.g. when a label COND is used. Two list items may be separated by a comma
or spaces. Options cannot be coded among the labels of either list1, list2, or list3.

Synonyms for the prediction, residual, and weighted residual item types can be defined with the $SCAT-
TERPLOT record in the same manner as synonyms for data item types can be defined with the SINPUT
record. The reserved labels for these data item types are PRED, RES, and WRES. If for example, the syn-
onym PR is to be defined for the prediction item type, then PR=PRED should occur among the labels in
list] or list2. The synonym will be used in all tables and scatterplots, and control records following the
$SCATTERPLOT record defining the synonym can use the synonym.

Each of the options UNCONDITIONAL, CONDITIONAL, and OMITTED applies to the Scatterplot Step
as a whole, and if one of these is used, an option contradicting it cannot be used in another
$SCATTERPLOT record for the same problem. If a synonym is defined for an item type, a different syn-
onym for the same item type cannot be defined on another $SCATTERPLOT or $TABLE record for the
same problem.

List] and list2 may be separated by an asterisk rather than by VS. If either list is enclosed by parenthe-
ses, or if both lists contain only one item, then the asterisk or VS may be omitted, e.g.

$SCAT CP TIME

Options cannot be coded between list2 and the BY option, but they can precede listl or follow the last
list.

The number of different types of PRED-defined items that may be displayed in all tables and scatterplots
is 20.

ORDZERO is an alias for ORDO. FIRSTRECORDONLY and FIRSTRECONLY are aliases for
FIRSTONLY. The UNIT and FROM option names cannot be abbreviated.

F To restore the NONMEM VI behavior, use TO n1+899.

65

NM-TRAN Guide - Chapter I1I Control Records Brief Descriptions of New Records

IILITIL.B.18. $SUPERPROBLEM Record (nmv)

$SUPER [SCOPE=n,] [ITERATIONS=n,]
[NOPRINT|PRINT]

E.g.
SSUPER SCOPE=2 ITERATIONS=10

A superproblem is specified by including the $SUERPROBLEM record before the first $PROBLEM
record of the superproblem.

A superproblem is a sequence of problems within a NONMEM run that can be iterated. With every itera-
tion each problem is run exactly as was specified for the first iteration. Differences in the results from a
given problem between iterations are due to differences to input files that have been made by later prob-
lems within the superproblem or, when the problem involves simulation, to different random numbers
being used. There can be a one-level nesting of superproblems, one superproblem within another.

ITLIIL.B.19. $WARNING Record (nmyv)

SWARNINGS [NONE] [n] [RESET | NORESET]
[WARNINGMAXIMUM= [NONE |n| (list)]]
[DATAMAXIMUM= [NONE |n| (list)]]
[ERRORMAX IMUM=n]

E.g.
SWARNING WMAX=1, EMAX=9999

Limits warning messages from NM-TRAN.

NM-TRAN generates various informational and warning messages. These messages are not fatal (NON-
MEM may still be run) and may be ignored. Warning messages can be suppressed or their numbers lim-
ited for a given run by use of the NM-TRAN control record $WARNINGS.

IILIILB.20. SINCLUDE Record (nmvi)

SINCLUDE filename [n]

E.g.
$INCLUDE ctlfile2 11

The INCLUDE statement was added to NONMEM V. (See Chapter IV K.4). The $INCLUDE record
was added to NONMEM V1.

This record causes NM-TRAN to read control stream records from a different file. The character "$" is
optional. (This is the only control record for which $ is optional.) The filename must be the first option
on the record

n is optional. It gives the number of copies of the file to be read. Default is 1.

IILITL.B.21. $SNONPARAMETRIC Record (nmvi)

SNONPARAMETRIC [MARGINALS|ETAS] [MSFO=filename] [RECOMPUTE]

66

NM-TRAN Guide - Chapter I1I Control Records Brief Descriptions of New Records

[EXPAND] [NPSUPP=n | NPSUPPE=n]
[BOOTSTRAP [STRAT=1label] [STRATF=1labell]]
[PARAF ILE=[filename|ON|OFF]
[UNCONDITIONAL|CONDITIONAL] [OMITTED]

SNONPARAMETRIC ETAS

Requests that the NONMEM Nonparametric Step be implemented.

NONMEM obtains either marginal cumulatives or conditional (non-parametric) estimates of etas. When
present, the SESTIMATION record must also be present and must specify METHOD=1 or POSTHOC.

IILIIL.B.22. $OMIT Record (nmvi)

SOMIT iteml item2 item3 ...

E.g.
SOMIT TIME

Defines data item types to be excluded from template matching when raw
data averages are computed. Raw data averages are computed when the
NONMEM RAW__ data item is used.

IILIIL.B.23. $PRIOR Record (nmvi)

SPRIOR subroutine [(conditional clause;), (conditional clause,) ...]
[DISPLAY[=ALL|CNT]] [ICMAX=n]
[argument; , argument, ...]

E.qg.
SPRIOR TNPRI (PROBLEM 2) PLEV=.9999 ISS=0 IVAR=1

Starting with NONMEM VI, a frequency-prior may be specified for data-analytic purposes, or to simu-
late parameter values (in a Simulation Step). Two NONMEM utility routines help in this regard. NWPRI
allows the THETA vector to be constrained by a "normal shaped prior", and/or the OMEGA matrix to be
constrained by an "inverse-Wishart shaped prior", where both priors are specified by the user. TNPRI
allows all parameters to be constrained by a prior that arises automatically from a NONMEM analysis of
a prior data set. (See the PRIOR and NWPRI and TNPRI Help Items and the NWPRI and TNPRI exam-
ples.) Implementing PRIOR routines has been made easier by control record, $PRIOR, which may be
used instead of a user-written PRIOR routine.

The $PRIOR record provides instructions for a generated PRIOR subroutine in FSUBS. There may be at
most 10 $PRIOR records per problem. $PRIOR may not be present if a user-written PRIOR routine is
listed on the $SUBROUTINES record. $PRIOR must follow the $SUBROUTINES or $PRED record.
$PRIOR is a control record, not a block of abbreviated code. Therefore, only options of the $PRIOR
record may be used. E.g., verbatim code may not be used. NONMEM Users Guide VIII and on-line help
for SPRIOR describe all the options.

When NWPRI is used, $STHETA, $OMEGA, and $SIGMA records are used to provide prior information,
in addition to the usual $STHETA, SOMEGA, and $SIGMA records. These additional records must be in
a specific order, and the record names describe the structure of the information rather than the kind of
information. This is described in the on-line help entry for NWPRI. With NONMEM 7.3, there is an
easier way to provide this information, using informative record names $THETAP, etc., as described in

67

NM-TRAN Guide - Chapter I1I Control Records Brief Descriptions of New Records

the following section.
IILIIL.B.24. $STHETAP, STHETAPYV Record (nm73)
IILIILB.25. SOMEGAP, $§OMEGAPD Record (nm73)

IILIIL.B.26. $SIGMAP, $SIGMAPD Record (nm73)

STHETAP value; [value,] [value;] ...
STHETAPV value; [value,] [values] ...
SOMEGAP value; [value,] [values] ...
SOMEGAPD value; [value,] [values] ...
$SIGMAP value; [value,] [values] ...
$SIGMAPD value,; [value,] [values] ...

E.g.

; Prior information of THETAS (NTHP=4 of them)

STHETAP (2.0 FIX) (2.0 FIX) (2.0 FIX) (2.0 FIX)

; Variance to prior information of THETAS (NTHPxNTHP=4x4 of them).
STHETAPV BLOCK (4)

10000 FIX

0.00 10000

0.00 0.00 10000

0.00 0.00 0.0 10000

The records may be in any order, and the options of $PRIOR need not be specified. The name of the
record describes the kind of information it gives to NWPRI, rather than the structure of the information,
as follows:

STHETAP for THETA priors

STHETAPV for variance-covariance matrix for THETA’s

$OMEGAP for OMEGA prior

SOMEGAPD for degrees of freedom (or dispersion factor) for OMEGA prior
$SIGMAP for SIGMA prior

$SIGMAPD for degrees of freedom (or dispersion factor) for SIGMA prior

IILIILB.27. $CHAIN Record (nm72)

SCHAIN [FILE=filename]
[FORMAT=s,]| [ORDER=xxxf]
[NOTITLE=[0|1]] [NOLABEL=[0|11]]
[ISAMPLE=n][NSAMPLE=n]
[SEED=n] [SELECT=n]
[RANMETHOD=[n|S|m]]
[CTYPE=[0]1]|2]|3]41]
[DF=n] [DFS=n] [IACCEPT=n]

E.g.
SCHAIN FILE=examplel_previous.txt NSAMPLE=0 ISAMPLE=-1000000000

Supplies initial estimates for an entire problem. Option METHOD=CHAIN of the SESTIMATION
record will only set thetas, omegas, and sigmas for initial values of the estimation process. Its scope is

68

NM-TRAN Guide - Chapter I1I Control Records Brief Descriptions of New Records

therefore limited in that it will not impact the parameters used in simulating data for the Simulation step.
To introduce initial thetas, omegas, and sigmas that will cover the entire scope of a given problem, use
the SCHAIN record.

ITL.IIL.B.28. $SIZES Record (nm72)

$SIZES [constant=value] [constant=value] ...

E.g.
$SIZES LIM1=30000 MAXFCN=2000000 NO=500

$SIZES is optional. If present, it must precede the first $SPROBLEM or $SUPER record. by the
$SANNEAL record.

Certain constants are used in NM-TRAN, NONMEM and PREDPP. These are in file resource/sizes.f90.
The user may override many of the constants with the $SIZES record. Any non-zero value specified on
the $SIZES record overrides both the default and the value that NM-TRAN would have specified. (A
value of 0 is ignored.) As of NONMEM 7.3, as an alternative to modifying sizes.f90 to very large
maximum sizes, you can tell NMTRAN the maximum size that may be needed by specifying a $SIZES
constant as a negative value. Thus, a user can give NMTRAN permission to deal with all problems that
have data input files that have up to 1000 data items, and up to 150 etas and epsilons, and up to 200
thetas, by the following:

$SIZES PD=-1000 LVR=-150 LTH=-200

but the values of these constants when the NONMEM executable is constructed will be only what is
needed for the particular problem.

ITL.IIL.B.29. $ANNEAL Record (nm73)

SANNEAL number-list]l:valuel number-list2:value2 ...

E.g.

SANNEAL 1-3,5:0.3 6,7:1.0

Sets starting diagonal Omega values for purposes of simulated annealing by NONMEM subroutine
CONSTRAINT. This facilitates EM (Expectation Maximization) search methods.

In the above example, initial values of OMEGA(1,1), OMEGA(2,2), OMEGA(3,3), and OMEGA(5,5)
are set to 0.3, while initial OMEGA(6,6) and OMEGA(7,7) are set to 1.0.

IIL.IIL.B.30. $ETAS Record (nm73)
IIL.IIL.B.31. $PHIS Record (nm73)

SETAS [[value; [value,] [values] ... [value,]]
FILE=filename FORMAT=s; [TBLN=n]]
[value; [value,] [values] ... [value,]]

FILE=filename FORMAT=s; [TBLN=n]]

SPHIS

— ———

E.g.

69

NM-TRAN Guide - Chapter I1I Control Records Brief Descriptions of New Records

SETAS 0.4 3.0 3.0 5.0

SPHIS 0.4 3.0 3.0 5.0

SETAS FILE=myprevious.phi FORMAT=slpEl5.8 TBLN=3
SPHIS FILE=myprevious.phi FORMAT=slpEl5.8 TBLN=3
Specifies Initial Values for Etas or Phis

By default, the initial value used for ETA’s in the Estimation Step search is 0. The $ETAS and $PHIS
records provide different initial estimates. When the record is $PHIS, values are entered as phi values,

convenient for EM methods. The eta values will then be evaluated as eta(i) = phi(i) — mu(i) for each eta,
where mu(i) = mu_i is evaluated according to their definitions in the abbreviated code.

IILIIL.B.32. SLEVEL Record (nm73)

SLEVEL item=(n1 [ml] . Hz[mz])

E.g.
SLEVEL SID=(4[1],5[2],61[3])

Specifies nested random levels above subject ID. Item is the name of a data item listed on $SINPUT. It

defines an additional nested random level and is referred to as a "super ID" data item. The notation
ny [my] states that ETA(ny) is associated with this super ID item, and ETA(my) is nested within ETA(ny).

IILIIL.B.33. $DEFAULT Record (nm74)

$SDEFAULT [NOSUB=[-1|0]11]

E.g.
SDEFAULT NOSUB=1

Specifies certain defaults for NONMEM. If present, it must appear following $PROBLEM record.

The NOSUB option is the same as the NOSUB option of the $SESTIMATION and $STABLE and $SCAT-
TER records.

70

NM-TRAN Guide - Chapter IV Abbreviated Code Brief Descriptions of New Records

IV. Abbreviated Code

IV.IV.A. Introduction

It can be seen from the example in chapter I that an abbreviated code is much like a FORTRAN code.
Indeed, nearly every statement of an abbreviated code is syntactically a FORTRAN statement. The
reader is advised to become familiar with very basic FORTRAN coding, in particular the use of assign-
ment statements, conditional statements, arithmetic expressions, and logical expressions. However, not
all FORTRAN constructs can be used in an abbreviated code, an abbreviated code does not constitute a
complete FORTRAN coded subroutine (this is not a disadvantage), and certain symbols used in an abbre-
viated code have (semantical) meaning different from standard FORTRAN meaning. For the purposes of
developing user-supplied type subroutines for NONMEM, restrictions imposed by abbreviated code (on
the use of certain FORTRAN constructs) are not many; usually, use of abbreviated code is quite ade-
quate. The advantages to using an abbreviated code are considerable and outweigh some inconvenience
which the restrictions impose.

Nonetheless, one may still want to use FORTRAN statements not allowed in abbreviated code. An
escape mechanism is available. Verbatim code can be inserted into abbreviated code. This is FORTRAN
code that is itself inserted without change, i.e. verbatim, into the FORTRAN subroutine generated by
NM-TRAN. Because this code is essentially not processed by NM-TRAN, other than to copy it into the
generated routine, symbolic differentiation is not used with this code. For this and other reasons, verba-
tim code should only be used by those who understand well how generated subroutines are structured.

The purpose of an abbreviated code is to specify the computation of special quantities called the left-
hand quantities . These quantities are symbolized by reserved variables or arrays elements. There are

mandatory left-hand quantities and optional left-hand quantities. For each mandatory (optional) left-
hand quantity, there must (may) exist some assignment or conditional assignment statement in the abbre-
viated code that defines the symbol used for the quantity. In the case of an abbreviated code for PRED
there is one mandatory left-hand quantity, symbolized by the reserved variable Y, and described below.
There are other optional left-hand quantities symbolized by reserved array elements COM (n) , which play
a minor role; see section E.3.

There are other special quantities called right-hand quantities , which can be used in the computation, and
these are also symbolized by reserved variables or array elements. The symbols are used in abbreviated
code as though they are already defined. These quantities are: the data items of a data record, symbolized
by the variables given by the labels and synonyms specified in the $SINPUT record; values of the 8 pa-
rameters, symbolized by the array elements THETA (1), THETA (2), etc.; values of /7 and & variables,
symbolized by the array elements ETA (1), ETA(2), ..., and EPS (1), EPS (2), ..., ; others where not-
ed.

Generated PRED subroutines contain the declaration

USE NMPRD_REAL,ONLY: ETA,EPS

so that ETA and EPS values may be obtained from NONMEM’s GETETA, SIMETA, and SIMEPS sub-
routines, as appropriate (for some discussion of SIMETA, see section I11.B.13).

The symbols can be used in the right-hands of assignment statements and, with some restrictions for
ETA’s, EPS’s, and all other random variables (see below), they can also be used in the right-hands of
conditional assignment statements and in the conditional expressions of conditional statements. Except
where noted, a symbol for a left-hand quantity, once it has been has been defined in abbreviated code, can
also be used similarly. For example, Y may be used on the right, e.g. LOGY=LOG (Y). Also, variables
other than left-hand quantities can be defined by abbreviated code and used similarly. On the other hand,
a variable defined by abbreviated code cannot be used as a label in a SINPUT record. This means that
quantities cannot be stored into the data record using abbreviated code (see though, section I).

71

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

The array elements ETA (1), ETA(2), ...,and EPS (1), EPS (2), ..., can also be regarded as symboliz-
ing the 17 and & random variables, not simply values of these variables. For practical purposes, this
means that if another variable A is defined in abbreviated code in terms of these elements, then A can be
viewed as a function of the 77 and ¢ variables, and NM-TRAN generates code to compute various deriva-
tives of A with respect to the /7 and ¢ variables. These derivatives are called the 77- and £-derivatives .
The variable A itself can be regarded as symbolizing a random variable, so that if it is used to define yet
another variable B, the 77- and &-derivatives of B are also computed, and so on. In general, in addition to
the 7 and £ random variables, any variable or array element whose value depends on the value of an 77 or
&€ variable is itself regarded as a random variable. In the example of chapter I, all variables defined with
the string of assignment statements, i.e. the variables KE to Y, are random variables.

The variable Y is (typically) an example of a random variable. If PRED is called with a data record con-
taining an actual observation, Y symbolizes the value of the observation under the statistical model. If
PRED is called with a data record with a missing dependent variable data item equal to 1, Y symbolizes a
prediction. This prediction, however, is obtainable from the same code used to give the model-based
value for the observation, and one need not (although one may) give different code depending on the
value of the MDV data item. With odd-type data, Y is a conditional likelihood for the observation. See
J.1. "Indicator Variables, Random Variables and Recursion Code" for an example of odd-type (categori-
cal) data.

A random variable may be used in the right or left-hand of a conditional assignment statement, i.e., it
may be defined conditionally. A random variable may be used in the conditional expression of a condi-
tional statement, but in this case care should be taken that either the statement is executed only during the
Simulation Step (see section D), or that as a result of the expression being true, the EXIT statement is
executed (see section G.2). A random variable may not be defined in a nested conditional assignment
statement. An alternative way to code this type of computation is illustrated in section IV.K.1 Random
Variables and Recursion code below.

An abbreviated code is part of an NM-TRAN control record. For example, an abbreviated code for
PRED is a part of a $PRED record. The statements comprising the code are contained in one or more
continuation records of the control record. However, only one statement can be contained in any one
record. A $PRED record along with all its continuation records is called a $PRED block . NM-TRAN
comments can be included in an abbreviated code in the usual way, e.g.

Y=THETA (1) *WT+THETA (2) *AGE+ETA (1) ;linear regression model

Using symbols 77’s and &’s, and their counterparts in abbreviated code, the ETA’s and EPS’s, can be con-
fusing. If the data are population data, intraindividual effects are represented by & variables, but with sin-
gle-subject data, they are represented by 7 variables; see section I11.C.4. NM-TRAN abbreviated code
offers a way to alleviate this confusion. With single-subject data the array element ERR (n) may be used
instead of ETA (n) ; using one has the same effect as using the other. With population data the array ele-
ment ERR (n) may be used instead of EPS (n) . Therefore, in either case one can be safe in always using
the symbols ERR (n) to represent the random intraindividual effects.

IV.IV.B. General Restrictions

Each statement may be placed anywhere within its containing record, one statement per record.
FORTRAN 95 continuation lines are permitted. The character & should be placed at the end of the line to
be continued.

TAny variable A that can be regarded as a random variable, is called a true-value variable in the first edition
of this guide, in certain other NONMEM Users Guides, and in NM-TRAN error messages. This is because
the variable can also be regarded as symbolizing the true, albeit unknown, value of the random variable that
gives rise to the data at hand.

72

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

For example, the following two code fragments are identical:
CL=EXP (THETA (1) *WERT+EPS (1))

CL=EXP (THETA (1) *WERT &

+EPS (1))
Comments may be included on any line after the semicolon character ";". An exception is the FOR-
TRAN continuation character &, which may not be followed by a comment.

No statement types other than assignment, IF, THEN, ELSE, ELSEIF, ENDIF, DO WHILE, ENDDO,
CALL, WRITE, PRINT, RETURN, OPEN, CLOSE, REWIND. e.g., no GOTO, READ, FORMAT.

For use of WRITE, PRINT, OPEN, CLOSE, and REWIND statements in abbreviated code, see Guide
VIII and on-line help.

A special statement type, EXIT, is permitted. Both lower and upper case may be used for all user-defined
and reserved words. FORTRAN statement numbers may not be used.

All variables or array elements are treated as having type DOUBLE PRECISION i.e., as double precision
floating-point numbers, except where noted. Any valid FORTRAN numerical constant can be used, but
if it is an integer constant, it is treated as a DOUBLE PRECISION constant.

All variable names consist of 1-20 letters (A-Z), numerals (0-9), and the character ’_’, beginning with a
letter. (The length 20 is specified by constant SD in SIZES).

Names of array elements which are left- or right-hand quantities can appear. Variable names of exactly
six characters, starting with A, B, or C and followed with various combinations of five of the digits 0-9
(e.g. BO0003), and the variable name BBBBBB, are reserved for internal use and may not be used in an
abbreviated code; see section F.

Use of the exponential operator ** is allowed. However, as with FORTRAN, it is more efficient to use
the multiplication operator * when the exponent is a small (< 4) integer. Although when B=0 and P>0
the computation R=B**P is mathematically defined and is O, some floating point processors fail with a
floating point error. Powers are computed as follows (NONMEM V):

Q=0

IF (B.EQ.0) 0=1

R=(1-Q) * (B+Q) **P
FORTRAN functions LOG (natural log), LOG10, EXP, SQRT, SIN, COS, TAN, ASIN, ACOS, ATAN,
ABS, INT, MIN, MAX, MOD may be used. The NONMEM functions PHI and GAMLN may be used.

Functions LOG, LOG10, EXP, SQRT, SIN, COS, TAN, ASIN, ACOS, ATAN, ABS, GAMLN may have
random variable arguments and the partial derivatives are computed. Note that the partial derivative of

0X
ABS(X) with respect to 77 is mathematically undefined at X=0. We are arbitrarily defining it to be % If

the value of X affects the value of the objective function, X must always be either positive or negative. If
the argument of GAMLN is a random variable, it must always be positive. Function PHI may have a ran-
dom argument but no partial derivates are computed.

The INT, MOD, MIN, and MAX functions produce discontinuous results. No partial derivatives are
computed. If they are used outside of a simulation block and the function value affects the value of the

73

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

objective function, then an error in the NONMEM Estimation Step will probably occur.

With NONMEM 7.4, routines are available that protect against domain violations, divide by zero, and
floating point overflows. Each of these routines start with the letter P, followed by the name of the math-
ematical operation they are to perform. For example, PLOG is the protective code routine that performs
the LOG operation. The protect functions and the SABBREVIATED PROTECT record are discussed
below in section IV.J.6. PROTECT functions.

User-written functions FUNCA, FUNCB and FUNCC (called abbreviated functions) may be used as
right-hand quantities in abbreviated codes. Such a function may have a single argument. However, it
may be a vector. A function may depend on arguments which may be random variables, in which case
the function too becomes a random variable.

Left-hand quantities VECTRA(n), VECTRB(n), VECTRC(n) may be used, and these become elements
of reserved vectors VECTRA, VECTRB, VECTRC. A subscript n must be a positive integer constant.
Any reserved vector may be used with any FUNC, e.g. X=FUNCA(VECTRB).

The code for the functions must be written by the user in FORTRAN (See Guide VIII ABBREVIATED
FUNCTION Help Item.) The code must be in a file included using the $SUBROUTINE OTHER option,
as discussed in Chapter II1.B.6.

With NONMEM 7.3, reserved function names are FUNCA through FUNCI.

With NONMEM 7.4, reserved function names are FUNCA through FUNCZ. Reserved vector names are
VECTRA through VECTRZ.

With NONMEM 7.4, the SABBREVIATED FUNCTION and $ABBREVIATED VECTOR records may
be used to declare user-defined functions and vectors. See section IV.J.7, below

With NONMEM 7, the SABBREVIATED DECLARE record may be used to declare user-defined arrays
and vectors, which may be used for random-quantities. INTEGER variables and DOWHILE variables
(which are also integer) may be defined and may be used for looping. Integer variables and integer
expressions may be used as as subscripts for THETA’s and user-defined arrays. Integer variables and
integer expressions may be used as subscripts for other arrays, e.g., random variables ETA(I), but only in
a WRITE or PRINT statement. Declared variables are global, i.e., are defined in all blocks of abbrevi-
ated code except SMIX. Declared variables are automatically initialized to 0.
Here is an example.
SABBR DECLARE INTEGER I, REAL X (10)
SPRED

I=1

X (I)=THETA(I)

For more examples, see IV.IV.J.3. The DOWHILE Statement

Previous restrictions on nested parentheses and conditional definition of random variables are removed.
Specifically:

Parentheses may be nested, e.g.,
A= (THETA (1) + (THETA (2) +C) *2) /E

Parentheses may be used within logical expressions, e.g.,
IF (Q.EQ. (R+C) /D) A=3

Parentheses may be used within an expression for an argument of a FORTRAN library function, e.g.,
A=EXP (- (THETA (1) +C) *TIME)

74

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

Conditional statements may be nested if random variables are not defined. The default is 10 levels of
nested IF’s. This may be increased. E.g.,

A=THETA (3)
IF (Q.EQ.1l) THEN

A=THETA (1)

IF (R.NE.B) A=A+THETA(2)
ENDIF

An ELSE IF clause may be used.

Random variables may appear in the right and left-hands of conditional assignment statements, e.g.,
IF (Q.EQ.1) A=THETA(1l)* (1+ETA(1))
IF (Q.EQ.0) A=THETA(2)* (l+ETA(1))

A random variable may be redefined, e.g.,
A=TVV+TVV*ETA (2)
A=A+THETA (4)

A variable on the left-hand of an assignment statement may also be used on the right-hand even if the
assignment redefines the variable to be a random variable, e.g.,

A=THETA (1)

A=A*EXP (ETA (1))

The logical operators .NOT., .AND., .OR., may not be used within parentheses.

Here is an example of how to write code to avoid this restriction. (See Guide VIII and on-line help for
ignore/accept example.)

Suppose ACC is a variable that is to have values 0/1 depending on the value of A and B. The desired
code is:

ACC=0

IF ((A == 1.0R.A == 2).AND.B<100) ACC=1
There are two workarounds. One is to clear the parentheses:
ACC=0

IF (A==1.AND.B<100.0R.A==2.AND.B<100) ACC=1

(this is always possible, no matter how complicted the conditional expression).

The second is to use several statements. There are may ways to do this. In the following, the .AND. of
multiple conditions is false if any of the conditions is false.

AcCc=1

IF (A.NE.1.AND.A.NE.2) ACC=0

IF (B.GE.100) ACC=0

An IF-ENDIF block must be completely within a contiguous block of
the NM-TRAN record containing the abbreviated code.

75

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

invalid
SPRED
IF (A.EQ.B) THEN
Y=W1
SPRED
ELSE
Y=W2
ENDIF

valid
SPRED
IF (A.EQ.B) THEN
Y=Ww1l
ELSE
Y=W2
ENDIF

IV.IV.C. Restrictions Specific to an Abbreviated Code for PRED

There are further restrictions specific to each type of abbreviated code. For an abbreviated code for
PRED, certain variables which occur as arguments to the PRED subroutine may not be used. These are
DATREC, INDXS, G, and H. The variable F can be used; it has no special meaning in the code.

IV.IV.D. Extensions Specific to an Abbreviated Code for PRED

Extensions specific to each type of abbreviated code can exist. In general, any feature described in this
section for $PRED may be used with some or all other blocks, such as PREDPP blocks $PK and
$ERROR. Exceptions are noted when appropriate. For an abbreviated code for PRED, certain reserved
variables may be used to symbolize some special right-hand quantities. These variables, ITCALL and
NEWIND, occur as arguments to the generated PRED subroutine. They are now described.

The variable ICALL has the value 0 if the call to PRED is the first call to PRED in the run (the run ini-
tialization call). It has the value 1 if the call to PRED is the first call to PRED in the problem or super-
problem (a problem initialization call). It has the value 3 if the call to PRED is the last call to PRED in
the problem (a problem finalization call). It has the value 2 if the call to PRED is a regular call during
data analysis, and the value 4 if the call is a regular call during data simulation. It has the value 5 if the
call to PRED occurs when expectations are being computed (the marginal data item MRG_ has a non-
zero value for some records). It has the value 6 if the call to PRED occurs when raw data averages are
being computed (the raw-data-average data item RAW_ has a non-zero value for some records).

Abbreviated code may test the value of ICALL. Such code defines specific kinds of blocks. For example:

IF (ICALL==0) THEN

Run Initialization block
ENDIF

IF (ICALL==1) THEN

Problem Initialization block
ENDIF

IF (ICALL==2) THEN

Data Analysis block

ENDIF

IF (ICALL==3) THEN

Problem and Run Finalization block
ENDIF

76

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

IF (ICALL==4) THEN
Simulation block
ENDIF
IF (ICALL==5) THEN
Expectation block
ENDIF
IF (ICALL==6) THEN
Data Average block
ENDIF

The specific rules for each type of block are described in the help NONMEM Users Guide VIII and on-
line help. In particular, for ICALL 0, 1, 3 blocks, see help item for Initialization-Finalization block.

At initialization and finalization calls the data items occuring as right-hand quantities are those of the first
data record. At the run initialization call the THETA’s are 0. At a problem initialization (finalization)
call, the THETA’s are the initial (final) estimates. During an initialization (finalization) call, the ETA’S
are 0 (0, or conditional estimates for the first individual if conditional estimates have been requested).

The variable NEWIND has value O if the data record is the first record of the data set. It has the value 1
for the first record of the data set if the THETA value does not differ from value at last call with this
record, and PRED is non-recursive (see disucussion in IIL.III.B.15), or, more usually, if the data record is
the first data record of the second or subsequent individual record. It has the value 2 if the data record is
the second or subsequent data record of an individual record. With single-subject data individual records
are defined in such a way that data records are contained in a number of different individual records; see
section II.C.4.1. Therefore, except when the data record is the first data record of the data set and the
value of NEWIND=0, the value of NEWIND can be 1 or 2.

IV.IV.E. Some Special right-hand Quantities

Certain reserved variables listed in NONMEM MODULEs (and available to any subroutine for which an
abbreviated code may be given) may be used in abbreviated code to symbolize some special right-hand
quantitites. Some of these are now described. They are intended for use in advanced NONMEM appli-
cations. This section may be ignored by beginning NONMEM users. Some of these variables are associ-
ated with a data record or individual record. They change values with calls to NONMEM PASS routine.
This is discussed in section IV.J.2, below. See help item for variables in modules.

IVIV.E.1. MIXNUM and MIXEST and MIXP

These are right-hand variables that can be used when a mixture model is used. With a mixture model
there are one or more submodels that can be used to describe an individual’s data. PRED (PK, ERROR,
etc. if PREDPP is used) must be able to compute its outputs under each of these submodels. However,
with each call to the routine, the outputs are computed only under one submodel. With data from a given
individual’s record, and when ICALL=2 or 4, MIXNUM is the number of the submodel of the mixture that
should be used to obtain the outputs. It is an input to PRED (or PREDPP) set by NONMEM. The sub-
models are enumerated 1, 2, ..., m, where m is the number of possible submodels that can be used to
describe the individual’s data, a number returned in an argument of the routine MIX; see Guide VI, sec-
tion III.L.2. The number m can vary between individual records. When ICALL=1 or 3, MIXNUM is 1.

The variable MIXEST can be used when a mixture model is used. With data from a given individual’s
record, and when ICALL=3, MIXEST is the number of the submodel of the mixture that "best" describes
the individual’s data. It is an output (result) or consequence from the estimation set by NONMEM and
changes value with calls to PASS. The best submodel is selected according to a Bayesian computation,
conditional on the individual’s data and on the final estimates of the population parameters. When
ICALL=1,2,0r4,MIXEST is 1.

77

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

MIXP is an array variable. They are the mixture probabilities P(i) computed by subroutine MIX or by the
$MIX block of abbreviated code. (In the $MIX block, MIXP is simply the P array.)

See the $MIX block, below.

IVIV.E.2. COMACT

The variable COMACT can be used to identify those calls to the routine with which PRED-defined items
(see section F) are obtained by NONMEM for the purpose of displaying these items in tables and scatter-
plots. COMACT is 1 or 2 or 3 with such calls; otherwise it is 0.

When COMACT is non-0, NONMEM is making a copying pass. The data records are being passed to
PRED for the purpose of computing values of variables which will be copied from NMPRD4 for ta-
bles and scatterplots. NONMEM only makes a copying pass when PRED-defined items are listed in
$TABLE or $SCATTER records.

Abbreviated code that tests COMACT defines a copying block, e.g.,

IF (COMACT>0) THEN
Copying block
ENDIF

There are (up to) three sets of calls with the data records of an individual record. With ETA’s set to 0,
there is a first set of calls with COMACT=1. If conditional estimates are requested, then with ETA’s set to
these estimates, there is a second set of calls with COMACT=2. If conditional (nonparametric) estimates
of etas are requested, there is a third set of calls with COMACT=3.

If a mixture model is used, with each value of MIXNUM (see section E.1) there are more than two sets of
calls. With ETA’s set to 0, there is a set of calls for each distinct value of MIXNUM with COMACT=1. If
conditional estimates are requested, then with ETA’s set to these estimates, there is a set of calls for each
distinct value of MIXNUM with COMACT=2. Note that nonparametric estimates cannot be obtained with a
mixture model.

PRED-defined items are stored in variables defined in PRED (PK or ERROR if PREDPP is used) (see
section F). Normally, these items may change from call to call. That is, at one call an item is computed
and stored in a variable V; then it is available in V at the start of the subsequent call; at that call, though,
another item may be computed and stored in V. Therefore, if an item is computed at a call C; with a par-
ticular data record (of the individual record) when COMACT=1, it may no longer be available at a call C,
with the same data record when COMACT=2, due to there being (in general) multiple calls to PRED (PK
and ERROR) with different data records of the individual record between C; and C,. There are, how-
ever, situations where it is desired that the item be available at C,. This problem is solved by making a
special use of NONMEM MODULE NMPRD4.

Items may change from call to call whether they are stored in a locally defined variable or in a globally
defined variable listed in NMPRD4 (see sections I1I1.B.16-17). However, an initial section of NMPRD4
can be identified to NONMEM as the save region . All items stored in this region at a call to PRED (PK
or ERROR) with a particular data record when COMACT=1 are available at a call with the same data
record when COMACT=2. In fact, with mixture models in mind, if at any call to PRED (PK or ERROR)
with a particular data record (when COMACT=1 or 2 and MIXNUM has any value), an item is stored in a
variable listed in the save region, then the item is available at any subsequent call with the same data
record (when COMACT=1 or 2 and MIXNUM has any value).

The save region of NMPRD4 is comprised of the first n, positions, where n, is the integer given with the
COMSAV option on the SABBREVIATED record (see section II1.B.7). If the option is omitted, or if n, is
0, there is no save region.

78

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

PRED-defined variables that are defined in a copying block are referred to as implicit SAVE variables.
Another way to store an item in a variable listed in the save region is described in the next section.

IVIV.E.3. COM (n)

There are additional left- and right-hand quantities symbolized by the array elements COM (n) . The nth
element refers to the nth item stored in MODULE NMPRD4. These quantities are useful when a user-
supplied routine has stored items in this MODULE, and these items are to be used by abbreviated code.
Abbreviated code may also store items in reserved COM elements. Typically, the first n; positions of
NMPRD4 are reserved to allow user-supplied routines to store PRED-defined items in these positions so
that they may be displayed in tables and scatterplots (see section III.B.16). The integer n must not
exceed the integer n;, where n; is the integer specified with the COMRES option on the SABBREVIATED
record (see section III.B.7). Even if the computation of COM (n) depends on ;7’s or £’s, COM (n) is not
regarded as a random variable. That is, 77- and e-derivatives of COM (n) are always 0, but never actually
computed.

PRED-defined items defined by abbreviated code can also be stored in the first n; positions, since the
array element COM (n) can function as an optional left-hand quantity. This can facilitate the communica-
tion in both directions between a user-supplied routine and a routine specified by abbreviated code. It
can even be used to allow two-way communication between two abbreviated codes. (Regular variables
used on the left in one abbreviated code cannot be used on the left in another abbreviated code, as long as
variables are listed in NMPRD4, but see sections H and II1.B.7.) Another use of these left-hand quanti-
ties is to allow abbreviated code to specify that an item be stored in the save region of NMPRD4 (see sec-
tion E.2). COM(i) variables that are defined in a copying block are referred to as explicit SAVE
variables. Implicit and explicit SAVE variables cannot both appear in abbreviated code.

The rule given above still holds: COM (n) is not regarded as a random variable. This means that while
COM (n) may have a value that depends on 77’s and epsilons’s, the 77- and e-derivatives of COM (n) are
always 0. This in turn implies that abbreviated code cannot define a random variable to be listed in the
save region of NMPRD4.

IV.IV.E.4. NONMEM Counter Variables

Counter variables are right-hand variables that NONMEM sets so that user code can determine where
NONMEM is in a problem.

NIREC, NDREC (nmvi)

NPROB, IPROB (nmv)

S1NUM, S2NUM, SI1INIT, S2NIT, S1IT, S2IT (nmv)
NREP, IREP (nmv)

LIREC, NINDR , INDR1, INDR2 (nmvi)

Counters include (in the order above):

record counters;

problem iteration counters;

super-problem iteration counters;

simulation repetition counters;

number of data records in the individual record; number of individual records in the data set containing
an observation record, and the indices of the first and last such individual records.

Some of these variables may be used as right-hand quantities in abbreviated code for certain blocks of
code, e.g., only in initialization/finalization blocks. They change values if appropriate during a pass thru
the data set, e.g., during initialization/finalization.

79

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

IV.IV.E.5. Other Reserved Variables

The following lists some of the other reserved variables. Variables that can be used on the left-hand pro-
vide information to NONMEM. Variables that can be used on the right-hand are set by NONMEM.

MSEC, IFIRSTEM (right-hand) (nmiv, nm72)

These are the "partial derivative indicator”" variables set by NONMEM. NONMEM does not always
require that first or second 77- and &-derivatives be computed. MSEC=1 when NONMEM is expecting
second-partial eta-derivatives with the current call to PRED; O otherwise. IFIRSTEM=1 when NON-
MEM is expecting first-partial eta-derivatives with the current call to PRED; O otherwise. These deriva-
tives are almost always needed by classical NONMEM methods with population data. However, NON-
MEM does not always use these derivatives for the newer Bayesian methods. Generated code in FSUBS
copies IFIRSTEM to a local variable, FIRSTEM. This allows the abbreviated code to set FIRSTEM=1
so that first derivatives are computed in unusual circumstances.

(See Turning on First Derivative Assessments for EM/Bayes Analysis(NM72) in NONMEM 7 Guide.)

Note that NM-TRAN rearranges the order of statements in FSUBS. Statements that compute second-
partial eta-derivatives are collected together into blocks of second derivative code to be executed only
with MSEC is 1. Starting with NONMEM 7.2, statements that compute first-partial eta-derivatives are
collected together into blocks of first derivative code to be executed only with FIRSTEM is 1. Option
NOFASTDER of the SABBREVIATED record prevents NM-TRAN from doing this and restores the
order of statements in FSUBS to what it was in previous versions.

NEWL2 (right-hand) (nmv)

NEWL?2 =1 if the data record is the first of an L2 record;

NEWL2 = 2 otherwise.

NEWL2 may be used as a right-hand quantity in $PRED and $ERROR blocks, and in an $INFN block in
conjunction with PASS. It changes with calls to PASS.

OBJECT (right-hand) (nmv)

The final value of the objective function. This value should only be used at ICALL = 3 (finalization
block) in $INFN or $PRED.

IERE and IERC (right-hand) (nmv) The return codes from the Estimation Step and Covariance Steps,
respectively. Values of O indicate normal termination. They should only be used at ICALL = 3 (finaliza-
tion block) in $INFN or $PRED.

RPTI, RPTO, RPTON, PRDFL (left-hand) (nmvi)

The "Repetiton Variables" may be used to mark a data record as a repetition base when NONMEM’s
repetition feature is used, as an alternative to use of the RPT_ data item.

With Version VI, variables RPTI, RPTO, RPTON and PRDFL can be set and/or tested, thus allowing a
subsequence of data records to be repeatedly passed to PRED multiple times before the next data record
following the last record of the subsequence is passed. Subsequences can be nested. This "repetition fea-
ture" allows e.g. kinetics to be computed by a convolution integral. The user can exercise control over
which pass through a sequence it is, during which the output from PRED with a given data record will be
used by NONMEM. This "PRED control" allows e.g. PRED output with a given record to involve com-
putations over subsequent, as well as prior, records. (See the NMPR10 Help Item and the Repetition 1
and Repetition 2 examples.)

YLO, YUP (left-hand) (nmvi)

With a given data record, either of the limits YLO or YUP may be set so that during the analysis an inter-
val is defined in which (or outside of which) an observation is conditioned to exist. May be set in
$PRED and $ERROR.

80

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

PR_Y (right-hand) (nmvi)

PR_Y is the estimated probability that an observation will fall within (or outside) the interval. PR_Y
may be used as a right-hand quantity in abbreviated code for $PRED, $PK, $SERROR, and $INFN
blocks.

CTLO, CTUP (left-hand) (nmvi)

An observation may be the event that the value of a normally distrib- uted variable falls in a given inter-
val. CTLO is the lower endpoint of the interval. CTUP is the upper endpoint of the interval. May be set
in $PRED or $SERROR.

PR_CT (right-hand) (nmvi)

PR_CT is the estimated probability that an observation will be of the category in question. PR_CT may
be used as a right-hand quantity in abbreviated code for $SPRED, $PK, $ERROR, and $INFN blocks.
F_FLAG (left-hand) (nmvi)

The data may include both population data and odd-type data. PRED may compute both predictions and
likelihoods. F_FLAG=0 indicates that Y or F is being set to a "prediction" of the observation.
F_FLAG=1 (or 2) indicates that Y or F is being set to a likelihood (or -2 log likelihood) value for
this particular observation. May be set in $PRED and $ERROR. See J.1. "Indicator Variables, Random
Variables and Recursion Code" for an example.

IIDX, CNTID (right-hand) (nmvi)

These array variables contain values of the ID data item and individual contributions to the objective
function. The values are in data-set order. With NONMEM 7, the additional output file root.phi con-
tains the same information.

SKIP__ (left-hand) (nmvi)

SKIP_ is used to control premature termination of a problem (with subproblems), superproblem or super-
problem iteration. In a finalization block of abbreviated code one may set SKIP_ and/or use the follow-
ing phrases:

END PROBLEM (same as SKIP_=1)
END SECOND-LEVEL SUPERPROBLEM (same as SKIP_=3)
END FIRST-LEVEL SUPERPROBLEM (same as SKIP_=5)

END SECOND-LEVEL SUPERPROBLEM ITERATION (same as SKIP_=2)
END FIRST-LEVEL SUPERPROBLEM ITERATION (same as SKIP_=4)

TEMPLT (right-hand) (nmvi)
This right-hand array is used in two different contexts.

At ICALL=6, the template data record is stored in TEMPLT and may be used on the right in a data
average block.

When MIX is called, the first data record of the individual record is stored in TEMPLT and
may be used in $SMIX.

Items of the template record may be referred to by position or by label, e.g., TEMPLT(1) or TEM-
PLT(ID).
OMEGA (n, m), SIGMA (n, m) (right-hand) (nmvi)
Current values of OMEGA and SIGMA in $PRED, $PK, SERROR at ICALL 2. In $INFN and $PRED
at the run initialization call, they are 0’s. At a problem initialization (finalization) call, they are the initial

(final) estimates. May specify individual elements or the entire array. In the case of OMEGA and
SIGMA, may also specify BLOCK or DIAG.

81

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

SETHET (n) , SEOMEG (n, m) , SESIGM (n, m), SETHETR (n) (right-hand) (nmvi)

The standard errors of the estimates of THETA, OMEGA, and SIGMA. In $SINFN and $PRED, at
ICALL 3. May specify individual elements or the entire array. If STHETAR is used, SETHET contains
standard error of internal values, and SETHETR contains standard errors of reported values. If
$THETAR record not used, SETHET=SETHETR. In the case of OMEGA and SIGMA, may also spec-
ify BLOCK or DIAG.

THSIMP, THSIMPR OMSIMP, SGSIMP (right-hand) (nmvi)

These are the values of THETA, THETAR, OMEGA and SIGMA that are produced during a Simulation
Step using the user-supplied routine PRIOR. (THETA=THETAR if $STHETAR record not used.) May be
used in $PK, $ERROR, $INFN and $PRED blocks. After being set during the Simulation Step, they
remain available during problem finalization (i.e., ICALL=3).

DEN_, CDEN__ (i) (right-hand) (nmvi)

The nonparametric density and the marginal cumulative value for the ith. eta. Values are computed by
NONMEM when the Nonparametric step is performed and marginal cumulatives are requested ($NON-
PARAMETRIC MARGINALS). Values are available during the pass with COMACT=2 and (if PASS
is called) at ICALL=3. These variables may be used as right-hand quantities in abbreviated code
blocks $PK, SERROR, $INFN and $PRED.

PRED_, RES_, WRES__ (right-hand) (nmvi)

These values may be used when ICALL is 3 ($PRED and $INFN) They have the same values as PRED,
RES, WRES in NONMEM outputs. They change with calls to PASS. With NONMEM 7, all the special
diagnostic items from Chapter III may be used in this manner.

CORRL2 (left-hand) (nm7)

CORRL2 is a reserved variable used for modelling correlation across residual variables (i.e., within L2
records.) May be set in SERROR or $PRED, and used in $PK and $INFN. See the example in J.3.
below.

MDVRES (left-hand) (nm73)

Set MDVRES to 1 in the $SPRED or $ERROR block if you do not want to include a particular obser-
vation in the computation of residual and weighted residuals.

ETASXI (left-hand) (nm73)

ETASXI stands for eta shrinkage exclude/include.

Set ETASXI() to 2 to include ETA(i) in average eta shrinkage assessment.

Set ETASXI(i) to 1 to exclude ETA().

This variable may be used only in $PK and $ERROR and $PRED blocks. See also $SESTIMATION
record ETASTYPE option.

NPDE_MODE (right-hand) (nm73)

NONMEM sets NPDE_MODE=1 when it is computing NPDE and NPD (Monte-Carlo generated
normalized probability distribution error), when these are listed in $TABLE or $SCATTER. Otherwise,
NPDE_MODE=0.

DV_LOQ (left-hand) (nm73)

"LOQ" stands for "limit of quantification". If the user’s ERROR/PRED sets DV_LOQ when NONMEM
sets NPDE_MODE-=1, then the NPDE is being evaluated during this call, and this censored value is to be
treated as if it is a non-censored datum with value of DV_LOQ.

82

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

IVIV.E.6. PRED_IGNORE_DATA_TEST and PRED_IGNORE_DATA

Code such as the following may be used in $PRED, $PK, or $SINFN:
SINFEN
IF (PRED_IGNORE_DATA_TEST==1) THEN
PRED_IGNORE_DATA=0
IF (AGE>35.0) PRED_IGNORE_DATA=1
IF(ID>10.AND.ID<18.0R.ID>60.AND.ID<70) PRED_IGNORE_DATA=1
RETURN ;Assures no additional computation code in INFN is executed
ENDIF

In a user-written subroutine, the declarations are

USE NMPRD_INT, ONLY: PRED_IGNORE_DATA,PRED_IGNORE_DATA_TEST
The IGNORE=(list) and ACCEPT=(list) options of $DATA provide a limited means of filtering the input
data set, which is performed by NMTRAN. To provide more elaborate filtering for excluding data,
PRED can request that NONMEM filter out additional data records at the begining of the run or prob-
lem. This is done by setting the reserved variable PRED_IGNORE_DATA to a non-zero value within
$INFN, $PK, or $PRED, for each record to be ignored.

For details, see Guide VIII PRED_IGNORE_DATA BLOCK
See INTRODUCTION TO NONMEM 7, PRED_IGNORE_DATA Feature (NM75)

IV.IV.FE. PRED-Defined Items

The values of a variable defined in a user-supplied PRED or in an abbreviated code for PRED is called a
PRED-defined item. For the purpose of this definition, PREDPP is not considered to be either type of
PRED specification. However, for documentation purposes, the values of a variable defined in a user-
supplied routine used by PREDPP, or in an abbreviated code for such a routine is also called a PRED-de-
fined item. If, for example, the routine is PK, such a value is also called a PK-defined item . PRED-de-
fined items can be displayed in tables and scatterplots; see sections I11.B.16-17.

The definition of a variable in an abbreviated code can generate additional definitions of other variables,
called generated variables , appearing in the generated code but not appearing in the abbreviated code.
The names of generated variables are all seven characters long. Certain generated variables symbolize
the values of partial derivatives and are normally listed in NMPRD4 so that their values can be displayed
like other PRED-defined items. For the PRED subroutine, the names of these variables are now de-
scribed. For the subroutines of PREDPP, they are described in sections V.C.5,6,7,9.

Variables which symbolize (first-, second-, mixed-) partial r7-derivatives of random variables defined in
abbreviated code for PRED (first- and second-partial n7-derivatives of random variables defined in abbre-
viated code for PK if PREDPP is used) are generated and displayable. They have names A. , where
the dots stand for various combinations of six digits 0-9.

Variables which symbolize first-partial -derivatives of random variables defined in abbreviated code for
PRED (ERROR if PREDPP is used) are displayable. They have names C. , where the dots stand
for various combinations of six digits 0-9.

It is not possible to know what variable symbolizes a given partial derivative without first obtaining and
inspecting the generated subroutine. Comment lines in the code describe the correspondence. The name
for the variable can be used in a STABLE or $SSCATTERPLOT record of a subsequent run (provided the
abbreviated code is the same in that run). With versions of NONMEM prior to NONMEM 7.4.1, the
labels for variables which symbolize partial derivatives were converted to 4 characters, as described in
earlier versions of the guide. The labels were not always unique or meaningful, although the values dis-
played were always correct. A work-around for earlier versions is to use an alias that is meaningful to
the user. For example, with CONTROL4 and NONMEM 7.4.0, NM-TRAN generates a variable named
A000039 for the "DERIVATIVE OF D W.R.T. ETA(001)" If this is to be displayed in a table and a

83

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

meaningful column header for the table is desired, an alias such as the following could be used:
STABLE A0O0O0039=dDdETAl

IV.IV.G. PRED Error-Recovery

PRED may exit with a nonzero PRED error return code. This section describes how to implement such
an exit with abbreviated code. It describes the ABORT and NOABORT options used in the STHETA and
$SESTIMATION records.

IV.IV.G.1. Background

When PRED exits with a nonzero PRED error return code, either the NONMEM run is immediately
aborted or an error-recovery procedure is implemented. An error-recovery procedure entails continued
calls to PRED, but with values for the THETA’s or ETA’s different from those with previous calls which
resulted in nonzero return codes. There are two error-recovery procedures: one with which different val-
ues for ETA’s are tried, the ETA-recovery , a second with which different values for THETA’s (and possi-
bly ETA’s) are tried, the THETA-recovery . Whenever it is possible to implement the ETA-recovery, this
is done. If this procedure fails, or if it is not possible to implement the ETA-recovery, and the error return
code is obtained during either the search in the Estimation Step or the search in the Initial Estimation
Step, then a choice exists between an abort and implementation of the THETA-recovery. If the THETA-
recovery fails, or if it is not actually possible to implement the THETA-recovery, the NONMEM run is
aborted.

A PRED error return code can have values O, 1, or 2. The value O means that the return is a normal
return. The value 1 means that if the choice exists between an abort or implementation of the THETA-
recovery, then this choice is to be made using control stream information. The value 2 means that if the
choice exists between an abort or implementation of the THETA-recovery, then the abort should be cho-
sen.

When an abort occurs, an error message will appear in the NONMEM output, in the intermediate output
file (if such a file exists), and in the PRED Error file. When the THETA-recovery is implemented, an
error message appears in the intermediate output file (if such a file exists), in the PRED Error file, and if
recovery is not possible, in the NONMEM output. The error message is called a PRED error message .

When the PRED error return code is 1, and a choice exists between implementation of the THETA-
recovery and an abort, the THETA-recovery is implemented if the NOABORT option is used on the
$SESTIMATION ($THETA) record. If the NOABORT option is not used, then the run is aborted. Often,
the most appropriate response to an abort occuring during the Initial Estimate Step, or during the Estima-
tion Step after the Oth iteration summary has been output, is to rerun the problem requesting that the
THETA-recovery procedure be implemented. Warning: If the NOABORT option is used before an actual
abort has occured, be sure to check the PRED Error file for possibly useful diagnostic information that is
otherwise available in NONMEM output when an abort occurs.

The NOABORTFIRST option of $THETA is the same as NOABORT, but also applies to the first value
of the theta vector that is tried. With NONMEM 7 and the NOABORT option of SESTIMATION,
NONMEM will force most non-positive Hessian matrices to be positive definite, allowing NONMEM to
continue. With NONMEM 72 and option NOHABORT of $ESTIMATION, positive definite corrections
are made at all levels of the estimation. This can hide a serious ill-posed problem, so use with care.

IV.IV.G.2. Implementation

An quick exit from PRED with a nonzero return code can be implemented in abbreviated code for PRED
(or in abbreviated code for PK, or ERROR, in which case the exit is from PREDPP) with this statement:

84

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

EXITnk

where n is the return code (1 or 2) and k is a user code (1-999). If the user code is used, it can be any
value the user wishes in the indicated range. In this case a part (shown here) of the PRED error message
gives the user code:

PRED SUBROUTINE: USER ERROR CODE = k

The user code can be omitted. If it omitted, then the return code too can be omitted, and then the return
code is 1 by default.

IV.IV.G.3. Rejecting Simulated Results and Simulation Error Forgiveness

The "EXIT n k" statement may be used for Rejecting Simulated Results and Simulation Error Forgive-
ness. If it is desired that the simulation be immediately terminated, then use an EXIT 2 code:
IF (ICALL==4.and.IPRED<0.1 .and. TIME>20.0) EXIT 2

With versions of NONMEM prior to 7.2, the "EXIT 1" statement in the Simulation step also caused
NONMEM to abort. As of NONMEM 7.2, if an error occurs in PREDPP during simulation such as
PK PARAMETER FOR KA IS NON-POSITIVE
or a user-implemented EXIT 1 is issued during simulation, then PRED will be called with a new ETA
and EPS. This feature is referred to as Simulation Error Forgiveness. NONMEM describes this as
PRED SIMULATION REDO in the NONMEM report file. It writes to the NONMEM report file a
description of the data record and THETA and ETA values, for example

PRED SIMULATION REDO

PRED EXIT CODE = 1

INDIVIDUAL NO. 1 ID= 1.00000000000000E+00 (WITHIN-INDIVIDUAL) DATA REC NO.
THETA=

3.00E+00 8.00E-02 4.00E-02

ETA=

4.66E-01 2.91E-03 9.95E-01
MESSAGE ISSUED FROM SIMULATION STEP
If ten such errors occur in the same subject, then it is supposed that the cause of the simulation error is
not due to an occasional bad random sample, but is caused by a systematic error in the control stream
file. The simulation step is terminated with the message
PRED ERROR OCCURRED TOO OFTEN ON SIMULATION
instead of a message
SIMULATION STEP PERFORMED
and (for example)
SOURCE 1:
SEED1: 1763452741 SEED2: 0
See INTRODUCTION TO NONMEM 7, Simulation Error Forgiveness (NM72)
See INTRODUCTION TO NONMEM 7, Rejecting Simulated Results (NM75)
With NONMEM 7.5, the REDO and "PRED ERROR OCCURRED TOO OFTEN" messages are written
to PRDERR rather than the NONMEM report file, which says only
THERE ARE SIMULATION ERROR MESSSAGES IN PRDERR
As with earlier versions, the message
SIMULATION STEP PERFORMED
appears in the NONMEM report file only if the "PRED ERROR OCCURRED TOO OFTEN" condition
did not happen.

85

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

With NONMEM 7.5, the PRED EXIT CODE k may be in the range 1000-9999. For example,
IF (ICALL==4.and.IPRED<0.01] .and. TIME>20.0) EXIT 1 2300
This can only occur with user’s EXIT code; PREDPP will not generate this kind of EXIT. NONMEM
will try PRED SIMULATION REDO up to 10000 times. The message "PRED SIMULATION REDO"
itself is written to PRDERR up to 30 times. After that, the following message is written to PRDERR:
SUBSEQUENT PRED SIMULATION REDO ERROR MESSSAGES SUPPRESSED
NONMEM continues trying new ETA and EPS. Be careful that the condition does not occur too often
(causing wasteful computation). After 10000 tries, the simulation is terminated as a protection against an
infinite loop. The following message is written to PRDERR:
TOO MANY CONSECUTIVE PRED ERRORS (>10000) OCCURRED ON SIMULATION

IV.IV.H. Pseudo-Statements

A pseudo-statement is a statement of abbreviated code of the form of an (unconditional) assignment
statement, i.e. A=B, where A is a specific reserved variable, and B is an integer constant. The variable A
symbolizes a type of left-hand quantity, but, unlike other such quantities, it cannot be used as a right-
hand quantity. The variable characterizes the type of the pseudo-statement. There are different types of
pseudo-statements specific to each type of abbreviated code. There is usually a restriction on the permit-
ted values for the integer B. Each type of pseudo-statement can appear only once in an abbreviated code
for a particular routine. It must appear before other statements of abbreviated code ocurring in that rou-
tine.

For an abbreviated code for PRED, there is only one allowable type of pseudo-statement. The variable is
COMRES, and the only permitted value for the integer constant is -1. So, the statement must look like

COMRES=-1

If this statement appears, then no variables defined in the abbreviated code are listed in NMPRD4. In
this regard, see also the discussion of the option COMRES=1 in section III.B.7. With an abbreviated code
for PRED (where no additional abbreviated code for another routine can also be used), the effect of the
above pseudo-statement is identical to use of that option.

IV.IV.I1.1. Verbatim Code

As mentioned in section IV.A, verbatim code should be used only by those who understand well how
generated codes are structured. Verbatim code is FORTRAN code which may be inserted into abbrevi-
ated code. This code is in turn inserted unchanged, i.e. verbatim, into the generated subroutine. NM-
TRAN does not generate code for the computation of 17- and e-derivatives based on verbatim code, so
particular care in using verbatim code is needed when variables which are interpreted as random vari-
ables in abbreviated code are used in verbatim code.f NM-TRAN does not check whether verbatim code
uses correct FORTRAN syntax; this check will be made by the FORTRAN compiler. A portion of abbre-
viated code which includes verbatim code might look like:

IF (ICALL.EQ.4.AND.NEWIND.NE.2) THEN
" 5 IF (ABS(ETA(2)).GT.5) THEN

" CALL SIMETA (ETA)

" GO TO 5

" ENDIF

ENDIF

Neither the use of the absolute value function, a subroutine call, the use of a statement number, nor a GO

Do not use verbatim code to circumvent the occurence of NM-TRAN error messages concerned with the
use of random variables in abbreviated code. If so used, computations will most likely be incorrect.

86

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

TO are FORTRAN constructs which were originally allowed in abbreviated code. Starting with NON-
MEM VI, abbreviated code may use the ABS function, "CALL SIMETA", "CALL SIMEPS", "CALL
RANDOM", and the DOWHILE/ENDDO statements for loops. All the verbatim examples in this sec-
tion of the guide can be implemented with abbreviated code. See section IV.J below. However, there are
still times that verbatim code is necessary, and the following discussion is relevant to any verbatim code.

Essentially, any line whose first nonblank character is a double quote is recognized as containing verba-
tim code. The double quote is dropped, and the remaining characters of the line are copied to the gener-
ated code. For the user’s convenience, verbatim code following a statement number is adjusted so that it
conforms to FORTRAN 77 conventions regarding where FORTRAN code is placed in a line; see more
discussion of this below. This means that in the example the text after the 5 is moved so that it begins in
position 7 of the generated line; see the generated code below. There is a leading blank before the 5. As
with all FORTRAN statements with statement numbers, a statement number can be placed anywhere in
positions 1-5. A single line of verbatim code, other than a FORTRAN comment statement (see below),
may be copied to more than one line of generated code if NM-TRAN determines that the characters of
the generated line would otherwise extend beyond position 100; FORTRAN continuation lines are cre-
ated as necessary to limit each generated line to 100 characters. Very long strings (e.g., long variable
names and constants) are copied to lines of generated code of at most 160 characters, with FORTRAN
continuation lines as needed. NM-TRAN does not check the number of characters in a variable name or
constant. Different compilers have different limits, and errors may occur when generated FSUBS is com-
piled if these limits are exceeded.

In the above example, by default the verbatim code is placed in the generated subroutine after some ini-
tial executable code required for routine initialization purposes; see below. This initial code contains a
call to SIMETA to obtain simulated values of the ETA’s. The effect of the verbatim code is to replace the
value of ETA (2) with a value less than 5 in absolute value if necessary. For this code to have the
desired effect, the option NEW must be used in the $SSIMULATION record.

In actuality, NM-TRAN does modify verbatim code. It has already been seen that a placement adjust-
ment takes place. However, perhaps more surprisingly, certain variables occuring in verbatim code are
replaced by certain array elements. To see how this happens, recall that a variable that is a label for data
items of a particular type can be used freely in abbreviated code. The mechanism by which this is
allowed does not by itself generally imply that this same variable can be used freely in verbatim code.
For example, the abbreviated code

A=THETA (2) *WT*EXP (ETA (2))
can generate the FORTRAN code
WT=DATREC (005)
BO0OO01=DEXP (ETA(002))
A=THETA (002) *WT*B0O0001
which defines WT and then uses this variable. The definition is given in terms of a reference to the
DATREC array where the weight data item is to be found. This array is defined as an argument to the
generated routine. The analogous verbatim code
" A=THETA (2) *WT*EXP (ETA(2))
copied without change into generated code, contains an undefined variable (WT) if the variable WT is not

used in abbreviated code. To avoid this difficulty, any instance of a variable that is a label for data items
and that is used in verbatim code is replaced with a reference to the DATREC array (EVTREC array if

87

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

PREDD is used). Therefore, the above verbatim code is actually translated into
A=THETA (2) *DATREC (005) *EXP (ETA (2))

This rule is called the replacement rule . It applies as well to instances of the variable occuring on the
left of an assignment statement. This enables data items to be transgenerated during a Simulation Step
(e.g. see section III.B.13, and Guide VI, Figure 2 along with the accompanying discussion in section
III.LL.1). The rule applies to essentially all instances wherever they appear. Because of the replacement
rule, a more accurate name for verbatim code might be quasi-verbatim code.

Implementation of the replacement rule is most often helpful to the user. However, if truly verbatim
code, i.e. nonmodified code, is desired, there is a way to obtain it. This involves using the character * @’
as an "escape" character. If the escape character is used immediately before an instance of the variable,
the variable is not replaced. For example, if the verbatim code is

" A=THETA (2) *@WT*EXP (ETA(2))
then the generated code is
A=THETA (2) *WT*EXP (ETA (2))
This same generated code can be obtained with the verbatim code
"@ A=THETA (2) *WIT*EXP (ETA(2))

If the escape character is used immediately after the double quote, the entire line is copied without
change, except that the double quote and escape characters are deleted.

NM-TRAN comment lines are not copied to the generated code. A FORTRAN comment statement can
be inserted into the generated routine. Here is an example:

"C this line is used at debug time

If the character immediately following the double quote is either *C’, °c’, ’*’, ", or ’!’, the line is recog-
nized to be a comment statement. C or * in column 1 was a FORTRAN 77 convention and is still permit-
ted by NM-TRAN for upwards compatiblity of old control streams. The use of *"” was special to NON-
MEM, and is also permitted. However, ! is the FORTRAN 95 convention, and should be used in new
control streams. The characters following the double quote are copied starting at position 1 of into the
generated line, The character at position 1 is always set to be !.

Notice that lower case can be used in verbatim code. However, lower case is converted to upper case
before the replacement rule is applied.

As mentioned above, and as seen from some examples, verbatim code is adjusted so that it conforms to
FORTRAN 77 conventions regarding where FORTRAN code is placed in a line. Alphabetic text that
"starts" a line of verbatim code or that follows a statement number is adjusted so that it begins in position
7 of the line of generated code, unless the line is recognized to be a FORTRAN comment line.

TNM-TRAN copies any nonalphanumeric character occuring in verbatim code (other than *@’) into gener-
ated code. With UNIX systems, one can take advantage of this and use tab characters if the compiler per-
mits such characters. A tab character is a nonblank, nonalphanumeric, special character other than @ or
’I’. It can be an actual tab character. Then alphabetic text that "starts" a line of verbatim code or that fol-
lows (i) a statement number or (ii) a tab character or (iii) a statement number followed by a tab character, is
adjusted so that it begins in position 7 of the line of generated code.

88

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

FORTRAN continuation lines can be expressed with verbatim code using Fortran 95 syntax. The charac-
ter & should be placed at the end of the line to be continued. The presence of a character in position 6 is
no longer of significance, so the first example of verbatim code can be spaced differently without causing
a problem.

It is not obvious where exactly verbatim code is placed in the generated code since the user is not excer-
cising strict control over the latter. However, some control over where verbatim code is placed is avail-
able. A generated subroutine has four sections.

First section: nonexecutable declaration statements

Second section: executable code required for initialization purposes
Third section: code implementing abbreviated code

Fourth section: code that stores subroutine outputs

RETURN statement.

Verbatim code can be specifically placed immediately after the first section, throughout the third section,
or immediately after the fourth section (prior to the RETURN statement). Verbatim header statements are
used for this purpose.

Verbatim code that is to go immediately after the first section must precede all abbreviated code and must
be immediately preceded by the header statement

"FIRST

Spaces before or after the word FIRST are permitted. No abbreviated code may precede "FIRST
except for pseudo-statements. NM-TRAN comment lines may precede "FIRST. This block of verbatim
code is called the FIRST block. FORTRAN requires that all declarations precede all executable state-
ments, so declarations must be placed in this block.

Verbatim code that is to be placed throughout the third section can be preceded by the header statement
"MAIN
Consider this variation of the first example of verbatim code from above.

"MAIN

IF (ICALL.EQ.4.AND.NEWIND.NE.2) THEN
" 5 IF (ABS(ETA(2)).GT.5) THEN

" CALL SIMETA (ETA)

" GO TO 5

" ENDIF

ENDIF

Spaces before or after the word MAIN are permitted. No abbreviated code may precede "MAIN except
for pseudo-statements. NM-TRAN comment lines may precede "MAIN. The lines of verbatim code that
go into the third section need not be contiguously placed within the abbreviated code as they are in this
example. Verbatim code may be intermingled with abbreviated code. A line of verbatim code that fol-
lows a line L of abbreviated code is copied to the generated code following all generated code imple-
menting L. There may be abbreviated code preceding the first verbatim code that goes into the third sec-
tion, as in this example. Then "MAIN may be omitted; by default this first verbatim code goes into the
third section.

89

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

Suppose the first verbatim code that is to go into the third section precedes all lines of abbreviated code.
If there is a FIRST block, then "MAIN is necessary. In this case "MAIN acts a delimiter, ending the
FIRST block. Without it, this verbatim code would appear to belong to the FIRST block.

Consider this extension of the previous example

"FIRST

" DOUBLE PRECISION R

"MAIN

IF (ICALL.EQ.4.AND.NEWIND.NE.Z2) THEN
" 5 IF (ABS(ETA(2)).GT.5) THEN
" CALL SIMETA (ETA)

" GO TO 5

" ENDIF

" ETAS1I=ETA (1)

" ETAS2=ETA (2)

" CALL RANDOM (2,R)

" WI=70+7*R

" QWT=WT

" WGHT=WT

ENDIF

" IF (ICALL.EQ.4) QWT=WGHT

Prior to NONMEM 7, the number returned in R by the NONMEM utility routine RANDOM was always
a single-precision number (see section III.B.13), and since the FORTRAN declaration statement
IMPLICIT DOUBLE PRECISION appears in a generated code the declaration REAL R had to be
added. Since declarations must precede executable code, the declaration is included in the FIRST block.
With NONMEM 7, R need not be declared. It is declared explicitly to be DOUBLE PRECISION for the
sake for the example. As with the previous example, the statement "MAIN may be omitted. However,
with this variation

"FIRST

" DOUBLE PRECISION R

"MAIN

" IF (ICALL.EQ.4.AND.NEWIND.NE.Z) THEN
" 5 IF (ABS(ETA(2)).GT.5) THEN
" CALL SIMETA (ETA)

" GO TO 5

" ENDIF

" ETAS1=ETA (1)

" ETAS2=ETA (2)

" CALL RANDOM (2,R)

" WI=70+7*R

" QWT=WT

" WGHT=WT

" ENDIF

" IF (ICALL.EQ.4) QWT=WGHT

"MAIN serves as a necessary delimiter of the FIRST block. The verbatim code just shown is discussed
in greater detail at the end of this section.

90

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

Verbatim code that is to go immediately after the fourth section should be immediately preceded by the
header statement

"LAST

Spaces before or after the word LAST are permitted. If this statement is used, it, and the contiguous lines
of verbatim code that follow it, must be placed at the very end of the abbreviated code (one can ignore the
presence of NM-TRAN comment statements). These lines of verbatim code, the LAST block, are placed
altogether, immediately before the RETURN statement of the generated routine.

Generally, a line of verbatim code that is not in a FIRST block, and not in a LAST block, goes into the
third section of generated code by default, whether or not the statement "MAIN actually appears.

For certain subroutines (e.g. DES), the ability to use certain verbatim header statements does not exist, or
if a header statement can be used, it has no effect. Descriptions of these particular cases are included
with the descriptions of each of the different abbreviated codes.

The presence of verbatim code anywhere in an abbreviated code has two useful side effects.

The generated code then includes needed declarations for all reserved variables that can be used in
the abbreviated code. (When verbatim code is not present, only declarations for those reserved
variables used in the abbreviated code are included.) Hence any reserved variable may be used in
verbatim code without the need to also include declarations for it in verbatim code.

Lines of abbreviated code that follow some verbatim code may then include variables that are not
defined in the abbreviated code preceding the verbatim code. Normally, the presence of an unde-
fined variable is considered to be invalid, and this raises an error. When verbatim code is present,
this restriction is relaxed since the variable may have been defined in the verbatim code.

A variable defined by verbatim code is implicitly a double precision variable. (The actual declaration is
IMPLICIT REAL (KIND=DPSIZE) (A-Z)

This implicit declaration can be overridden with an explicit type declaration in the FIRST block.

In the remainder of this section some verbatim code shown above is examined in greater detail.

"FIRST

" DOUBLE PRECISION R

"MAIN

" IF (ICALL.EQ.4.AND.NEWIND.NE.2) THEN
" 5 IF (ABS(ETA(2)).GT.5) THEN
" CALL SIMETA (ETA)

" GO TO 5

" ENDIF

" ETAS1=ETA (1)

" ETAS2=ETA (2)

" CALL RANDOM (2,R)

" WT=70+7*R

" QWT=WT

" WGHT=WT

" ENDIF

" IF (ICALL.EQ.4) QWT=WGHT

91

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

In this example ETAS1 and ETAS?2 are the labels for data items, and by the replacement rule, these items
become the simulated values of 77; and 17,. (During the Simulation Step, transgeneration of data items is
allowed. Transgenerated items are stored in NONMEM’s internal copy of the data set.) Weights are
also simulated (normally distributed values with mean 70Kg and standard deviation 7Kg if the option
NORMAL is used in the definition of the second random source). WT also is a data item label, and so
weights are stored as transgenerated data items. Since weight is used in subsequent computations in
abbreviated code, the variable WT is defined in the second section of generated code, but as being equal
to the weight in the data record as that record appears when the second section of code is executed.
Since the subsequent computations should involve transgenerated weight, WT is redefined after the trans-
generation, using the escape character. Notice that weight is simulated only with the first data record of
the individual record, and that it is stored as a transgenerated item only with this first data record. Its
value, though, may be needed in computations during the Simulation Step with each of the data records
of the individual record. WGHT is a PRED-defined item, not a data item label. Its value in all these data
records remains unchanged from the value to which it is set with the first data record. So, WGHT is given
the simulated value, and with each data record, WT is redefined to be this value, again using the escape
character. Were WGHT not used, the value of WT with any data record other than the first record would be
the data item in that record.

This strategy works if only simulation is implemented (indeed, if the ONLYSIMULATION option is used
in the $SSIMULATION record). However, if data analysis is also implemented, then unless further steps
are taken, a problem arises when the routine is called with a data record other than the first data record of
an individual record. This is because the simulated weight value is only stored in the first data record.
Here is another variation of the same verbatim code, achieving the identical effect, but also addressing
this problem.

"FIRST

" DOUBLE PRECISION R

" IF (ICALL.EQ.4.AND.NEWIND.NE.Z2) THEN
" CALL RANDOM (2,R)

" WT=70+7*R

" WGHT=WT

" ENDIF

" IF (ICALL.EQ.4) WT=WGHT

"MAIN

" IF (ICALL.EQ.4.AND.NEWIND.NE.Z) THEN
" 5 IF (ABS(ETA(2)).GT.5) THEN

" CALL SIMETA (ETA)

" GO TO 5

" ENDIF

" ETAS1=ETA (1)

" ETAS2=ETA (2)

" ENDIF

Here weight is simulated immediately after the declarations, before the second section, and because of
the replacement rule, it is stored in the data record. Therefore, when WT is redefined in the second sec-
tion, it is given this value. This is true with the first data record of the individual record, and by virtue of
the use of WGHT, it is also true with subsequent data records. However, in this variation the escape char-
acter does not need to precede WT with the statement WT=WGHT, since it is not the variable itself that
needs to be redefined; that happens subsequently in the second section. Rather, the data item needs to be
transgenerated, so that when the variable is redefined, the variable is defined to be the transgenerated
value. As a result, with this variation, the transgeneration takes place with all data records, whereas with

92

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

the previous variation the transgeneration only takes place with the first data record of the individual
record.

Here is yet a simpler variation.

"FIRST

" DOUBLE PRECISION R

" IF (ICALL.EQ.4.AND.NEWIND.NE.2) THEN
" CALL RANDOM (2,R)

" ENDIF

" IF (ICALL.EQ.4) WT=70+7*R

"MAIN

" IF (ICALL.EQ.4.AND.NEWIND.NE.2) THEN
" 5 IF (ABS(ETA(2)).GT.5) THEN

" CALL SIMETA (ETA)

" GO TO 5

" ENDIF

" ETAS1=ETA (1)

" ETAS2=ETA (2)

" ENDIF

IV.IV.1.2. Verbatim Code with NONMEM 7

(1) With NONMEM 7, the use of executable statements in the "FIRST section of verbatim code is depre-
cated. Chapter II section IL.IL.D describes how certain reserved variables (such as elements of the COM
array) are declared as pointer variables, and then assigned to targets by executable statements. The
FIRST block is inserted between the declarations and the executable statements, and should only have
declarations. As an example, suppose the $PRED code is:

SPRED

"FIRST

"I first code here

" COM(1)=1
Y=THETA (1) +ETA (1)

The generated FSUBS contains:

REAL (KIND=DPSIZE), POINTER :: DEN_,CDEN_ (:)
! first code here

COM (1) =1

IF (ICALL <= 1) CALL ASSOCNMPRD4
Subroutine ASSOCNMPRD4 contains
COM=>VRBL
There is a segmentation violation with NONMEM 7, because COM(1) is used before it has been

assigned to a target by subroutine ASSOCNMPRD4. This will happen in all blocks of abbreviated code,
not just $PRED.

93

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

All the examples of verbatim code in the above section work correctly with NONMEM 7.4, but future
changes to NONMEM could cause problems.

A better version of the last ("simpler") example follows, in which there is no executable code in the
FIRST block.

"FIRST

" DOUBLE PRECISION R

"MAIN

" IF (ICALL.EQ.4.AND.NEWIND.NE.Z) THEN
" CALL RANDOM (2,R)

" ENDIF

" IF (ICALL.EQ.4) WT=70+7*R

" QWT=WT

" IF (ICALL.EQ.4.AND.NEWIND.NE.Z2) THEN
" 5 IF (ABS(ETA(2)).GT.5) THEN

" CALL SIMETA (ETA)

" GO TO 5

" ENDIF

" ETAS1I=ETA (1)

" ETAS2=ETA(2)

" ENDIF

Because of the replacement rule, only WT in the data file is simulated. The local variable WT was
assigned before the MAIN block, and must be reassigned using

QWT=WT
(2) All the verbatim examples can be implemented using abbreviated code. For example,

IF (ICALL.EQ.4.AND.NEWIND.NE.2) THEN
CALL RANDOM (2,R)

ENDIF

IF (ICALL.EQ.4) WT=70+7*R

IF (ICALL.EQ.4.AND.NEWIND.NE.Z2) THEN
DOWHILE (ABS (ETA(2)) .GT.5)

CALL SIMETA (ETA)

ENDDO

ETAS1=ETA (1)

ETAS2=ETA (2)

ENDIF

Each call to SIMETA replaces all the etas, so code similar the following is needed if bounds are put on
two different etas:

IF (ICALL.EQ.4.AND.NEWIND.NE.Z2) THEN

DOWHILE (ABS (ETA(2)) .GT.5.0R.ABS (ETA (1)) .GT.0.52)
CALL SIMETA (ETA)

ENDDO

ETAS1I=ETA (1)

94

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

ETAS2=ETA (2)
ENDIF

IV.IV.]J. Advanced Coding Techniques

This section desribes some advanced techinques that can be used in abbreviated code.

IV.IV.J.1. Indicator Variables, Random Variables and Recursion code

In abbreviated code, an indicator variable is a variable whose value is 0 or 1. It may be identified with
an input data item, or it may be a variable defined in the abbreviated code. Indicator variables are used to
make a choice in a computation.

Random variables may be assigned using conditional statements. Suppose, for example, ICU is a vari-
able which is either O or 1. The following code can be used:

(a)

IF (ICU.EQ.0) THEN
CLM=TVCLM+ETA (1)
ELSE
CLM=TVCLM+ETA (2)
ENDIF

This can be coded unconditionally using ICU as an indicator variable:

(b)
CLM=TVCLM+ (1-ICU) *ETA (1) +ICU*ETA (2)

NM-TRAN implements (a) using PRED-defined indicator variables Q00. . . so that the assignment of
CLM is in fact unconditional.

Indicator variables may be used explicitly to avoid the restriction that a random variable may not be
defined in a nested IF. For example, examplel0.ctl (bayes10.exa) contains this code for simultaneous
analysis of PK and categorical data, where TYPE is listed in SINPUT:

IF (TYPE.EQ.0) THEN
; PK Data
F_FLAG=0
Y=F+F*ERR (1) ; a prediction
ELSE
; Categorical data
F_FLAG=1
A=DEXP (EXPP)
B=1+A
Y=DV*A/B+ (1-DV) /B ; a likelihood
ENDIF
ENDIF

The value of DV is 0 or 1 and is used as an indicator variable to avoid assigning Y in a nested IF, which
is not permitted:

IF (TYPE.EQ.O) THEN

ELSE

95

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

IF (DVv==1) Y=A/B
IF (DV==0) Y=1/B
ENDIF

Random variables may be redefined, and may appear on the right-hand side of conditional assignment
statements. They may be used recursively in their own redefinition. If a random variable is defined by
"incomplete” conditionals (i.e., conditionals which do not include both true and false cases), and all tests
fail, the random variable has the value zero. This is a major difference between random and non-random
variables. Consider these examples:

IF (WT.GT.0) K=WT*THETA (1) *EXP (ETA (1))
IF (WT.GT.0) TVV=WT*THETA(1)

If WT is <=0, K is zero. NM-TRAN prints a warning message when it detects such code.

If WT is <=0, TVV retains its prior value, which may have been computed with a previous event record.
When a COM(i) variable is defined by incomplete conditional statements and all tests fail, the variable
retains its value (as do all non-random variables).

In $PK, $ERROR, and $PRED records, recursion code may be used in an explicit manner, as in this
example:

IF (WT.GT.O0) THEN
K=THETA (1) *WT*EXP (ETA (1))
ELSE
K=K
ENDIF

If the condition is false, K retains its value set with the previous data record.

Recursion code can be used in $PRED, $PK, and $ERROR records for other purposes as well, e.g., to
implement recursive kinetics in $PRED, and to compute the sum of a random variable in a DOWHILE
block. The following two fragments of code illustrate how one can use abbreviated code to implement
recursive kinetics in $PRED. The first example works with a single bolus dose and the second example
works with single or multiple bolus doses. Similar code can be used in $PK and $ERROR.

K=THETA (1) *EXP (ETA (1))
IF (TIME.EQ.0) THEN
OLDA=AMT
T=TIME
ENDIF
A=OLDA*EXP (-K* (TIME-T))
OLDA=A
T=TIME

K=THETA (1) *EXP (ETA (1))

IF (TIME.EQ.O) THEN
A=AMT
T=TIME

ELSE
A=A*EXP (—-K* (TIME-T)) +AMT

96

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

ENDIF
T=TIME

The above forms of recursion work for recursion from one data record to the next ("inter-record" recur-
sion). It is also possible to use recursion in a do-while loop ("intra-record", or "do-while" recursion).

Example of a do-while recursive loop using a random variable:

TERM=THETA (1) *EXP (ETA (1))
SUM=0

DO WHILE (condition)
SUM=SUM+TERM

ENDDO
A product loop such as
PROD=PROD*TERM

is also possible, as are other ways the dowhile recursive variable can be used, so long as the variable
appears on both sides of the equal sign within the DOWHILE loop: V=... V ...

IV.IV.]J.2. Use of NONMEM’s PASS Utility

The NONMEM utility routine PASS can be used to read and/or to modify ("transgenerate") data
records. This can be done at ICALL O (run initialization), 1 (problem initialization) and/or 3 (problem
and run finalization). Repeated calls ("CALL PASS") are used to pass through the data set. Data record
items are referred to by the name they are given on the $INPUT record. NONMEM data items ID and
MDV may not be transgenerated. Any other data item (including DV) may be transgenerated. Addi-
tional data items can be generated at both the beginning and ending of a problem. Since the finalization
call actually occurs before the Table and Scatterplot Steps, new data items generated at this call can be
tabled and scatterplotted. This is described in NONMEM Users’s Guide Part II, D.2.2. See also Guide
VI, Chapter VI. See Section J.3, below, for abbreviated code.

Each call to PASS obtains the next data record, so the values of data items change with each call to
PASS. Only those PRED-defined items that are displayed in tables or scatters will have values appropri-
ate to the current record; a PRED-defined item that is listed in NMPRD4 but is not displayed will always
have the value from the first data record. NEWIND and ETA values change to those appropriate to the
current record. Some of the reserved right-hand variables described above also change value, as noted.

IV.IV.J.3. The DOWHILE Statement

The DOWHILE statement may be used for loops in abbreviated code.
An example is given above that uses DOWHILE during simulation. During data anaysis (with
ICALL=2), code such as this can be used:

SABBR DECLARE DOWHILE ILOOP
SPRED
ILOOP=1
DOWHILE (condition)
statements
ILOOP=ILOOP+1
ENDDO

97

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

A random variable may be computed recursively in such a loop.
Transgeneration examples

Section D.2 describes the use of NONMEM'’s PASS Utility to modify (transgenerate) the NONMEM
data set at initialization / finalization calls to PRED. Here is an example of abbreviated code that can be
used with NONMEM V:

IF (ICALL.EQ.0) THEN
MODE=0
CALL PASS (MODE)
MODE=2
CALL PASS (MODE)
DO WHILE (MODE.EQ.2)
transgeneration statements
CALL PASS (MODE)
ENDDO
ENDIF

With NONMEM VI, the DOWHILE (DATA) abbreviated code statement facilitates this feature by sup-
plying all the needed code to pass through the data set.

IF (ICALL==0) THEN
DOWHILE (DATA)
transgeneration statements
ENDDO
ENDIF

Here is fragment of code for modelling auto-correlation. NO is a reserved variable giving the maximum
number of observations per individual record; it can be used only in the context of the SABBREVIATED
DECLARE record. CORRL2 is a reserved variable for modelling correlation across residual variables.

SABBR DECLARE T (NO)
SABBR DECLARE DOWHILE J
SABBR DECLARE INTEGER I

SPRED (or SERROR)
IF (NEWIND.NE.2) I=0
IF (MDV.EQ.0Q) THEN
I=I+1
T(I)=TIME
J=1
DO WHILE (J<=I)
CORRL2 (J, 1) =EXP (-THETA (4) * (TIME-T (J)))
J=J+1
ENDDO
ENDIF

IV.IV.J.4. MU Modelling (nm7)
Here is an example of MU modelling:

MU_2=THETA (4)
CL=MU_2+ETA (2)

Variables MU_i are reserved. The new NONMEM 7 EM (Expectation Maximization) methods and
Gibbs sampling methods are most efficiently implemented if the user supplies information on how the

98

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

THETA parameters are associated arithmetically with the ETAs and individual parameters, wherever
such a relationship holds. Calling the individual parameters phi, the relationship should be
phi_i=mu_i(theta)+eta(i)

for each parameter i that has an eta associated with it, and mu_i is a function of THETA. The association
of one or more THETA’s with ETA(1) must be identified by a variable called MU_1. Similarly, the asso-
ciation with ETA(2) is MU_2, that of ETA(S) is MU_5, etcetera. This is called MU Referencing or MU

Modelling.

MU_i should be assigned unconditionally, using indicator variables if necessary. E.g., suppose GENDR
is 0 for males, 1 for females, and LCLM=log transformed clearance, male, etc.

A model for the mean of phi_1 could be:
MU_1=(1.0-GNDR) * (LCLM+LAGE*CLAM) + GNDR* (LCLF+LAGE*CLAF)

(See Bayes Example 2.)

Another example is with a mixture model, where Q=1 for MIXNUM=1 and Q=0 for MIXNUM=2 (See
Bayes Example 5).

MU_2=Q*THETA (2)+(1.0-Q) *THETA (3)

Option CHECKMU of the SABBREVIATED requests that MU model statements be checked, and is the
default. Option NOCHECKMU can be used to prevent NM-TRAN from attempting to check the MU
model statements.

IV.IV.J.5. INCLUDE statement (nmv)

Identical to the SINCLUDE record (Chapter III B.20). May be used in a block of abbreviated code to
read records from a different file.

An include file nonmem_reserved_general may be found in the util directory of the NONMEM installa-
tion (nm73). It contains declarations for variables in MODULEs that can be used on the right or left in
abbreviated code. It also has definitions of functions that may be useful. See also useful_variables.pdf in
the guides directory for a listing of such variables. This file is used in examples/example8.ctl, in which
NONMEM variables BAYES_EXTRA and ITER_REPORT are used. Some of the other variables
defined in nonmem_reserved_general include:

MDVI1, MDVI2, MDVI3 (modifies NONMEM'’s treatment of "non-impact” records with MDV>=100).
PI

IV.IV.J.6. PROTECT functions (nm74)

With NONMEM 7.4, a versions of the functions are available that protect against domain violations,
divide by zero, and floating point overflows. The protect functions are as follows.

For all routines, if X=not a number, X is converted to machine precision value, which is about 1.0E-15,
before performing an operation on it. If X>INFNTY (where INFNTY is approximately 1.0E+154), then
X is converted to INFNTY before an operation is performed on it.

PLOG(x)
Returns LOG of x. If x<SMALLZ, where SMALLZ is approximately 2.8E-103, then
LOG(SMALLZ) is returned.

PLOGI10(x)
Returns LOG10 of x. If x<SMALLZ, where SMALLZ is approximately 2.8E-103, then

99

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

LOGI0(SMALLZ) is returned.

PSQRT(x)

Returns SQRT of x. If x=0.0d+00, then 0 is returned.
PEXP(x)

Returns EXP of x. If x>40.0, then PEXP(100.0) is returned (avoids overflow).
PDZ(x)

Returns 1/x . Protects against divide by zero. If abs(x)<SMALLZ, then 1/SMALLZ is returned.
PZR(x)

Returns x . protects against zero. If abs(x)<SMALLZ, then SMALLZ is returned.
PNP(x)

Returns x. Protects against non-positive. If X<SMALLZ, then SMALLZ is returned.
PHE(x)

Returns x. Protects against high exponent. If X>100, then 100 is returned. Thus
PEXP(x)=EXP(PHE(x)).
PNG(x)
Returns x. Protects against negative. If X<0.0, then 0.0 is returned.
PTAN(x)
Returns tan(x). Protects against returning infinity on inputs near pi/2.

PATAN(x)
Returns atan(x). Protects against large intputs.

PACOS, PASIN
Returns acos(x), asin(x), respectively. If |X| is between 1.0 and 1+10%*(-08), then x is submitted as
1 or -1. So, "dirty ones" are cleaned up, but values clearly beyond 1 are allowed to trip up the func-
tion, so the user is aware of the logical error in the code, and fix the issue.

In addition, there are first derivative (such as PLOGD1), and second derivative (such as PLOGD?2) com-
panion routines available which NONMEM uses for analytical derivatives.

If the record

SABBREVIATED PROTECT

is present, NM-TRAN will automatically replace all LOG (or DLOG) with PLOG, EXP (or DEXP) with
PEXP, SQRT (or DSQRT) with PSQRT, / operations with *PDZ(), and B**E operations with
PEXP(E*PLOG(B)). When you use $ABBR PROTECT, you will find a considerable improvement in
estimation stability, regardless of estimation method used. Alternately, P versions can be coded explicitly
in abbreviated code.

The source code of these routines are available in ..\source\PROTECT.f90. If you wish to modify their
behavior, then copy PROTECT.f90 to your run directory, rname and modify it, such as PROTECTB.{90,
then refer to this modified code with

SSUBROUTINES OTHER=PROTECTB.f90

IV.IV.J.7. SABBR FUNCTION and $ABBR VECTOR (nm74)
With NONMEM 7.4, A user-defined function may be declared as follows:
SABBR FUNCTION function_name (input_vector_name,dimension, usage)

function_name
is the name of the function. As with reserved functions FUNCA etc., the code for the function
must be written by the user in FORTRAN.

100

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

(See Guide VIII ABBREVIATED FUNCTION Help Item.)
The code must be in a file included using the SSUBROUTINE OTHER option, as discussed in
Chapter I11.B.6.

input_vector_name
is the name of an input vector that may be used to pass arguments to the function.

dimension
specifies how many input arguments function_name will use, and defines input_vector_name as a
vector with this length. "Dimension" is a property of both the function and of the input vector.

usage
is the maximum number of times the function may appear in the abbreviated code, that is, the max-
imum number of occurances of function_name. It is not an error if there are fewer occurances. If
usage is omitted, NMTRAN will supply the exact number. If usage is coded, NMTRAN will gen-
erate an error message if function_name appears in abbreviated code more than "usage" number of
times.

Note that a given function may be used with other input vectors, and a given vector may be used with
other functions.

A user-defined vector also may be declared as follows:
SABBR VECTOR input_vector_name (dimension)

input_vector_name
is the name of an input vector.

dimension
Specifies the length of the vector. The dimension of a vector should be no less than the dimension
of all the functions which which it is used.

A vector and its length may be declared independently of a function, and vice-versa. The asterisk may be
used as a place holder, e.g.,

SABBR FUNCTION BIVARIATE (*,5) ; when BIVARIATE is called, NDIM will be

Here is an example.
SABBR FUNCTION BIVARIATE (VBI, 5, 3)

A vector VBI is defined of length 5. There is a function called BIVARIATE. When BIVARIATE
is used, the value 5 is passed to it as argument NDIM. BIVARIATE uses 5 elements from the input
vector. Function BIVARIATE may appear in abbreviated code at most 3 times.

IV.IV.L. $MIX Record (nmv)

SMIX
the abbreviated code

Optional. This record gives an abbreviated code for the MIX subroutine. If it appears, it must be with
the first problem specification, and only with this problem specification. The use of $MIX is independent
of the choice of $PRED vs. PREDPP. When MIX is called, the first data record of the individual
record is stored in TEMPLT. General rules for abbreviated code are described above. Specific
rules for $MIX are described in NONMEM Users Guide VIII and on-line help. Reserved variables
MIXP, MIXNUM, MIXEST are described above.

Required left-hand variables are NSPOP, the number of sub-populations, and P(i) where for each i (i=1,
..., NSPOP), P(i) is the modeled fraction of the population in the ith subpopulation.

101

NM-TRAN Guide - Chapter IV Abbreviated Code Abbreviated code

Elements of the data record can be accessed; see $CONTR and the DATA array. Variables defined in
$MIX are not listed in MODULE NMPRD4 and may not be displayed in $STABLE and $SCATTER.
Variables from PRINFN (from PREDPP $INFN block) and DEFINEDVARIABLES (from $ABBR
DECLARE control record) are not defined in $MIX abbreviated code.

IVIV.M. $THETAI Record (nm73)

STHETAI
the abbreviated code

Optional. This record gives an abbreviated code for the THETAISUB subroutine, which transforms the
initial values in the $STHETA and $THETAP records. If the initial estimate for an element of theta is
transformed, so is the upper and lower bounds for that theta, if any. The record name may also be
coded as $THI. If it appears, it must be with the first problem specification, and only with this problem
specification. The use of $THETALI is independent of the choice of $SPRED vs. PREDPP. Specific rules
for STHETALI are described in Introduction to NONMEM 7 and Guide VIII and on-line help.

IVIV.N. STHETAR Record (nm73)

STHETAR
the abbreviated code

Optional. This record gives an abbreviated code for the THETARSUB subroutine, which transforms the
final theta values for the NONMEM report and additional output files. The record name may also be
coded as $STHR. The use of $THETAR is independent of the choice of $PRED vs. PREDPP. Specific
rules for STHETAR are described in Introduction to NONMEM 7 and Guide VIII and on-line help.

102

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP Abbreviated code

V. NM-TRAN with PREDPP

V.V.A. Introduction

NM-TRAN is designed to facilitate the use of PREDPP. This chapter addresses special considerations
regarding the use of NM-TRAN with PREDPP.

Here follows an example of an NM-TRAN control stream; it is meant to be used with PREDPP along
with the NM-TRAN data set shown in Appendix VI. This NM-TRAN control stream is recorded on the
NONMEM distribution medium; see Guide III. The control stream and data set are constructed so to
accomplish the same things as do the control stream and data set considered in chapter I, but they are
constructed on the assumption that PREDPP is to be used. NM-TRAN will translate the data set and
control stream to a NONMEM data set, a NONMEM control stream, and completely coded PK and
ERROR subroutines. These NM-TRAN outputs are given in Appendix VII. The effect of using them as
inputs to a NONMEM run will be to produce essentially the same output obtained from using the NON-
MEM control stream and PK and ERROR subroutines shown in Appendix II of Guide VI.

SPROB THEOPHYLLINE POPULATION DATA
SINPUT ID DOSE=AMT TIME CP=DV WT
SDATA THEOPP

SSUBROUTINES ADVAN2

SPK
; THETA (1) =MEAN ABSORPTION RATE CONSTANT (1/HR)
; THETA (2) =MEAN ELIMINATION RATE CONSTANT (1/HR)
; THETA (3) =SLOPE OF CLEARANCE VS WEIGHT RELATIONSHIP (LITERS/HR/KG)
; SCALING PARAMETER=VOLUME/WT SINCE DOSE IS WEIGHT-ADJUSTED
CALLFL=1
KA=THETA (1) +ETA (1)
K=THETA (2) +ETA (2)
CL=THETA (3) *WT+ETA (3)
SC=CL/K/WT

STHETA (.1,3,5) (.008,.08,.5) (.004,.04,.9)
SOMEGA BLOCK(3) 6 .005 .0002 .3 .006 .4

SERROR
Y=F+EPS (1)

$SSIGMA .4

SEST MAXEVAL=450 PRINT=5

SCov

$TABLE ID DOSE WT TIME

$SCAT (RES WRES) VS TIME BY ID

V.V.B. Data Set Translation with PREDPP

When PREDPP is used, EVID and MDV data items are required in the NONMEM data set. When
PREDPP is used, MDYV data items need not be included in the NM-TRAN data set; NM-TRAN can
automatically include them in the NONMEM data set. Such MDYV data items are called generated MDV

103

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP Abbreviated code

data items . Under certain circumstances, NM-TRAN can also automatically include EVID data items in
the NONMEM data set. Such EVID data items are called generated EVID data items .

If EVID data items are not included in the NM-TRAN data set, they are generated as follows: If each of
the AMT and RATE data items in an event record is either O, or is represented by a NM-TRAN null data
item, or is missing, then the generated EVID data item is O (meaning that the event is an observation
event). Otherwise, the generated EVID data item is 1 (meaning that the event is a dose event). If there
are other-type, or reset, or reset-dose events in the data set, then the user himself should supply EVID
data items.

If MDYV data items are not included in the NM-TRAN data set, they are generated as follows: If the data
record is the last record of an event record, then the generated MDYV data item is O or 1 according as the
EVID data item (generated or user-supplied) is O or not 0. If the data record is not the last record of an
event record, then the generated MDV data item is 1.

With PREDPP, interdose interval (I) data items may appear. NM-TRAN can translate II data items
expressed in the form hr:min to II data items expressed in the form hr.fr, where min (minutes) can be any
two-digit integer from 00 to 59, and fr is a decimal fraction of the hour to two digits. Here hr (hours) can
be any nonnegative integer. Examples of II data item translation are these: 1:30 - 1.50; 1.30 — 1.30.
Note that if the data item has a colon, it is translated; otherwise, it is left unchanged. It is the user’s
responsibility to make sure that the units of the TIME data items and the II data items are consistent. For
example, suppose that TIME data items in the NM-TRAN data set are expressed as relative times in min-
utes; they are then left unchanged by NM-TRAN. II data items in the NM-TRAN data set should then
also be expressed in minutes, and they should not contain colons so that NM-TRAN leaves them
unchanged.

With NONMEM 7.3, values may also have the form hh:mm:ss (i.e., hours:minutes:seconds). As
described in Chapter II, the TRANSLATE option of the $DATA record was new to NONMEM V and has
been expanded with NONMEM 7.3. Any values may be given for dividing TIME and II values, and any
precisions may be requested. An example is:

SDATA TRANSLATE (II/0.01/6)

which divides II values by 0.01, and writes 6 digits to the right of the decimal for the II data item. See
Help guide for more details.

V.V.C. Control Records with PREDPP

There are a few control records which are specific to the use of PREDPP. These are described in the fol-
lowing subsections, along with details concerning the nonspecific control records which are pertinent to
the use of PREDPP only. A listing of NM-TRAN control records and options which should be used with
PREDPP is given in Appendix V.

104

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $INPUT Record

V.V.C.1. $INPUT Record

The $INPUT record is described in detail in section II1.B.2.

NM-TRAN recognizes these PREDPP-specific reserved labels: EVID, TIME, AMT, RATE, SS, IT,
ADDL, CMT, PCMT, CALL. By using any one of these labels in an item of the $SINPUT record, the user
defines the PREDPP data item type whose name corresponds to the label.

With NONMEM 7.2, the following labels are also recognized: XVID1, XVID2, XVID3, XVID4,
XVIDS5. These stand for "extra" EVIDs. They are used with the "Repeated Observation Records" fea-
ture for specialized methodologies such as stochastic differential equations ("sde"). See Introduction to
NONMEM 7.3 and Guide VIII and on-line help.

When PREDPP is not used, any of these labels can be used, but with the exception of TIME, they have
no special significance.

Ignoring items with the DROP or SKIP labels, the total number of items in a NM-TRAN data record can-
not exceed PD in resource/SIZES.f90 (default is 50; See Chapt III),

including generated EVID data items, generated MDV data items, and, if the data set is single-subject,
generated ID data items (all of which actually do not appear in the NM-TRAN data set). Generated
EVID data items are assigned the label EVID, and generated MDV data items are assigned the label
MDV. These labels can be used in subsequent NM-TRAN control records of the problem specification.

105

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $BIND Record

V.V.C.2. $BIND Record

SBIND value; value, ... value,

E.g.
SINPUT ID DOSE=AMT TIME CP=DV WT PREP
SBIND - - - - NEXT DOSE

This record is used in conjunction with the $INPUT record to further define the meaning of certain data
items occuring as right-hand quantities in an abbreviated code for PK when PK is called at nonevent dose
times (see below and Guide VI, section III.B.2). (Normally, PK is not called at these times.) At such
calls, PK has access to several different data items of the same type, from several different event records.
The definitions in the $BIND record precisely determine which of these data items are represented by the
label for the data item type used in the abbreviated code.

This record is optional. If it appears, it must be with the first problem specification, and only with this
problem specification. It can only be used when an abbreviated code for PK is also used.

There appear n values, where n should not exceed the total number of labels listed on the $INPUT
record, including all DROP and SKIP labels. The ith value corresponds to the ith label.

A nonevent dose time is a time that a lagged dose or additional dose enters, or starts to enter, the system.
It is some time after the event time occuring on the dose record. When PK is called at such a time, infor-
mation from three event records is available. These are the dose record itself, the last event record, and
the next event record. The last event record is the last event record with event time occuring before the
nonevent dose time. The next event record is the first event record with event time occuring after the
nonevent dose time. This event record is also called the argument record (see Guide VI, section III.B.2).
PK is called at nonevent dose times only if a certain PK calling-protocol is requested (see section C.5).

Some data item types are NONMEM data item types: ID, L2, MDV, DV, and these are not affected by the
$BIND definitions. At a nonevent dose time, these labels always represent the data items from the dose
record; this is the mandatory representation. Some data items types are PREDPP data item types: AMT,
RATE, SS, ADD, II, MT, CMT, CALL, EVID, and these are not affected by the $BIND definitions. These
labels also always represent the data items from the dose record; this is the mandatory representation.
The TIME data item type is a PREDPP data item type, and it is not affected by the $BIND definition; the
label always represents the time data item from the next event record. The other data item types (labeled
WT and PREP in the above example) are only recognized and responded to by the user’s PK routine.
With the $BIND record the user may define the label of such a data item type to represent the data item
from the dose record, the last event record, or the next event record. If a label definition for a data item
type is not given explicitly, then by default the label represents the data item from the next event record.

If the value is (explicitly) DOSE, LAST, or NEXT, the label represents the item from the dose record, the
last event record, or the next event record, respectively. If one of these values is used, it should not con-
tradict the mandatory representation for the label (of a NONMEM or PREDPP data item). The value ’-’
serves as a place holder; a value is assumed that corresponds to the mandatory or default representation.
If the number n is less than the total number of labels listed on the $SINPUT record, the values corre-
sponding to the remaining labels are taken to correspond to the respective mandatory and default repre-
sentations. If the $BIND record is not used, the values corresponding to all labels are taken to corre-
spond to the respective mandatory and default representations.

In the above example, in abbreviated PK code the variable PREP denotes the preparation indicator on the
dose record describing the dose entering the system at a nonevent dose time. If the $BIND record is not
used, the variable denotes the preparation indicator on the next event record, which may not even be a
dose record. The variable WT denotes the weight on the next event record, which is the default

106

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $BIND Record

representation.

If the label in the $INPUT record is DROP or SKIP, the issue of label representation is moot and is
ignored. In this case the value can be ’-’, or it can be DROP or SKIP.

$INPUT and $BIND records may be interleaved to help maintain a perspicuous visual relationship in the
control stream. The above example might have been written thusly:

SINPUT ID DOSE=AMT TIME CP=DV
SBIND - - - -
SINPUT WT PREP

SBIND NEXT DOSE

As with changes to the $SINPUT record, changes to the $BIND record may cause changes to the gener-
ated codes. In this case care should be taken in using the previous load module.

Even when a value is LAST or NEXT, it is still possible for an abbreviated code for PK to access the data
item in the dose record; see section C.5.

$BIND has no effect when PK is called at a model event time (MTIME).

107

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $SUBROUTINES Record

V.V.C.3. $SUBROUTINES Record

$SUBROUTINES [subname; = name,] [subname, = name,] ...
[SUBROUTINES=kind]
[TOL=n,] [ATOL=n,] [SSTOL=n3] [SSATOL=n,]
[DES=COMPACT|DES=FULL)]

E.g.
SSUBROUTINES ADVAN=ADVAN8 TOL=4

NM-TRAN recognizes these additional subnames: ADVAN, SS, TRANS, PK, ERROR, DES, AES, INFN,
TOL, MODEL

The first two subnames, ADVAN and SS, are not generic names of subroutines which can be user-sup-
plied, in contrast to all other possible subnames which can appear in the $SUBROUTINES record.
Rather, they are generic names of subroutines from the PREDPP Library. With PREDPP the subname
ADVAN must appear and be set equal to one of the names: ADVAN1, ADVANZ2, ..., whichever specific
ADVAN routine is chosen from the Library. 7

The subname SS need appear only if steady-state data items are included in the data set. Even then, if
subroutine ADVANK is chosen, it will be assumed that subroutine SSk is also chosen, and the subname-
name pair SS=SSk need not appear. (If ADVANS or ADVANI1O0 is chosen, it will be assumed that sub-
routine SS6 is also chosen.)

The third subname, TRANS, is a generic name of a subroutine which can come from the PREDPP
Library or be user-supplied. If the subroutine comes from the Library, the name must be either TRANS1,
or TRANS2, etc. If the subroutine is user-supplied, the name must be different from any name of a
TRANS routine in the Library. A subname-name pair for the TRANS routine need not be given; then
TRANS=TRANS1 is "understood".

If the PK subroutine is not user-supplied, so that PX is not used as a subname, then an abbreviated code
must be given for PK. If the ERROR subroutine is not user-supplied so that ERROR is not used as a sub-
name, then an abbreviated code must be given for ERROR. Abbreviated codes may be given for neither
routine, or for only one of them, or for both of them.

Whether the DES routine is used depends on the ADVAN routine used. Similarly, whether the AES rou-
tine is used depends on the ADVAN routine used. If the DES (AES) routine is required by the ADVAN
routine, and if it is not user-supplied, so that DES (AES) is not used as a subname, then an abbreviated
code must be given for DES (AES). Abbreviated code for the AES routine is actually given by two
abbreviated codes; see sections C.8 and C.9.

The INFN routine is always called by PREDPP. If it is not user-supplied, the INFN routine from the
PREDPP library is used. It is a stub that does nothing. INFN may be user supplied or defined by an
$INFN routine (see section C.11).

Whether the TOL routine is used depends on the ADVAN routine used. Similarly, whether the MODEL
routine is used depends on the ADVAN routine used.

If the TOL routine is required by the ADVAN routine, and if it is neither user-supplied nor defined by a
$TOL record (see section C.10), so that TOL is not used as a subname, then using the TOL option, NM-

T ADVAN stands for ADVANCE because it is the task of each ADVAN routine to advance the state
vector of compartment amounts (and partial derivatives of the compartment amounts with respect to ran-
dom variables, when appropriate) from each point in time to the next. Another possible name for ADVAN
would have been SOLVER, because most ADVAN routines solve a set of differential equations, either ana-
Iytically (ADVANI1-5, ADVAN7, ADVAN11, ADVAN12) or by integration (ADVAN6, ADVANS, AD-
VANO9, ADVAN13, ADVAN14, ADVANI1S).

108

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $SUBROUTINES Record

TRAN will generate a complete FORTRAN coded TOL subroutine. The number n; with the TOL option
is the number of accurate digits (NRD; "Number of required digits") required in the computation of all
compartmental drug amounts. As a rule of thumb, one should begin by taking n; tobe n+1 or n+2, or
with double precision, perhaps to n + 2 or n + 3, where n is the option value with the SIGDIGITS option
on the SESTIMATION record. If one succeeds with this setting, one might try increasing n; slightly.
With ADVANY the number of accurate digits can be specified on a compartment-specific basis. How-
ever, to do this, either a TOL routine must be user-supplied or the $TOL record must be used.

With ADVANI13, the TOL option of the $SUBROUTINE record (or the $TOL record) is a relative toler-
ance. It should specify larger NRD values than for other ADVANs (e.g., ADVANG6). ATOL (Absolute
tolerance) may be specified on the SESTIMATION or $COVARIANCE record.

With NONMEM 7.4, one or more additional options ATOL=n,, SSTOL=n3, SSATOL=n, are also per-
mitted on the $SSUBROUTINES record.

ATOL specifies the absolute tolerance for ADVAN9, ADVANI13, ADVANI14, and ADVANIS.
Optional. Default is 1.0E-12.

SSTOL specifies the relative tolerance for Steady State evaluation. Optional. Default is TOL.
SSATOL specifies the absolute tolerance for Steady State evaluation. Optional. Default is ATOL.

The generated TOL routine will set values as follows for the options that are coded:

NRD (1)=n; (The TOL option)
ANRD (1) =n, (The ATOL option)
NRD (0)=n3; (The SSTOL option)
ANRD (0)=n4 (The SSATOL option)

It is also possible to code TOL=name to specify the name of a user-supplied TOL routine, or to include
$TOL abbreviated code, either of which allows all these values to be assigned by compartment. A user-
supplied TOL routine also allows values to be assigned for each NONMEM step and problem. See
also the ATOL option of the SESTIMATION record, and the TOL and ATOL options of the SCOVARI-
ANCE record.

If the MODEL routine is required by the ADVAN routine, the MODEL routine may be user-supplied.
Then the PK routine must also be be user-supplied If a DES (AES) routine is needed, then it too must be
user-supplied. If the MODEL routine is not user-supplied, so that MODEL is not used as a subname, then
using information supplied in the $SMODEL record (see next section C.4), NM-TRAN will generate a
complete FORTRAN coded MODEL subroutine. In this case an abbreviated code for PK may be given,
as may abbreviated codes for DES and AES.

Each of the subnames ADVAN, SS, and TRANS, along with the equal sign that follows it, may be omitted
when it is followed by a specific name of a PREDPP Library routine; see, for example, the control stream
in section A. However, when the subname is not omitted, the specific name of a PREDPP Library rou-
tine can be given by the associated number only, e.g. ADVAN=1 instead of ADVAN=ADVANLI.

The $SUBROUTINES record may be used with PREDPP to supply "OTHER" routines, as described in
chapter III. An example is given in NONMEM 7 guide, "Stochastic Differential Equation Plug-
In(NM72)". The code in sde9.ctl is

SUBROUTINE ADVAN6 TOL=9 DP OTHER=SDE.f90

The file SDE.f90 is found in the examples directory.

109

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $MODEL Record

V.V.C.4. SMODEL Record

SMODEL [NCOMPARTMENTS=n;] [NEQUILIBRIUM=n,] [NPARAMETERS=n3]

[COMPARTMENT= ([name] [attribute;] [attribute,] ...)]
[LINK compname, [TO | AND] compname, BY k [1]]
[I_SS=n]

E.qg.

SMODEL NPARAMETERS=3 NCM=2+%
COMP= (DEPOT DEFDOSE INITIALOFF) COMP=(CENTRAL DEFOBS NOOFF)
LINK DEPOT CENTRAL BY 3
LINK CENTRAL OUTPUT BY 1

This record gives information from which NM-TRAN can generate the complete FORTRAN coded
MODEL routine.

This record is required when the ADVAN routine requires a MODEL routine, and this routine is not user-
supplied. It is only required for the first problem specification. It applies for all problem specifications
in the control stream, and it must not appear with a problem specification other than the first.

The number n; is the total number of compartments other than the output compartment. The maximum
vale of n is given by constant PC in resource/SIZES.f90; With NONMEM 7, the default is 30. (The
value may be over-ridden by user via $SIZES record up to a maximum of 999). The NCOMPARTMENTS
option may be coded as NCM or NCOMPS.

If the NCOMPARTMENTS option is omitted, this number is taken to be the number of COMPARTMENT
clauses that appear in the record (and its continuation records).

The number n, is the number of equilibrium compartments; this number must not exceed n;. If the
NEQUILIBRIUM option is omitted, this number is computed from the attributes of the COMPARTMENT
clauses. If the option is used, however, then the last n, compartments are understood to be equilibrium
compartments, whether or not any of these compartments are defined with COMPARTMENT clauses
which include the EQUILIBRIUM attribute.

The number nj is the number of explicit (and implicit; see sections C.7-9) basic PK parameters. When
an abbreviated code for the PK routine is used, the NPARAMETERS option may be omitted. (When
implicit basic PK parameters are defined, this is a convenient practice.) In this case, and in the case of a
general linear model, the number of basic PK parameters is the total number of K-type parameters recog-
nized in the abbreviated code. In the case of a general nonlinear model and TRANSI1, the number of
basic parameters is the larger of (i) the largest subscript used with the P array in PK code, and (ii) the
number of variables defined in PK abbreviated code and used in DES and/or AES abbreviated codes
when such abbreviated codes are used. See next section C.5.

Each COMPARTMENT clause defines a single compartment. The compartments are numbered in the
order in which their defining clauses appear in the record (and its continuation records). The name is the
name given to the compartment, 1-8 characters from the FORTRAN character set. If spaces or nonal-
phanumeric characters are used, enclose the name in double or single quotes. With NONMEM 7.4, the
maximum number of characters is given by SD in resource/SIZES.f90 (default is 30).

The name may not be one of the compartment attributes below, unless it is enclosed in single or double
quotes. E.g., COMP=(DEFOBS) is not permitted but COMP=("DEFOBS",DEFOBSY) is permitted.

If omitted, the name COMP n is given to the compartment, where n is the compartment number. The
compartment name is used in PREDPP problem summary pages and in LINK clauses in the $SMODEL
record. The name of the output compartment and the attributes of this compartment are set by PREDPP.

Option NCM=2 is needed with versions of NONMEM prior to NONMEM 7.4.1 to avoid a spurious error
message from NM-TRAN.

110

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $MODEL Record

For the purposes of NM-TRAN, the name of the output compartment is OUTPUT, and its number is O or
n; + 1, either will do.

With NONMEM 7.5, compartment names defined in $SMODEL are automatically available for substitu-
tion without requiring $ABBR REPLACE records. This is called "implicit" compartment name replace-
ment. For example:

SMODEL
COMP= (DEPOT)
allows substitutions to be made for A(DEPOT), DADT(DEPOT) etc, in abbreviated code:
SDES
DADT (DEPQOT)=—-KA*A (DEPOT)
The compartment number 1 is present in the generated subroutines.

Each attribute is one of: INITIALOFF, NOOFF, NODOSE, DEFOBSERVATION, DEFDOSE, EQUI-
LIBRIUM, EXCLUDE. When an attribute is used, it specifies the opposite of the default attribute. The
default attributes are: The compartment is initially on, may be turned on and off, may receive a dose, is
not the default observation compartment, is not the default dose compartment, is not an equilibrium com-
partment, is included in the computation for the output compartment. If a user-defined comparment has
attributes INITIALOFF NODOSE then it is initally off, may be turned on and off, and may not receive a
dose. Such a compartment is called an output-type compartment. There may be more than one.}

Attributes EQUILIBRIUM and EXCLUDE are used only with ADVAN9 and ADVANI1S5, and the attribute
NODOSE may be omitted when EQUILIBRIUM is also used, for it is then the default. Definitions for
equilibrium compartments must follow the definitions for the nonequilibrium compartments.

If no attributes are used, the parentheses may be omitted. If neither compartment name nor attributes are
used, i.e. the clause is simply COMPARTMENT, a compartment is defined where all defaults apply. In this
case if the clause does not end the SMODEL record, it must be followed by a comma.

If no compartment has the attribute DEFOBSERVATION, the first compartment defined with the name
CENTRAL is given the attribute.

If there is no such compartment, the first compartment is given the attribute DEFOBSERVATION. With
versions of NONMEM prior to 7.4.1 a compartment that is initially off could thus be assigned as
DEFOBSERVATION. This results in an error message if the PCMT data item is not used to specify
explicitly which compartment should be used for the prediction associated with a dose or other-type
event. With 7.4.1, the first compartment that is not INITIALOFF is given the attribute DEFOBSERVA—
TION and PCMT is not needed.

If no compartment has the attribute DEFDOSE, the first compartment defined with the name DEPOT and
which may receive doses is given the attribute. If there is no such compartment, the first compartment
which may receive doses is given the attribute.

The LINK clauses need only be used with general linear models and only when the PK routine is user-
supplied. When an abbreviated code for PK is used, this code accomplishes what the LINK clauses oth-
erwise accomplish, and LINK clauses should not be used. A LINK clause defines a route of first-order
drug distribution between the compartment A with name compname, and the compartment B with name
compname;,,. These names are established in the COMPARTMENT clauses. A compartment number,
rather than a compartment name, can be used. If distribution occurs from A to B, the TO symbol is used.
The LINK clause also specifies the internal number given to the rate constant quantifying the first-order
distribution. This is the number k following the BY symbol. (It is the number of the row of the GG array
where, as a result of basic parameter translation by the TRANS routine, the typical/subject-specific value

T Output-type compartments have been part of PREDPP since the first version, but were not discussed in
detail. For such compartments, the value of CMT may be negative on an obervation record to obtain an
observation and turn the compartment off, just as it may with the default output compartment.

111

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $MODEL Record

and 7 derivatives for the rate constant can be located; see Guide VI, section II.M.) If distribution occurs
in both directions, the AND symbol is used. In this case the number k is the internal number of the rate
constant quantifying first-order distribution from A to B, and 1 is the internal number of the rate constant
quantifying distribution from B to A. Both k and 1 must not exceed nj.

K is an alias for LINK. Also, the symbol BY may be coded IS, or =, or omitted. This allows a unidirec-
tional link to be tersely coded as: Kmn=k (which is equivalent to LINK m TO n BY k). When the
number of compartments exceeds 10, the LINK clause syntax Kmn=k may be ambiguous. The letter T
may be used to separate the two compartment numbers KmTn.

Attributes DEFOBSERVATION and DEFDOSE may be abbreviated by initial substrings of length 4 or
more.

I_SS= nrequests the Initial Steady-State feature of PREDPP (NONMEM VI). It may be used with the
general non-linear models (ADVAN6, ADVANS, ADVAN9, ADVAN13, ADVAN14, ADVAN15). Val-
ues of n are

0 No initial state state (the default)

1 Initial steady state

2 Initial steady state, adds to current compartment amounts.

3 Initial steady state, use current compartment amounts as initial estimates.

The results are identical to those that would be computed by a steady-state dose event record with
SS=I_SS and AMT=0 and RATE=0. If endogenous drugis specified in the differential equations, non-
zero initial conditions will be computed.

The example of a SMODEL record given at the beginning of this subsection serves to produce a MODEL
subroutine which, along with ADVANS or ADVAN7 implementing a general linear model, and the (code
generated from the) abbreviated code for PK given in the example of section A, has the same effect as
using ADVAN2 and the abbreviated code for PK. The same $MODEL record, without the LINK
clauses, may be used along with ADVANS or ADVAN7, and a suitable abbreviated PK code, to achieve
the same effect; see the example in Appendix VIII. The same $MODEL record, without the LINK
clauses, may be used along with ADVAN6, ADVANS, ADVAN9, ADVAN13, ADVAN14, ADVANI1S5,
and suitable abbreviated PK and DES codes, to achieve the same effect; see the example in Appendix
VIII.

112

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $PK Record

V.V.C.5. $PK Record

SPK
abbreviated code

This record gives an abbreviated code for the PK routine. It, along with all its continuation records is
called a $PK block .

This record is optional. If it appears, it must be with the first problem specification, and only with this
problem specification. It must precede any $ERROR records in the problem specification. It cannot be
used with a user-supplied MODEL subroutine (and should not be used with a user-supplied TRANS rou-
tine; see Guide VI, section II1.M).

The basic PK parameters comprise the set of mandatory left-hand quantities. These depend on the
ADVAN and TRANS subroutines used.

For any ADVAN among ADVANI1 through ADVAN4, and ADVAN10, ADVAN11, ADVAN12 (the ana-
Iytic ADVAN’s), and for any TRANS which may be used with this ADVAN, the basic PK parameters are
given in a list with that TRANS in Guide VI, section VII.C. The reserved variables symbolizing these
parameters are those whose names are identical to the names used in the list.

For either ADVANS or ADVANT7 (the general linear models), and for TRANS1 (which is the only non-
user supplied TRANS which may be used with these ADVAN’s), the basic PK parameters are the rate
constants. The reserved variable symbolizing the rate constant that quantifies the first-order distribution
of drug from compartment number m to compartment number n is Kmn. (See section C.4 for a descrip-
tion of compartment numbering.) The occurence of this variable on the left of an assignment statement
or conditional assignment statement establishes the possiblity that this distribution can take place. The
variable Km0 may be used instead of Kmn, where n is the number of the output compartment.

When the number of compartments exceeds 10, the syntax Kmn=k may be ambiguous. The letter T may
be used to separate the two compartment numbers KmTn.

The rate constants are numbered (these numbers are used internally by the ADVAN) according to the
order in which they appear in the abbreviated code. See the first example in Appendix VIII.

For ADVANG6, ADVANS, ADVANY9, ADVAN13, ADVAN14, ADVANI1S5 (the general nonlinear models),
and for TRANSI, the reserved array elements symbolizing explicit basic PK parameters are P (1),
P (2), etc. The value of the nth element of the P vector passed to DES and AES (see sections C.7-9 and
Guide VI, sections VI.C, VLE) is the value stored in P (n). These values, like other PK-defined items
may be displayed; the appropriate labels are described below. Implicit basic PK parameters are discussed
in sections C.7-9.

The additional PK parameters comprise a set of optional left-hand quantities. The reserved variables
symbolizing these parameters are as follows:

Name Parameter
Sn Scaling parameter for compartment number n
Fn Bioavailability fraction for compartment n
Rn Rate parameter for compartment n
Dn Duration parameter for compartment n
ALAGn Absorption lag parameter for compartment n
FO Output fraction
TSCALE Time scale parameter
MTIME (i) Model event times parameters (nmvi)

113

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $PK Record

Scaling parameters, bioavailablity fractions, the ouput fraction, and the time scale parameter default to
the value 1 if they do not appear in the abbreviated code. Absorption lag parameters default to the value
0 if they do not appear in the abbreviated code.

See section C.4 for a description of compartment numbering. The variable FO or Fn, where n is the
number of the output compartment, may be used instead of FO. The variable SO may be used instead of
Sn, where n is the number of the output compartment. The variable SC may be used to mean the scaling
parameter with the central compartment. The variable XSCALE may be used instead of TSCALE.
Whichever of the alternate variable names is used first for a basic or additional PK parameter, this name
must be used consistently throughout the $PK block.

A model event time parameter MTIME (i) defines a time to which the system is advanced. When the
time is reached, indicator variables are set and a call to PK is made. At this call (and/or subsequent to
this call) PK or DES or AES or ERROR can use the indicator variables to change some aspect of the
system, e.g., a term in a differential equation, or the rate of an infusion. MTIME (i) parameters are
not associated with any specific compartment or dose. They are ignored if they have the value 0. MTIME
parameters have no effect on steady-state doses; even if PK computes MTIME (i) < II, this produces
future changes in the system, and does not apply retroactively to the preceding implied doses.

MTDIFF is an optional left-hand variable. It is of interest when model time parameters MTIME are
used. The value of MTDIFF is O when PK is called. If PK sets MTDIFF to a value other than 0, e.g.,
MTDIFF=1, then PREDPP will understand that with that call to PK, the values of one or more of the
MTIME() have possibly been reset. MTDIFF=0 (the default) can save considerable run time when there
are many model time parameters. Note that the results are unpredictable if the times are in fact changed
when MTDIFF=0.

Array elements 2_0 (1), ..., A_0 (n) may be used on the left-hand to assign initial values to compart-
ments. A reserved right-hand variable, A_ OFLAG, is set to 1 by PREDPP when PK may initialize
compartments to specific amounts. For example,
IF (A_OFLG.EQ.1l) THEN

compartment initialization block

ENDIF
A compartment initialization block includes statements such as
A O0O(n)=..

This specifies the initial amount for compartment n. A_INITIAL (n) is a synonym for 2_0 (n).

The above code fragment is an explicit compartment initialization block. A_0 (n) may be assigned a
value with an unconditional statement. This defines an implicit compartment initialization block.
NMTRAN inserts "IF (A_OFLG.EQ.1) ..." before the statement and "ENDIF" after it. Indicator vari-
ables may be used to avoid conditional assignment statements. See the help items for Compartment Ini-
tialization.

A reserved left-hand variable I_SS may be set to the same values as the I_SS option of $SMODEL
record. This allows initial steady-state to be set conditionally, e.g., if some subjects are at steady-state
and others are not.

There is a type of pseudo-statement specific to PK abbreviated code. It has the form CALLFL=n. The
different permissible values for n imply different PK calling-protocols. A calling protocol phrase can
be used instead of the CALLFL pseudostatement. The phrase must be enclosed in parentheses. Exam-
ples of phrases follow each value of CALLFL.

value calling-protocol

-2 PK called with every event record and at every nonevent dose time

114

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $PK Record

$PK (NON-EVENT)
$PK (ADDITIONAL OR LAGGED)
-1 PK called with every event record (default)

$PK (EVERY EVENT)
$PK (EVERY)

0 PK called with first event record of the individual record
and with every subsequent event record where the time data item
differs from the time data item of the previous event record
$PK (NEW TIME)
$PK (NEW EVENT TIME)

1 PK called only with first event record of the individual record
$PK (ONCE PER INDIVIDUAL RECORD)
$PK (ONCE/IND.REC.)

The value must be -2 when the $BIND record is used.

If the pseudo-statement does not appear, the value -1 is assumed. This allows PK to properly function in
most situations.

Values 0 and 1 correspond to call-limiting protocols. Limiting calls to PK, when this causes no undesire-
able effect, can result in a substantial reduction in CPU time. The CALL data item can be used with a
call-limiting protocol to override the protocol and force calls with specific event records; see Guide VI,
section V.J. When n is O or 1, and the data are single-subject data, then PK is called with the first event
record of the data set, instead of the first event record of the individual record.

As usual, the label of a data item type can be used as a variable in the abbreviated code. When PK is
called at a nonevent dose time t, the data item referenced by a given label may refer to the data item on
either the dose record or the next event record following t. The defaults are described in section C.2, and
a method (using the $BIND record) is given for changing them.

There are several reserved variables and array elements symbolizing special right-hand quantities:

The variable ICALL symbolizes a special right-hand quantity. The values are identical to those for
ICALL in PRED, as described in Chapter IV. It has the value 2 if the call is a regular call during data
analysis, and the value 4 if the call is a regular call during data simulation. It has the value 5 if the call to
PK occurs when expectations are being computed (the marginal data item MRG_ has a non-zero value
for some records).

If there is abbreviated code in the $PK block that tests for ICALL=0, ICALL=1, or ICALL=3, this code
is moved by NM-TRAN to the INFN routine as if it had been coded explicitly as part of an $INFN block.
Such code is called $PK-INFN code. With verbatim code in the FIRST block (see section IV.I), ICALL
will never have the value 0 or 3. ICALL has the value 1 if the call to PK is the first call to PK in the
problem. At this call, the THETA’s are the initial estimates; the ETA’s are undefined. Verbatim code is
not moved to the INFN routine.

The variable NEWIND symbolizes a special right-hand quantity. It has the value O when PK is called
with the first event record of the data set. It has the value 1 when PK is called with the first event record
of the second or subsequent individual record. It has the value 2 when PK is called with the second or
subsequent event record of an individual record. With single-subject data individual records are defined
in such a way that event records are contained in a number of different individual records; see section
II.C.4.1. Therefore, except when the event record is the first data record of the data set and the value of
NEWIND=O0, the value of NEWIND can be 1 or 2.

The variable DOSTIM symbolizes a special right-hand quantity. It has a nonzero value only when
CALLFL=-2 and PK is being called at a nonevent dose time (see section C.2), in which case the value is

115

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $PK Record

this time. DOSTIM should be regarded a random variable when any ALAGn variable is a random vari-
able. In this regard, if any ALAGn is defined as a random variable, it must be defined as such before any
occurence of the variable DOSTIM in an assignment statement.

The array element DOSREC (n) symbolizes a special right-hand quantity. It has a nonzero value only
when CALLFL=-2 and PK is being called at a nonevent dose time, in which case it is the value of the
nth data item in the (last data record of the) dose event record describing the dose. A label for a data item
in the event record may be used instead of the integer n, e.g. one can use DOSEC (PREP) to symbolize
the value of PREP on the dose event record. The $BIND record can also be used to insure that a variable
such as PREP symbolizes the value on the dose event record. However, another example of the use of
DOSREC, which is sometimes useful and with which the $BIND record cannot help as readily, is the use
of DOSREC (TIME) to symbolize the value of TIME on the dose event record, i.e. the time the dose was
actually administered.

PREDPP sets right-side variables MNOW and indicator variables MNEXT (i) and MPAST (i) when Model
Event (MTIME (i)) parameters are defined. MNOW=i if MNEXT(i)=1 for some i. MNOW=0 otherwise.
MNEXT(i)=1 during the advance from the previous time to MTIME(). Otherwise, MNEXT(i)=0. The
previous time may be an event time, a non-event time, or a model event time. MPAST(i)=0 until the call
to PK subsequent to the one for which MNEXT(i)=1. At that call MPAST(i) becomes 1.

The array elements A (1), ..., A(n) symbolize special right-hand quantities, the amounts in compart-
ments 1 through n. They are the latest computed compartment amounts when PK is called. This is the
called the state-vector of compartment amounts. A right-hand variable TSTATE is the state-time, i.e., the
time at which they were computed. In a population study, where 17 variables affect the drug amounts
through their affect on PK parameters, these amounts are random variables. $OMEGA records referring
to n7s explicitly used in $PK code should precede the $PK record, or if an $MSFI record is used, it
should precede the $PK record and include the option NPOP=m. If an element A (n) appears, then the
variable A cannot also be used.

Chapter IV describes the use of NONMEM MODULE NMPRD4. If COMRES=1 is not present in
$SABBREVIATED or $PK records, then PK-defined variables are listed in NMPRD4 (see sections II1.B.7
and IV.H) and may be used in other routines and blocks of abbreviated code. The symbol COM (n) may
be used on the left or the right if n refers to a reserved position in MODULE NMPRD4 (see section
III.LE.3). Variables defined in $INFN and listed in MODULE PRINFN are also global and may be used in
$PK and other blocks of abbreviated code, on the left and on the right. Variables defined by SABBREVI-
ATED DECLARE records are also global and may be used in $PK and other blocks of abbreviated code,
on the left and on the right.

The abbreviated code may not use certain variables which occur as arguments to the PK subroutine.
These variables are: IDEF, IREV, EVTREC, NVNT, INDXS, IRGG, GG, and NETAS.

Also, the array elements EPS (1), EPS (2), etc. may not be used in the abbreviated code for PK.

Variables which symbolize (first-, and second-) partial r-derivatives of random variables defined in
abbreviated code for PK are generated and displayable. The appropriate labels are the same as those
used for the same kinds of derivatives computed in a generated code for PRED; see section IV.F.

Values of the variable P (n) are displayable. For this purpose, they are stored in a variable in MODULE
NMPRD4 with name Pm, where m is an integer with 5 digits and equal to n, with leading 0’s if needed
(invariably). The values of variables POO. . ., in particular, are labeled 6. . . in tables and scatterplots.
E.g. The values of variable P00003 are labeled 6003 and are the values of P (3) .

If the data are population data, calls to GETETA and SIMETA occur in PK, as they occur in PRED when
the $PRED record is used (for some discussion of SIMETA, see section II1.B.13), to obtain values for all
the n7 variables. Both PK and ERROR contain the declaration

USE NMPRD_REAL,ONLY: ETA,EPS

so that ETA has the same value in both routines. (Generated PRED also declares ETA and EPS this

116

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $PK Record

way.)

PRED-error recovery (see section IV.G) is supported by PREDPP and NM-TRAN. This means that the
EXIT statement described in section IV.G.2, when used in an abbreviated code for PK (or ERROR) gen-
erates an quick return to NONMEM with a PRED return code.

117

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $ERROR Record

V.V.C.6. SERROR Record

SERROR
abbreviated code

This record gives an abbreviated code for the ERROR routine. It, along with all its continuation records
is called a $SERROR block .

This record is optional. If it appears, it must be with the first problem specification, and only this prob-
lem specification. It must succeed all $PK records in the problem specification.

There is only one mandatory left-hand quantity: the quantity symbolized by Y and described in section
IV.A.
Y may be also used on the right, e.g. LOGY=LOG (Y) . (nmv)

There is a type of pseudo-statement specific to ERROR abbreviated code. It has the form CALLFL=n.
The different permissible values for n imply different ERROR calling-protocols. A calling protocol
phrase can be used instead of the CALLFL pseudostatement. The phrase must be enclosed in parenthe-
ses. Examples of phrases follow each value of CALLFL.

value calling-protocol

-1 ERROR called with every event record (default)
$ERROR (EVERY EVENT)
$ERROR (EVERY)

0 ERROR called only with observation event records
$ERROR (OBSERVATION EVENT)
$ERROR (OBS)

1 ERROR called only with first event record of the individual record

$ERROR (ONCE PER INDIVIDUAL RECORD)
$ERROR (ONCE/IND.REC.)

If the pseudo-statement does not appear, the value -1 is assumed.

Values 0 and 1 correspond to call-limiting protocols. Limiting calls to ERROR, when this causes no
undesireable effect, can result in a substantial gain in CPU time. The CALL data item can be used with a
call-limiting protocol to override the protocol and force calls with specific event records; see Guide VI,
section V.J. When n is 1, and the data are single-subject data, ERROR is called only with the first event
record of the data set, instead of the first event record of the individual record.

Another call-limiting protocol is implementable, but not with the use of a pesudo-statement in the abbre-
viated code for ERROR. With this protocol, calls to ERROR are limited to one per problem. This proto-
col is implemented whenever the abbreviated code consists of only one of the following statements:

Y=F+ERR (1)

Y=F* (1+ERR (1))
Y=F+F*ERR (1)
Y=F*EXP (ERR (1))

or with ETA or EPS occuring instead of ERR. This protocol is not implemented if verbatim code or a
pseudo-statement is used in the SERROR block. (In the last three cases the complete code instructs

. Ology
PREDPP that HH(1) contains

, and so in each case it is sufficient to set HH(1) to 1, and do this

118

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $ERROR Record

once only at an initial problem call to ERROR.)
With any call-limiting protocol, during the Simulation Step, ERROR is called with every event record.
As usual, the label of a data item type can be used as a variable in the abbreviated code.

The variable F symbolizes a special right-hand quantity: the value of the scaled drug amount in the
observation or other designated compartment (see Guide VI, section V.H) at the event time. In a popula-
tion study, where /7 variables affect the scaled drug amount through their affect on PK parameters, the
scaled drug amount is a random variable.

The array elements A (1), ..., A(n) symbolize special right-hand quantities, the amounts in compart-
ments 1 through n. This is the state-vector of compartment amounts. In a population study, where 77
variables affect the drug amounts through their affect on PK parameters, these amounts are random vari-
ables. If an element A (n) appears, then the variable A cannot also be used.

Variables defined in the $PK block can be used in the $ERROR block (unless variables are not listed in
MODULE NMPRD4 in either PK or ERROR; see sections III.B.7 and IV.H). They may not be used on
the left if they are random variables. The symbol COM (n) may be used on the left or the right if n refers
to a reserved position in MODULE NMPRD4 (see section III.LE.3). Variables defined in $INFN and
listed in MODULE PRINFN are also global and may be used in $ERROR, on the left and on the right.
Variables defined by SABBREVIATED DECLARE records are also global and may be used in $ERROR,
on the left and on the right.

The variable ICALL symbolizes a special right-hand quantity. It has the value 2 if the call to ERROR is
a regular call during data analysis, and the value 4 if the call is a regular call during data simulation. It
has the value 5 if the call to ERROR occurs when expectations are being computed (the marginal data
item MRG_ has a non-zero value for some records). It has the value 6 if the call to ERROR occurs when
raw data averages are being computed (the raw-data-average data item RAW_ has a non-zero value for
some records).

If there is abbreviated code in the $ERROR block that tests for ICALL=0, ICALL=1, or ICALL=3, this
code is moved by NM-TRAN to the INFN routine as if it had been coded explicitly as part of an $SINFN
block. Such code is called SERROR-INFN code. With verbatim code in the FIRST block (see section
IV.I), ICALL will never have the value 0 or 3. ICALL has the value 1 if the call to ERROR is the first
call to ERROR in the problem. At this call, the THETA’s are the initial estimates; the ETA’s are unde-
fined. Verbatim code is not moved to the INFN routine.

The variable NEWIND symbolizes another special right-hand quantity. It has the value 0 when ERROR is
called with the first event record of the data set. It has the value 1 when ERROR is called with the first
event record of the second or subsequent individual record. It has the value 2 when ERROR is called
with the second or subsequent event record of an individual record. With single-subject data individual
records are defined in such a way that event records are contained in a number of different individual
records; see section I1.C.4.1. Therefore, except when the event record is the first data record of the data
set and the value of NEWIND=0, the value of NEWIND can be 1 or 2.

The abbreviated code may not use certain variables which occur as arguments to the ERROR subroutine.
These variables are: IDEF, IREV, EVTREC, NVNT, INDXS, G, and HH.

Variables which symbolize (first-, second-, mixed-) partial n7-derivatives of random variables defined in
abbreviated code for ERROR are displayable. They have names D. , where the dots stand for vari-
ous combinations of 5 digits 0-9. The values of variables DOO. . ., in particular, are labeled 3. . . in
tables and scatterplots. E.g. The values of variable D00123 are labeled 3123. The label for the values
of a variable DO1. . ., or higher, is the first four characters of the variable name. E.g. The values of
D05677 are labeled D056.

PRED-error recovery (see section IV.G) is supported by PREDPP and NM-TRAN. This means that the
EXIT statement described in section IV.G.2, when used in an abbreviated code for PK or ERROR

119

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $ERROR Record

generates an quick return to NONMEM with a PRED return code.

The following discussion, relating to the SERROR block, supplements that found in section I1.C.4.2.

If (i) EPS’s are used in the $ERROR block, or (i) a $SIGMA record is used, the data are inferred to be
population data. If (iii) a $PK record is not used and a SOMEGA record precedes the SERROR record,
the data are inferred to be population data. This is true even if i and ii do not hold, and if ii does not hold,
it is assumed that a record

SSIGMA DIAGONAL (n)

where n is the largest index used with an EPS or ERR in the $ERROR block, might have equivalently
been used. If (iv) the NPOPETAS option is used on an $MSFI record with a positive option value, the
data are inferred to be poulation data. If neither i, ii, iii, nor iv hold, the data are inferred to be single-
subject. See section I1.C.4

Suppose a $PK record is not used, a SERROR record is used, and only ETA’s or only ERR’s occur in the
$ERROR block. As a corollary of iii (and comments in sections ITI1.B.10 and IV.A), the following hold:

An $SOMEGA record can precede or follow the SERROR record, in which case the data are taken
to be population or single subject, respectively. If the SOMEGA record precedes the SERROR
record, then ERR’s must be used.

If an $OMEGA record precedes the SERROR record, but is continued following the SERROR
record, the data are taken to be population data, and again ERR’s must be used.

If an SOMEGA record is not used, the data are taken to be single-subject, and it is assumed that a
record

$OMEGA DIAGONAL (n)

where n is the largest index used with an ETA or ERR in the $ERROR block, might have equiva-
lently been used.

If option LIKELIHOOD or -2LL is used on the SESTIMATION record, NM-TRAN recognizes the data
as odd-type data. The data are categorical, rather than continuous. Then 57 variables still represent ran-
dom interindividual effects, and random intraindividual variablity exists, but it is expressed without the
use of & variables or $SIGMA records. If the data are population and there is no $PK record, the
$OMEGA block must precede the SERROR block.

120

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $DES Record

V.V.C.7. $DES Record

SDES
abbreviated code

This record gives an abbreviated code for the DES routine. It, along with all its continuation records, is
called a $DES block .

This record is optional. If it appears, it must be with the first problem specification, and only this prob-
lem specfication. It may not appear when the MODEL routine is user-supplied. Implicit basic PK
parameters may be used in the $DES block (see below) only when the $PK block precedes the $DES
block.

The mandatory left-hand quantities are the first-order derivatives of the differential equations, symbolized
by DADT (n), for the derivative of the amount in compartment n (excluding the output compartment)
with respect to time. At least one such array element must be defined.

Symbolic differentiation is used to obtain code used in the generated subroutine to compute the elements
of the DA, DP, and DT arrays.

The allowable right-hand quantities include: current compartment amounts, symbolized by A (n) , for the
amount in the nth compartment (including both equilibrium compartments when they exist, but excluding
the output compartment); PK parameters (obtained from TRANS1), symbolized by P (m), for the mth
parameter; and time, symbolized by T. In a population study, where 77 variables affect the PK parame-
ters, and, therefore, also affect the compartment amounts, these right-hand quantities should be regarded
as random variables. However, r-derivatives are not computed in the generated routine itself. For tech-
nical reasons, these right-hand quantities should be regarded as random variables even when the data are
single-subject. This means, for example, that these variables may be used in conditional assignment
statements subject to the usual restriction on random variables. (Drug input information is not available
for computations; PREDPP itself incorporates this type of information appropriately.)

Also, a PK-defined item may be used as a right-hand quantity. However, when so used, it becomes a spe-
cial quantity called an implicit basic PK parameter , and a few special considerations apply:

Implicit basic PK parameters may be used in the $DES block only when the $PK block precedes
the $DES block.

One should think of elements of the P array as including values for explicit basic parameters , i.e.
parameters defined in the $PK block in array elements P (n), followed by values for the implicit
basic parameters. Therefore, the option value for the NPARAMETERS option in the $SMODEL
record should be large enough to include all these elements of this extended P array. Note: Explic-
it basic parameter values are displayable; see section C.5.

Even additional PK parameters become implicit basic PK parameters.

The symbol COM (n) may be used on the left or the right if n refers to a reserved position in MODULE
NMPRD4 (see section II1.LE.3). Variables defined in $INFN and listed in MODULE PRINFN may be
used in $DES, on the left and on the right. Variables defined by SABBREVIATED DECLARE records
are also global and may be used in $DES, on the left and on the right.

The abbreviated code may not use certain variables which occur as arguments to the DES subroutine.
These variables are: IR, DA, DP, and DT.

Variables which symbolize partial derivatives in the DA array are displayable. They have names
E...... , where the dots stand for various combinations of 5 or 6 digits 0-9. (The number of digits
depends on the version of NONMEM.)

121

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $DES Record

Variables which symbolize partial derivatives in the DP array are displayable. They have names
F...... , where the dots stand for various combinations of 5 or 6 digits 0-9.

Variables which symbolize partial derivatives of the DT array are displayable. They have names
E...... , where the dots stand for various combinations of 5 or 6 digits 0-9.

With versions of NONMEM prior to NONMEM 7.4.1, the labels for variables which symbolize partial
derivatives were converted to 4 characters, as described in earlier versions of the guide. The labels were
not always unique or meaningful, although the values displayed were always correct. A work-around for
earlier versions is to use an alias that is meaningful to the user. For example, with CONTROL7 and
NONMEM 7.4.0, NM-TRAN generates a variable named EO000004 for the "DERIVA-
TIVE OF DADT(1) W.R.T. A(01)". If this is to be displayed in a table and a meaningful column header
for the table is desired, an alias such as the following could be used:

STABLE E0O00004=DADT1Al

DES-defined items may be displayed in tables or scatterplots and are computed at the event time in the
data record.

Verbatim header statements "FIRST and "MAIN can be used.
An example of a $DES record, using implicit basic parameters, is given in Appendix VIIL
The following features were added starting with NONMEM V.

The allowable right-hand side quantities include the data items of a data record, symbolized by the labels
and synonyms specified in the $INPUT record, and values of THETA, symbolized by THETA(1),
THETA(2), etc. If quantities depending only on data items and THETA parameters are computed
directly in $DES rather than $PK, improvement in run time is possible. A DES routine may test DOS-
TIM and DOSREC in a logical expression. It may use them on the right-hand side of an assignment
statement. If DOSTIM is a random variable, DOSTIM must not be used in $DES. However, DOSTIM
may always be used in a $PK block or PK routine to define a random variable which may be used in the
DES routine.

A reserved right-hand variable, ISFINL (nmvi), is set to 1 by PREDPP when DES is called after the
final advance to an event or non-event time, during Simulation or Copying pass (COMACT>0). One use
of ISFINL is for DES to calculate quantities for display in tables or via WRITE statements.

ICALL cannot be used in DES abbreviated code. The generated DES routine tests for ICALL=1, per-
forms PREDPP-required initialization code, and then executes a RETURN statement. Values of DADT
are not evaluated at ICALL=1, as may happen with a user-written DES routine, so there is no need for a
test of ICALL in the abbreviated code.¥

With ADVANO9 and ADVAN15, a $DES block may not appear when there are only equilibrium compart-
ments. With ADVANI1O0 and steady-state doses with constant infusion doses, basic PK parameters KM
and VM may be used in the $DES abbreviated code.

NM-TRAN generates the appropriate code in FSUBS. Details are in Guide VI, Chapter VI.

The SABBREVIATED record has an option that affects the formats of arrays in the generated DES sub-
routine:

SABBR DES=FULL vs DES=COMPACT

+ NONMEM YV Supplemental Guide Section 82 ($DES Record) states incorrectly that ICALL blocks test-
ing for ICALL values 4 and 5 are permitted.

122

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $DES Record

Normally, there is no reason for the user to supply this option. NM-TRAN will choose the appropriate
format. Details are in Guide VI, Appendix IV.

123

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $AESINITIAL Record

V.V.C.8. $SAESINITIAL Record

SAESINITIAL
abbreviated code

The complete AES routine can be divided into two parts: code which computes the amounts in the equi-
librium compartments at the beginning of an integration interval (these amounts depend on the amounts
in the nonequilibrium compartments) and code which computes values for the right sides of the algebraic
equations. An abbreviated code for AES is actually divided into two abbreviated codes which corre-
spond to the two parts of the complete AES routine. This record gives an abbreviated code for the first
part of the AES routine. The $AES record (see the next section C.9) gives an abbreviated code for the
second part. The SAESINITIAL record, along with all its continuation records, is called a
$SAESINITIAL block .

This record is optional. If it appears, it must be with the first problem specification, and only this prob-
lem specfication. If there are no equilibrium compartments, but ADVAN9 or ADVANIS is used, the
record need not appear. It may not appear when the MODEL routine is user-supplied. Implicit basic PK
parameters may be used in the SAESINITIAL block (see below) only when the $PK block precedes the
$AESINITIAL block.

In order to compute the amounts in the equilibrium compartments at the beginning of an integration
interval, the algebraic system must be solved. However, only an approximate solution is needed. If
requested, this will be used only as an initial solution, and ADVANO will numerically obtain a more pre-
cise solution.

The amounts in the equilibrium compartments at the beginning of the integration interval comprise a set
of mandatory left-hand quantities. They are symbolized by A (n), where n is a number of an equilibrium
compartment. At least one such quantity must be defined.

The variable INIT symbolizes an optional left-hand quantity. If it is set to 0, the amounts A (n) are
regarded as only approximations to the exact amounts. In this case ADVANO solves numerically for
more precise amounts satisfying the algebraic equations, using the approximations as an initial solution.
If the computation of the amounts in the SAESINITIAL block determines these amounts accurately to at
least the number of digits given by the option value of the TOL option in the $SSUBROUTINES record, or
by NRD or NRD (1) as given with the $TOL record, then INIT should either not be set, or set to 1.

The allowable right-hand quantities include: nonequilibrium compartment amounts at the beginning of
the integration interval, symbolized by A (n) , for the amount in the nth nonequilibrium compartment; PK
parameters (obtained from TRANSI), symbolized by P (m), for the mth parameter; and the time at the
beginning of the integration interval, symbolized by T. In a population study, where 17 variables affect
the PK parameters, and, therefore, also affect the compartment amounts and (if some 77 affects an absorp-
tion lag parameter) possibly T as well, these right-hand quantities should be regarded as random vari-
ables. However, n7-derivatives are not computed in the generated routine itself. For technical reasons,
these right-hand quantities should be regarded as random variables even when the data are single-subject.
This means, for example, that these variables may be used in conditional assignment statements subject
to the usual restriction on random variables.

Also, a PK-defined item may be used as a right-hand quantity. However, when so used, it becomes a spe-
cial quantity called an implicit basic PK parameter , and a few special considerations apply:

Implicit basic PK parameters may be used in the SAESINITIAL block only when the $PK block
precedes the SAESINITIAL block.

One should think of elements of the P array as including values for explicit basic parameters , i.e.
parameters defined in the $PK block in array elements P (n), followed by values for the implicit
basic parameters. Therefore, the option value for the NPARAMETERS option in the SMODEL

124

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $AESINITIAL Record

record should be large enough to include all these elements of this extended P array. Note: Explic-
it basic parameter values are displayable; see section C.5.

Even additional PK parameters become implicit basic PK parameters.

There is a type of pseudo-statement specific to AESINIT abbreviated code. It has the form CALLFL=n.
The different permissible values for n imply different calling-protocols for ADVAN9 and ADVANI1S,
rather than the AES subroutine. CALLFL may be used only when there are only equilibrium compart-
ments and there is no TIME data item. ADVAN9 and ADVANIS5 is called by default with every event
record. A calling protocol phrase can be used instead of the CALLFL pseudostatement. The phrase
must be enclosed in parentheses. Examples of phrases follow each value of CALLFL.

value calling-protocol
-1 ADVAND or 15 called with every event record (default)
$AES (EVERY EVENT)
$AES (EVERY)
1 ADVANO or 15 called only with first event record of the individual record
$AES (ONCE PER INDIVIDUAL RECORD)
$AES (ONCE/IND.REC.)

If the pseudo-statement does not appear, the value -1 is assumed. This allows ADVAN9 and ADVAN15
to properly function in most situations.

The symbol COM (n) may be used on the left or the right if n refers to a reserved position in MODULE
NMPRD4 (see section II1.LE.3). Variables defined in $INFN and listed in MODULE PRINFN may be
used in $AES, on the left and on the right. Variables defined by SABBREVIATED DECLARE records
are also global and may be used in $AES, on the left and on the right.

The abbreviated code may not use certain variables which occur as arguments to the AES subroutine.
These names are: IR, DA, DP, and DT.

The verbatim header statement "LAST cannot be used. There is no fourth section of generated code.

Any (non-random) variables defined in the SAESINITIAL block may be used in a $AES block (see next
section C.9). A random variable defined in terms of PK parameters, but not amounts, may also be used
in a $AES block.

The following features were added starting with NONMEM V.

The allowable right-hand side quantities include the data items of a data record, symbolized by the labels
and synonyms specified in the $INPUT record, and values of THETA, symbolized by THETA(1),
THETA(2), etc. If quantities depending only on data items and THETA parameters are computed
directly in $AES rather than $PK, improvement in run time is possible. A AES routine may test DOS-
TIM and DOSREC in a logical expression. It may use them on the right-hand side of an assignment
statement. If DOSTIM is a random variable, DOSTIM must not be used in $AES. However, DOSTIM
may always be used in a $PK block or PK routine to define a random variable which may be used in the
AES routine.

A reserved right-hand variable, ISFINL (nmvi), is set to 1 by PREDPP when AES is called after the
final advance to an event or non-event time, during Simulation or Copying pass (COMACT>0). One use
of ISFINL is for AES to calculate quantities for display in tables or via WRITE statements.

ICALL cannot be used in AES abbreviated code. The generated AES routine tests for ICALL=1, per-

forms PREDPP-required initialization code, and then executes a RETURN statement. Values of A (n)
are not evaluated at ICALL=1, as may happen with a user-written AES routine, so there is no need for a

125

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $AESINITIAL Record

test of ICALL in the abbreviated code.¥

+ NONMEM YV Supplemental Guide Section 84 ($AES Record) states incorrectly that ICALL blocks test-
ing for ICALL values 4 and 5 are permitted.

126

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $AES Record

V.V.C.9. $AES Record

SAES
abbreviated code

The complete AES routine can be divided into two parts: code which computes the amounts in the equi-
librium compartments at the beginning of the integration interval (these amounts depend on the amounts
in the nonequilibrium compartments) and code which computes values for the right sides of the algebraic
equations. An abbreviated code for AES is actually divided into two abbreviated codes which corre-
spond to the two parts of the complete AES routine. This record gives an abbreviated code for the sec-
ond part of the AES routine. The $AESINITTAL record (see section C.8) gives an abbreviated code for
the first part. The $AES record, along with all its continuation records, is called a $AES block . This
record is optional. If it appears, it must be with the first problem specification, and only this problem
specfication. If there are no equilibrium compartments, but ADVAN9 or ADVANI1S5 is used, the record
need not appear. It may not appear when the MODEL routine is user-supplied. Implicit basic PK param-
eters may be used in the $AES block (see below) only when the $PK block precedes the $AES block.

The mandatory left-hand quantities are values of expressions which when set to 0, constitute the system
of algebraic equations describing the equilibrium kinetics. They are symbolized by E (n). The number
n must be an equilibrium compartment number. However, there need not be any particular relationship
between the subscripts and the equilibrium compartments. At least one such quantity must be computed.

Symbolic differentiation is used to obtain code used in the generated subroutine to compute the elements
of the DA, DP, and DT arrays.

The allowable right-hand quantities include: current compartment amounts, symbolized by A (n), for the
amount in the nth compartment (including all compartments except the output compartment); PK param-
eters (obtained from TRANS1), symbolized by P (m), for the mth parameter; and time, symbolized by
T. In a population study, where 17 variables affect the PK parameters, and, therefore, also affect the com-
partment amounts, these right-hand quantities should be regarded as random variables. However, ;7-de-
rivatives are not computed in the generated routine itself. For technical reasons, these right-hand quanti-
ties should be regarded as random variables even when the data are single-subject. a random variable.
This means, for example, that these variables may be used in conditional assignment statements subject
to the usual restriction on random variables.

Also, a PK-defined item may be used as a right-hand quantity. However, when so used, it becomes a spe-
cial quantity called an implicit basic PK parameter , and a few special considerations apply:

Implicit basic PK parameters may be used in the $AES block only when the $PK block precedes
the $AES block.

One should think of elements of the P array as including values for explicit basic parameters , i.e.
parameters defined in the $PK block in array elements P (n), followed by values for the implicit
basic parameters. Therefore, the option value for the NPARAMETERS option in the SMODEL
record should be large enough to include all these elements of this extended P array. Note: Explic-
it basic parameter values are displayable; see section C.5.

Even additional PK parameters become implicit basic PK parameters.

Non-random variables defined in the SAESINITTAL block may be used. A random variable defined in a
$AESINITIAL block in terms of PK parameters, but not amounts, may also be used in a $AES block.

The symbol COM (n) may be used on the left or the right if n refers to a reserved position in MODULE
NMPRD4 (see section III.LE.3). Variables defined in $INFN and listed in MODULE PRINFN may be
used in $AES, on the left and on the right. Variables defined by SABBREVIATED DECLARE records
are also global and may be used in $AES, on the left and on the right.

127

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $AES Record

The abbreviated code may not use certain variables which occur as arguments to the AES subroutine.
These names are: IR, DA, DP, and DT.

Variables which symbolize partial derivatives in the DA array are displayable. They have names
E..... , where the dots stand for various combinations of 5 or 6 digits 0-9.

Variables which symbolize partial derivatives in the DP array are displayable. They have names
F.o.... , where the dots stand for various combinations of 5 or 6 digits 0-9. Variables which symbolize
partial derivatives in the DT array are displayable. They have names E. , where the dots stand for
various combinations of 5 or 6 digits 0-9.

The verbatim header statements "FIRST and "MAIN cannot be used.

128

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $TOL Record

V.V.C.10. $TOL Record

STOL
abbreviated code

This record can be used to specify tolerances (i.e. accuracies) to which compartment amounts are com-
puted by an ADVAN or SS routine that uses numerical techniques (see Guide VI, section VII). Different
tolerances can be specified for the compartment amounts in different compartments. Whereas this record
may be needed with ADVAN9, ADVAN13, ADVAN14, ADVANI1S5, which support compartment-specific
tolerances, it is not needed with all other ADVAN and SS routines, where only a single tolerance apply-
ing to all compartments can be specified. In these other cases use of the TOL, ATOL, SSTOL, SSATOL
options on the $SUBROUTINES record suffices.

This record is optional. If it appears, it must be with the first problem specification, and only this prob-
lem specfication. It cannot be used when the TOL option is used in the $SSUBROUTINES record.

The abbreviated code is very limited and brief; it is not like any other. The only statements that are per-
mitted have one of the two forms

NRD=m
NRD (i) =m

With NONMEM 7.4, additional statements are permitted:

ANRD (1) =m
NRDC (i) =m
ANRDC (i) =m
where

i is a compartment number (excluding the output compartment number),
and m is the number of accurate digits required in the computation of
the drug amounts in compartment i.

Form 1 is a shorter way of writing form 2 withi = 1.

Once the tolerance for a compartment is explicitly specified, it cannot be respecified. A tolerance for a
given compartment need not be specified; see below. The order of the statements is immaterial.

If i > 1 is the least compartment number such that the tolerance for compartment i is not specified, then
for all j =1, the tolerance for compartment j is the tolerance explicitly specified for compartment i — 1.
This implies that if the only statement used is NRD=m, the number of accurate digits required in the com-
putation of all compartmental drug amounts is m. In this case, as a rule of thumb, one should begin by
taking m to be n+1 or n+2, or with double precision, perhaps to n+2 or n +3, where n is the option
value with the SIGDIGITS option on the SESTIMATION record. If one succeeds with this setting, one
might try increasing m slightly.

If ADVANY and SS9 are used together, and if different tolerances are specified for different compart-
ments, only that tolerance specified as SSTOL (or compartment 1 if SSTOL is not specified) is used for
the computation of steady-state compartmental amounts. If any ADVAN other than ADVANDY is used, or
if SS6 is used, the tolerances specified for compartments with numbers larger than 1 are ignored, and
again only that tolerance specified as SSTOL (or compartment 1, if SSTOL is not specified) is used for
the computation of all compartmental amounts.

A user-supplied TOL routine also allows values to be assigned differently for each compartment. With
NONMEM 7.4, values may be assigned differently for each NONMEM step and for each problem. See

129

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $TOL Record

Guide VI PREDPP, Chapter VI, Section D.B. See also the TOL option of the SESTIMATION and
$COVARIANCE records.

130

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $INFN Record

V.V.C.11. $INFN Record (nmvi)

SINFN
abbreviated code

This record gives an abbreviated code for the INFN routine. It, along with all its continuation records is
called an $INEN block .

$INFN abbreviated code allows the user to carry out any of his own programmed computations at both
the beginning of a problem and again, at the ending of the problem. This record is optional. If it
appears, it must be with the first problem specification, and only this problem specification.

If there is abbreviated code in the $PK or $ERROR blocks that test for ICALL=0, ICALL=1, or
ICALL=3, this code is moved by NM-TRAN to the INFN routine as if it had been coded explicitly as
part of an $INFN block. Such code is called $PK-INFN and $SERROR-INFN, respectively. The order of
code in the generated INFN routine is:

1) "FIRST code from $INFN

2) "MAIN code from $INFN

3) abbreviated code from $INFN
4) $PK-INFN blocks

5) $SERROR-INFN blocks

6) "LAST code from $SINFN

The following remarks apply to both explicitly coded $SINFN blocks and to $PK-INFN and $ERROR-
INFN blocks.

A $INFN block can be used to perform all the functions described in a $PRED block at ICALL values 0,
1, 3, as described in Chapter IV Section D. This functionality is also described in Guide VI Chapter
VIL.A See the help item for Initialization-Finalization block

Here is a brief summary.
There are no mandatory left-hand quantities.

No variable that has a reserved meaning in another block of abbreviated code may be defined on the left
in $INFN.

Optional left-hand variables:

INFN-defined variables (i.e., variables defined first on the left in $INFN or in $PK-INFN or $ERROR-
INEN blocks) are permited. These are listed in MODULE PRINFN rather than NMPRD4. MODULE
PRINFN is declared in all generated routines PK, ERROR, etc., and the variables can be used on the right
or left in these routines. INFN-defined variables are not initialized or modified by NONMEM or
PREDPP. Hence the variables in the MODULE may be initialized or modified at ICALL values O or 1 or
3, and will retain whatever values they are given. These variables cannot be displayed in tables or scat-
terplots. If they are to be displayed, WRITE statements can be used, or their values can be assigned to
variables that are listed in MODULE NMPRD4. The implementation of MODULE PRINFN is dis-
cussed in Chapter II Section II.B and IL.E.

Right side variables:
INFN-defined variables that appeared earlier as left-hand side quantities.

Previously defined PK- or ERROR-defined items that are not INFN-defined. They are listed in NMPRD4
as usual. This MODULE is declared in INFN. Typically, such variables are used at ICALL=3 during

131

NM-TRAN Guide - Chapter V NM-TRAN with PREDPP $INFN Record

calls to PASS or a pass through the dataset using DOWHILE(DATA). They may be used only on the
right side and may not be recomputed. They should also be displayed in tables or scatters because items
in NMPRD4 that are not displayed have the value 0 at ICALL=3.

Data item labels specified on the SINPUT Record may be used on the left and on the right. This means
that the NONMEM data set may be changed. Data transgeneration may take place at ICALL values O, 1,
3. At each call, the user has read-write access to his data via use of the NONMEM utility routine PASS
described in Guide II. This may be done more easily with the DOWHILE(DATA) statement of abbrevi-
ated coe. It is discussed in Chapter IV.J.3. Thus data can be transgenerated, and additional data items
can be produced at both the beginning and ending of a problem. Since the finalization call actually
occurs before the Table and Scatterplot Steps, new data items generated by INFN at this call can be
tabled and scatterplotted.

There are several reserved variables and array elements symbolizing special right-hand quantities. They
include special diagnostic items and counter variables. They are listed in Chapter IV.E.

132

NM-TRAN Guide - Appendix I

Appendix I. NM-TRAN Control Records

$SIZES

$SUPERPROBLEM

SPROBLEM text

SINPUT item, item, items - - -

SINDEX [label|value,] [label,|value,] [labels|values] ...
$SCONTR DATA= ([label;|0] [label,|0] [label;|0])

$DATA [filename|*] [(format)] [IGNORE=c,] [NULL=c,] [NOWIDE|WIDE] [CHECKOUT]
[RECORDS=n,] [LRECL=n,] [NOREWIND|REWIND]

$SUBROUTINES [subname; = name;] [subname, = name,] ...
[SUBROUTINES=kind]

$ABBREVIATED [COMRES=n,][COMSAV=n,] [DERIV2=NO] [DERIV2=NOCOMMON]

SPRED
the abbreviated code

STHETA value; [value,] [values] ...
[NUMBERPOINTS=n] [ABORT|NOABORT]

$OMEGA [DIAGONAL (n) [BLOCK (n) [BLOCK (n) SAME|BLOCK SAME]
[[value,] [value,] [values] ... [FIXED]]

$SIGMA [DIAGONAL (n)|BLOCK (n)|BLOCK (n) SAME|BLOCK SAME]
[[value,] [value,] [values] ... [FIXED]]

SMSFI filename [NORESCALE|RESCALE] [NPOPETAS=n]

$SIMULATION (seedl [seed2] [NORMAL|UNIFORM] [NEW]) ...
[SUBPROBLEMS=n] [ONLYSIMULATION] [OMITTED]

SESTIMATION [METHOD=Kkind] [NOINTERACTION|INTERACTION] [NOLAPLACIAN|LAPLACIAN]
[NOPOSTHOC|POSTHOC] [SIGDIGITS=n;] [MAXEVALS=n,] [PRINT=n;]
[ABORT|NOABORT] [MSFO=filename] [NOREPEAT|REPEAT] [OMITTED]

$COVARIANCE [SPECIAL] [MATRIX=c] [PRINT=[E][R][S]
[CONDITIONAL|UNCONDITIONAL] [OMITTED]

STABLE [listl] [BY list2] [PRINT|NOPRINT] [FILE=filename] [NOHEADER|ONEHEADER]
[UNCONDITIONAL|CONDITIONAL] [OMITTED]

SSCATTERPLOT listl VS list2 [BY list3]

133

NM-TRAN Guide - Appendix I

[UNIT] [ORDO] [FROMn;] [TO n,]
[UNCONDITIONAL|CONDITIONAL] [OMITTED]

SINCLUDE filename [n]

134

NM-TRAN Guide - Appendix II

Appendix II. NM-TRAN Data Set -- Example

Here is a NM-TRAN data set which NM-TRAN translates into a NONMEM data set shown in Appendix
III. The NONMEM data set in Appendix III is identical to that shown in Figure 75 of NONMEM Users
Guide, Part I, except for spacing between fields. This NM-TRAN data set is recorded on the NONMEM

distribution medium as file THEO; see Guide III.

AR D R DR DR DN DN WWOWWWWWWWWWNNNNNOMNNOMNNMNNMNNRRERERERRRPR R PR

4.

02

.53

N B
O NOWJUWwDdNDE OOO

N -

O NOUJUOWwWwR K

N -
O NOJOowN

R O J0 wbN R

.25
.57
.12
.02
.82

.03
.05
.12
.37

.27
.52

.92

.02
.03

.27
.58
.02
.02
.62
.08
.07

.15
.17

.35

.07
.13

.02
.02
.02
.98

W OO0 O JdJF O WO oy J0w o wWwWwo o N

S OOy J0W OO DREFE OR WS Oy J0 oy O
o Oy 0O
e

.74
.84
.57

.66
.58
.36
.47
.89
.94
.28

.72
.91
.31
.33
.85
.08

.55
.01

O J O Wwhhou N obd

W J oo 0w
O W 00 O »

79.

72.

70.

72.

135

NM-TRAN Guide - Appendix II

O W W W WOowWOoWOOoOMWOMOOWOMWMOWOWIJI I I I I I I I I TJODODOOOHOHOOYOOYOYOYO U U1 O U1 U1 O O O U1 O U1

.86

.95

.53

N -
O N O IO wbNhE

N -
O WDNWOWJUu WhN K

N -
O DN wowoy O Wb -

[N

(@]

(@]

SN O J 0 WN

.65

.02

.02
.02

.35

.27
.58
.15
.03
.57

.22

.85

.25

.02
.02
.48

.98

.05
.22

.25
.52
.98
.02
.53
.05
.15
.07

.12

.63

.05
.02

.15

.02
.63

.33
.74
.56
.09

.37
.57

.29
.08
.44
.32
.53
.94
.02
.46
.78
.92
.15
.85
.35
.02
.58
.09
.66
.25
.39
.53
.15

N Wb DdDOOOOOOWROR U J00OWRHE OoN O

.05
.05
.31
.56
.59
.88
.73
.57

P wWd Do JWWwWwoORr wdh ooy JdJoy 1N

.25

.37
.03
.14
.33

[e)N EENCIIEN |

54.

80.

64.

70.

86.

136

NM-TRAN Guide - Appendix II

O W W W WO

10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12

.92

N -
O P 0 J 0w

N -
O WDNWOWJUu WN K

[N
O DN O JowR

[N

SN O J 0w N

.53
.02
.17

.43

.37
77
.02
.05
.55
.05
.08
.38

.25

.98
.98

.02
.03
.03
.12
.08

.52
.07
.07
.03
.05
.15

R W s Do

N W ooy I ONOU J 00 WO Jo0 U N

&> oo 000 OV JdWwWRr o

.66
.67
.24
.11
.16
.12
.24
.89
.22
.41
.83
.21
.18
.02
.14
.68
.42

.86
.24

.81
.87
.22
.45
.62
.69
.86

.25
.96
.82
.72
.75
.57
.59
11
.57
.17

58.

65.

60.

137

NM-TRAN Guide - Appendix III

Appendix III. NM-TRAN OQOutputs -- Example

The NM-TRAN outputs obtained from using the NM-TRAN control stream listed in chapter I, along
with the NM-TRAN data set listed in Appendix II, are given on the following pages of this appendix. |
Some code that is extraneous to the control stream was removed from SUBROUTINE PRED for the pur- |
poses of simplicity.

138

NM-TRAN Guide - Appendix III

OO 0o D DD D DD DDDWWWWWWWWWWWDNDDNDDDNDDNDNDNDNDMDNMDMNMDNMNREFRPRPRPRPRPRRRRRE

4.

02

.53

.86

1
2

2

[N

0.
.25
.57
.12
.02
.82
5.1

wWwNEFE OO

2.12
4.37

.27
.52

3.5
5.02
7.03

12.
24.3

<N 0w N
(o)}
N

4.17

PN S CRRN NG|
o
N

.74
2.84
6.57

.66
.58
.36
.47
.89
.94
.28

w U1 oy 1 00 0 WO

.72
.91
.31
.33
.85
.08
5.4
4.55
3.01

oy O 0 O I
\e]
o

(@]

W U oy 9 J 00 o b
O3 O WDN UL oo DN OB -

79.

72.

70.

2.

54.

Data Set - FDATA

139

NM-TRAN Guide - Appendix III

5 2.02 9.33
5 3.5 8.74
5 5.02 7.56
5 7.02 7.09
5 9.1 5.9
5 12. 4.37
5 24.35 1.57
6 4. 0. 0. 80.
6 .27 1.29
6 .58 3.08
6 1.15 6.44
6 2.03 6.32
6 3.57 5.53
6 5. 4.94
6 7. 4.02
6 9.22 3.46
6 12.1 2.78
6 23.85 .92
7 4.95 0. .15 64.6
7 .25 .85
7 .5 2.35
7 1.02 5.02
7 2.02 6.58
7 3.48 7.09
7 5. 6.66
7 6.98 5.25
7 9. 4.39
7 12.05 3.53
7 24.22 1.15
8 4.53 0. 0. 70.5
8 .25 3.05
8 0.52 3.05
8 .98 7.31
8 2.02 7.56
8 3.53 6.59
8 5.05 5.88
8 7.15 4.73
8 9.07 4.57
8 12.1 3.
8 24.12 1.25
9 3.1 .0 .0 86.4
9 .3 7.37
9 63 9.03
9 1.05 7.14
9 2.02 6.33
9 3.53 5.66
9 5.02 5.67
9 7.17 4.24
9 8.8 4.11
9 11.6 3.16

140

NM-TRAN Guide - Appendix III

10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12

.92

2

N -

N -

4.43
0.
.37
77
.02
.05
.55
.05
.08
.38
12.1
23.7
0.
.25
.5
.98
1.98
3.6
.02
.03
.03
.12
.08
0.
.25
.5
1.
2.
.52
.07
.07
.03
.05
.15

O J 0 wN

EE SN N AN @) |

SN OO0 W

N O3 00 0o Jo 0N

TN

N W 0 0o

R & ooy 0000 W

.86
.24

.12
.24
.89
.22
.41
.83
.21
.18
.02
.14
.68
.42

0

8

.81
.87
.22
.45
.62
.69
.86

0.

.25
.96
.82
.72
.75
.57
.59
.11
.57
.17

58.

65.

60.

5

141

NM-TRAN Guide - Appendix III

Control Stream - FCON

FILE FSTREAM
PROB THEOPHYLLINE POPULATION DATA
DATA 1 0 132 5 0
ITEM 1 4 0 0 1 0 0 0 0 0 0 0 0 0 0
LABL 1D, DOSE, TIME
Cp, WT
FORM
(5E6.0)
STRC 3 3 1 0 0 0 1 1 0
STRC 1 3
THCN 1 0 0 0
THTA 3.000000000000000E+00, 8.000000000000000E-02, 4.000000000000000E-02
LOWR 1.000000000000000E-01, 8.000000000000000E-03, 4.000000000000000E-03
UPPR 5.000000000000000E+00, 5.000000000000000E-01, 9.000000000000000E-01
BLST 6.000000000000000E+00, 5.000000000000000E-03, 3.000000000000000E-01
2.000000000000000E-04, 6.000000000000000E-03, 4.000000000000000E-01
DIAG 4.000000000000000E-01
ESTM 0 450 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 O -1 -1
COVR 0 0 0 0 0 0 1 0 0
COVT -1 -1 -1 -1 0 0
CPAR
TABL 1 1
TABL 4 10 2 0 50 30
SCAT 1 2
SCAT 3 7 1 1 0 0 0 0
0 0 0
SCAT 3 8 1 1 0 0 0 0
0 0 0
File Stream - FSTREAM
DATA FDATA

* Kk kK

Report - FREPORT

NM-TRAN VERSION II LEVEL 1.0
GENERATED DP SUBROUTINES:
PRED

NONMEM SUBROUTINES: ALL

142

NM-TRAN Guide - Appendix III

Generated and User-Supplied Subroutines - FSUBS

SUBROUTINE PRED (ICALL,NEWIND,THETA,DATREC, INDXS,F,G,H)
USE STIZES, ONLY: DPSIZE,ISIZE
USE PRDIMS, ONLY: GPRD, HPRD
USE NMPRD_REAL,ONLY: ETA,EPS

IMPLICIT REAL (KIND=DPSIZE)

(A-2)

REAL (KIND=DPSIZE) :: DATREC

SAVE

INTEGER (KIND=ISIZE) :: ICALL,NEWIND, INDXS

REAL (KIND=DPSIZE) :: G(GPRD, *),H(HPRD, *)
DIMENSION :: THETA (*),DATREC (*), INDXS (*)

DOSE=DATREC (002)
TIME=DATREC (003)
WT=DATREC (005)
IF (DOSE /= 0.D0) THEN
DS=DOSE*WT
W=WT
ENDIF
KA=THETA (001) +ETA (001)
KE=THETA (002) +ETA (002)
CL=THETA (003) *W+ETA (003)
BO0005=—KE*TIME
BO0006=—KA*TIME
B0O0007=DEXP (B00005)
B0O0008=DEXP (B0O0006)
D=B00007-B00008

A00034
A00034=-TIME

A00035
AQ00035=-TIME

A00036
A00036=B00007*A00034

A00037
A00037=B00008*A00035

A00039
A00039=-A00037
BO0O009=KA-KE
E=CL*B00009

A00041
A00041=-1.DO0

A00043
A00043=CL*A00041
F=DS*KE*KA/E*D
BO0010=DS*KA/E*D
B0O0011=DS*KE/E*D
B00012=-DS*KE*KA/E/E*D

A00047
A00047=B00012*CL+B00011

A00048

DERIVATIVE

DERIVATIVE

DERIVATIVE

DERIVATIVE

DERIVATIVE

DERIVATIVE

DERIVATIVE

DERIVATIVE

DERIVATIVE

OF

OF

OF

OF

OF

OF

OF

OF

OF

B0O0005 W.

B00006 W.

B00007 W.

B00008 W.

D W.R.T.

B0O0009 W.

E W.R.T.

F W.R.T.

F W.R.T.

R.T. ETA(002)

R.T. ETA(001)

R.T. ETA(002)

R.T. ETA(001)

ETA(001)

R.T. ETA(002)

ETA(002)

ETA(001)

ETA (002)

143

NM-TRAN Guide - Appendix III

A00048=B00012*A00043+B00010

! A00049 = DERIVATIVE
A00049=B00012*B00009
BO0013=DS*KE*KA/E

! A00050 = DERIVATIVE
A00050=B00013*A00039+A00047

! A00051 = DERIVATIVE
A00051=B00013*A00036+A00048
Y=F+EPS (001)

! A00052 = DERIVATIVE
A00052=A00051

! AO00053 = DERIVATIVE
A00053=A00050

! AO00054 = DERIVATIVE
A00054=A00049

! C00031 = DERIVATIVE

C00031=1.D0
G(001,1)=A00053
G(002,1)=A00052
G(003,1)=A00054
H(001,1)=C00031
F=Y

RETURN

END

OF

OF

OF

OF

OF

OF

OF

ETA (003)

ETA(001)

ETA(002)

ETA (002)

ETA(001)

ETA (003)

EPS (001)

144

NM-TRAN Guide - Appendix IV

Appendix IV. Another Example

Figures 1 and 2 of NONMEM Users Guide, Part I, show a PRED routine and a NONMEM control
stream (with embedded data), respectively. The NONMEM outputs resulting from Figures 1 and 2 are
shown in Figures 3-18 of Part . NM-TRAN inputs and outputs are given on the following pages of this
appendix. The inputs correspond to Figures 1 and 2. The NONMEM outputs resulting from the NM-
TRAN outputs and corresponding to those shown in Figures 4-18 are exactly the same as those shown in
Figures 4-18. The NONMEM output corresponding to that shown in Figures 3a-b, the problem sum-
mary, is a little different (in part because NM-TRAN generates ID data items).

145

NM-TRAN Guide - Appendix IV

NM-TRAN Data Set

320 .27 1.71

320 .52 7.91

320 1. 8.31

320 1.92 8.33

320 3.5 6.85

320 5.02 6.08

320 7.03 5.4

320 9. 4.55

320 12. 3.01

320 24.3 .90

NM-TRAN Control Stream

SPROB SIMPLE NONLINEAR REGRESSION OF CP VS TIME DATA FROM ONE SUBJECT
SINPUT DOSE TIME CP=DV
SDATA DATA
SPRED
; THETA (1) =ABSORPTION RATE CONSTANT (1/HR)
; THETA (2) =ELIMINATION RATE CONSTANT (1/HR)
; THETA (3)=VOLUME OF DISTRIBUTION (LITERS)

D=EXP (-THETA (2) *TIME) -EXP (-THETA (1) *TIME)
E=THETA (3) * (THETA (1) -THETA (2))
F=DOSE*THETA (1) /E*D

Y=F+ETA (1)
STHETA (.4,1.7,7.) (.025,.102,.4) (10,29,80)
SEST MAXEVAL=240 SIGDIGITS=4 PRINT=2
SCov
STABLE TIME
$SSCAT (CP PRED RES) VS TIME
SSCAT PRED VS CP UNIT

146

NM-TRAN Guide - Appendix IV

320
320
320
320
320
320
320
320
320
320

FILE
PROB
DATA
ITEM
LABL
FORM

.27
.52
1.
1.92
3.5
5.02
7.03
9.
12.
24.3

FSTREAM

oy O 0O 0 J

4
3

.71
.91
.31
.33
.85
.08
5.4
.55
.01
.90

NFEFNEFENMNRFEPENDNEREDNDR

NONMEM Data Set - FDATA

NONMEM Control Stream - FCON

SIMPLE NONLINEAR REGRESSION OF CP VS TIME DATA FROM ONE SUBJECT

1
4

DOSE

(3E5.0,1F2.0)

STRC
THCN
THTA
LOWR
UPPR
DIAG
ESTM
COVR
TABL
TABL
SCAT
SCAT
SCAT
SCAT
SCAT

W NDNDNMNNDNRE PP OO

0
3

g o U1 Wb NDBEP OO

10
0
TIME

O O O b

O O O O

4
0

.102
.025

o

o O O O

0
1
Cp

O O O O

0

29
10
80

R O O o

0 0
.ID.
0 0
0 0
0
0
0
0

0 0
0 0
0 0
0 0
0 0
0 0

147

NM-TRAN Guide - Appendix IV

Generated and User-Supplied Subroutines - FSUBS

The NONMEM VI versions are shown. With NONMEM 7 and higher, MODULES are used rather than |
COMMONS.
SUBROUTINE PRED (ICALL,NEWIND, THETA,DATREC, INDXS,F, G, H)
IMPLICIT DOUBLE PRECISION (A-2Z)
REAL DATREC
SAVE
INTEGER ICALL,NEWIND, INDXS
DIMENSION THETA (*),DATREC (*), INDXS (*),G(10,*),H(10,*)
DIMENSION ETA (10)
COMMON/ROCM12/MSEC
INTEGER MSEC
COMMON/NMPRD4 /D, E,Y,A00011, BBBBBB (0996)
IF (ICALL.EQ.4) THEN
CALL SIMETA (ETA)
ELSE
IF (NEWIND.NE.2) THEN
ETA(01)=0.DO0O
ENDIF
ENDIF
DOSE=DATREC (01)
TIME=DATREC (02)
BO0001=-THETA (02) *TIME
BO0002=-THETA (01) *TIME
BO0O0O0O3=DEXP (B0O00O01)
B0O0004=DEXP (B00002)
D=B00003-B00004
BOOOOS5=THETA (01) -THETA (02)
E=THETA (03) *B0O0005
F=DOSE*THETA (01) /E*D
Y=F+ETA (01)
C A00011 = DERIVATIVE OF Y W.R.T. ETA(01)
A00011=1.DO
G(01,1)=A00011
F=Y
RETURN
END

NONMEM File Stream - FSTREAM

DATA FDATA

* Kk kK

NM-TRAN Report - FREPORT

NM-TRAN VERSION 7.3.0
GENERATED DP SUBROUTINES:
PRED

NONMEM SUBROUTINES: ALL

148

NM-TRAN Guide - Appendix V

Appendix V. NM-TRAN Control Records with PREDPP

$PROBLEM text

SINPUT item; item, itemy - - -

SBIND value, value, ... value,

$INDEX [label|value,] [label,|value,] [labels|values] ...
SCONTR DATA= ([label;|0] [label,|0] [label;|0])

SDATA [filename|*] [(format)] [TGNORE=c,] [NULL=c,] [NOWIDE[WIDE] [CHECKOUT]
[RECORDS=n,] [LRECL=n,] [NOREWIND|REWIND]

$SSUBROUTINES [subname; = name;] [subname, = name,] ...
[SUBROUTINES=kind] [TOL=n,]

SMODEL [NCOMPARTMENTS=n,] [NEQUILIBRIUM=n,] [NPARAMETERS=n;]
[COMPARTMENT= ([name] [attribute;] [attribute,] ...)]
[LINK compname, [TO|AND] compname, BY k [1]]

SABBREVIATED [COMRES=n;] [COMSAV=n,] [DERIV2=NO] [DERIV2=NOCOMMON]

SPK

abbreviated code
SERROR

abbreviated code
SDES

abbreviated code
SAESINITIAL

abbreviated code
SAES

abbreviated code
STOL

abbreviated code
STHETA value; [value,] [values]

[NUMBERPOINTS=n] [ABORT|NOABORT]

SOMEGA [DIAGONAL (n) |BLOCK (n) |BLOCK (n) SAME|BLOCK SAME]
[[value;] [value,] [values] ... [FIXED]]

$SIGMA [DIAGONAL (n) |BLOCK (n) |BLOCK (n) SAME|BLOCK SAME]
[[value;] [value,] [values] ... [FIXED]]

149

NM-TRAN Guide - Appendix V

SMSFI filename [NORESCALElRESCALE] [NPOPETAS=n]

SSIMULATION (seedl [seed2] [NORMAL|UNIFORM] [NEW])
[SUBPROBLEMS=n] [ONLYSIMULATION] [OMITTED]

SESTIMATION [METHOD=kind] [NOINTERACTION|INTERACTION] [NOLAPLACIAN|LAPLACIAN]
[NOPOSTHOClPOSTHOC] [SIGDIGITS=n;] [MAXEVALS=n,] [PRINT=nj]
[ABORT|NOABORT] [MSFO=filename] [NOREPEAT|REPEAT] [OMITTED]

SCOVARIANCE [SPECIAL] [MATRIX=c] [PRINT=[E][R][S]
[CONDITIONAL|UNCONDITIONAL] [OMITTED]

STABLE [1istl] [BY 1list2] [PRINTlNOPRINT] [FILE=filename] [NOHEADER | ONEHEADER]
[UNCONDITIONAL|CONDITIONAL] [OMITTED]

SSCATTERPLOT 1listl VS 1list2 [BY 1list3]

[UNIT] [ORDO] [FROM n;] [TO n,]
[UNCONDITIONAL |CONDITIONAL] [OMITTED]

150

NM-TRAN Guide - Appendix VI

Appendix VI. NM-TRAN Data Set with PREDPP -- Example

Here is a NM-TRAN data set which NM-TRAN translates into a NONMEM data set shown in Appendix
VII. The NONMEM data set in Appendix VII is identical to that shown in Appendix II of NONMEM
Users Guide, Part VI, except for spacing between columns. This NM-TRAN data set is recorded on the
NONMEM distribution medium; see Guide III.

1 4.02 0. . 79.6
1 0. .74

1 0.25 2.84

1 0.57 6.57

1 1.12 10.5

1 2.02 9.66

1 3.82 8.58

1 5.1 8.36

1 7.03 7.47

1 9.05 6.89

1 12.12 5.94

1 . 24.37 3.28 .
2 4.4 0. . 72.4
2 0. 0.

2 .27 1.72

2 .52 7.91

2 1. 8.31

2 1.92 8.33

2 3.5 6.85

2 5.02 6.08

2 7.03 5.4

2 9. 4.55

2 12. 3.01

2 . 24.3 .90 .
3 4.53 0. . 70.5
3 0. 0.

3 .27 4.4

3 .58 6.9

3 1.02 8.2

3 2.02 7.8

3 3.62 7.5

3 5.08 6.2

3 7.07 5.3

3 9. 4.9

3 12.15 3.7

3 . 24.17 1.05 .
4 4.4 0. . 72.7
4 0. 0.

4 .35 1.89

4 .6 4.6

4 1.07 8.6

4 2.13 8.38

4 3.5 7.54

151

NM-TRAN Guide - Appendix VI

QO 0 00 0O WOMWOOWNIII I I I I I I JIJOO0OOOHOOHOOOOHTOHOHOoOHNOOo O U1 O 01 01 O U1 U1 O O WD DD

.86

.95

.53

N -
[@RI S CRENENG)

N -
OO DN OUJOTWwWNR

N -
OO wWwh owJouo wbhrkr

N -
OO~ DNOUOoOYOUGWDNR

o

<N 0w N

.02
.02
.02
.98
.65

.02

.02
.02

.35

.27
.58
.15
.03
.57

.22

.85

.25

.02
.02
.48

.98

.05
.22

.25
.52
.98
.02
.53
.05
.15

.88
.78
.33
.19
.15

=S ooy

.02
.63

.33
.74
.56
.09

.37
.57

RS O3 J00 O 0N O

.29
.08
.44
.32
.53
.94
.02
.46
.78
.92

N Wb DO oyoy WH O

.15

.85
.35
.02
.58
.09
.66
.25
.39
.53
.15

R wd ooy JdJ o O N

.05
.05
.31
.56
.59
.88
.73

NG I ORENEEN NV VN @)

54.

80.

64.

70.

152

NM-TRAN Guide - Appendix VI

O LW W W W WWwWwwwwow oo o

PP RPRPRPRPRPRPRPRPPRPREPRPRPRPRERPRPREPRPPRPEPEPERPRERERRRRER
MOMNNMNNMNNOMNMNNMNNNMNNNRRPRPRRRERRRPRPRRRPROO0OO0O0O00O0O0O0OOO W

.92

[N
O OB PP 0o J0 W

[N

O O wWwbhowouwJou wh k-

[N
O O DN U JdUwE

N O J0o Wb

.07
12.
24,

12

.63
.05
.02
.53
.02
.17

.43

.37
17
.02
.05
.55
.05
.08
.38

.25

.98
.98

.02
.03
.03
.12
.08

.52
.07
.07
.03
.05

w

.57

1.25

D O3 000w o Jo o

R wWd D ooy d O JO0

N Wd 001 0 J & O

S ooy 00O O N WHEH O

.37
.03
.14
.33
.66
.67
.24
11
.16
.12
.24
.89
.22
.41
.83
.21
.18
.02
.14
.68
.42

.86
.24

.81
.87
.22
.45
.62
.69
.86

.25
.96
.82
.72
.75
.57
.59
11
.57

86.

58.

65.

60.

153

NM-TRAN Guide - Appendix VI

12 . 24.15 1.17

154

NM-TRAN Guide - Appendix VII

Appendix VII. NM-TRAN Outputs with PREDPP -- Example

The NM-TRAN outputs obtained from using the NM-TRAN control stream listed in chapter V, along
with the NM-TRAN data set listed in Appendix VI, are given on the following pages of this appendix.

155

NM-TRAN Guide - Appendix VII

DD D D DD DD DS D WWLWWWWWWWWWWDNDNDDNDDDNDDNDNDNDNDNDNDNMDNNMNREFRPRPRPRPRPRRRRRER

4.

02

.53

1
2

2

N -

0.
.25
.57
.12
.02
.82
5.1

W NEHE OO

9.05
2.12
4.37

.27
.52

3.5
5.02
7.03

12.
24.3

.27
.58
.02
.02
.62
.08
.07

~N 0w N

4.17

.35

2.13
3.5
.02
.02
.02
.98
.65

P e RN BN @)

.74
2.84
6.57

.66
.58
.36
.47
.89
.94
.28

W U1 oy 1 00 0 W

.72
.91
.31
.33
.85
.08
5.4
4.55
3.01
.90

oy O W O J

WD U1 oy JdJd oo o b
N -)

'_l
O .
O 3O WN UL o N WO -

1.89
4.6
8.6
.38
.54
.88
.78
.33
.19
.15

= s 01 0oy J

Data Set - FDATA

79.6

72.4

70.5

72.7

O OO O O OO OO OO OOOOOOODODOOOOH OOODODODODOOOOORrROOODODOoODOoODOoLboLoOo o

O OO OO OO OO OO OOOOOOODODOOOOH OOODODODODOOOOORrRrROOODODOoODOoODOoLooOo o

156

NM-TRAN Guide - Appendix VII

OW W O OO0 0 OWOoWOoOoWOWOoOMWOWNII I I I I I I I I JTOODOOHOTOHOHOOYOOYOYOYOY U1 O 01 01 O 0 O 01 O U1 U1

5.

86 0.
0.
.3
.52
1.

2.02
3.5
5.02
7.02
9.1
12.
24.35

.27
.58

N

.03

9.22
12.1
23.85

.95 0.

N
(@]
N

12.05
24.22

.53 0.

2.
5.

0.
02
63

11.4

9.
8.
7.
7.

5.9
4.
1.

N Wb Doy WH

R wd ooy JdJ o0 O N

O O 9 W W

33
74
56
09

37
57

.29
.08
.44
.32
.53
.94
.02
.46
.78
.92

.15
.85
.35
.02
.58
.09
.66
.25
.39
.53
.15

.05
.05
.31
.56
.59
.88
.73
.57

.25

54.6

80.

64.6

70.5

86.4

O R OO O OO OO OOOOHFHH OO0OOOO0OO0ODOOOOOH OODODODOOOODOOOHrOOOoODOoODOoODbOoObobo oo o -

O R OO OO OO OO OOOHFHH OO0 OO0ODODOOOOOH OODODODOOODOOOOPrOOOoODOoODOoODbOoOboDbo oo o -

157

NM-TRAN Guide - Appendix VII

O W W W W W WO WO o

PR R R RPRPRPRPRPRPRPRPRPREPRPRPRPPREPRERPRPERPRPERERRPRRERRERRRR
NNDMNOMNNMNNNMNOMNMNNMNNNMNNNRRPRPRPRRERRPRERERPRPROOO0O0O0O0O0OOOOO W

.92

2

N -

N -

.63
.05
.02
.53
.02
.17
8.8
11.6
4.43

<N 0w N

O J 0 wDN R
o
o

FE\C RN N C) |
o
w

SN O 0w
o
N

R wd D ooy J 0

N O3 00 0o Jo U

~ D

N W 0 oo

R & ooy 000 0O W

.37
.03
.14
.33
.66
.67
.24
11
.16
.12

.24
.89
.22
.41
.83
.21
.18
.02
.14
.68
.42

.86
.24

.81
.87
.22
.45
.62
.69
.86

.25
.96
.82
.72
.75
.57
.59
.11
.57
.17

58.

65.

60.

O O O O OO OO OO0 OOOO0OO0OO0OODODOOOHFH OODOODODODOOOOOPr OOODODOoODOo oo oo

O O O O OO OO OO0 OOOO0OO0OOODODOOOHFH OODOOODODOOOOORr OOODODOoODOo oo oo

158

NM-TRAN Guide - Appendix VII

Control Stream - FCON

FILE FSTREAM

PROB THEOPHYLLINE POPULATION DATA

DATA 1 0 144 7 0

ITEM 1 4 7 11 1 0 0 0 0 0 0

INDX 6 3 2 0 0 0 0 0 0 0 0

LABL ID DOSE TIME CP WT EVID MDV

FORM

(586.0,2F2.0)

STRC 3 3 1 0 0 0 1 1 0

STRC 1 3

THCN 1 0 0

THTA 3 .08 .04

LOWR .1 .008 .004

UPPR 5 .5 .9

BLST 6 .005 .3 .0002 .006 .4

DIAG .4

ESTM 0 450 3 5 0 0 0 0 0 0 0

COVR 0 0 0 0 0

TABL 1 1 0 0

TABL 4 1 0 2 0 5 0 3 0

SCAT 1 2

SCAT 3 9 0 0 0 0 0

SCAT 3 10 1 1 0 0 0 0 0
File Stream - FSTREAM

DATA FDATA

* Kk k%

Report - FREPORT

NM-TRAN VERSION II LEVEL 1.0
SUBROUTINES FROM THE PREDPP LIBRARY

PRED PREDI CHECK SADVAN ADVAN2 SSSO TRANS1 INEN
GENERATED DP SUBROUTINES:

PK ERROR

NONMEM SUBROUTINES: ALL

159

NM-TRAN Guide - Appendix VII

Generated and User-Supplied Subroutines - FSUBS

The NONMEM VI versions are shown. With NONMEM 7 and higher, MODULES are used rather than |
COMMONS.
SUBROUTINE PK(ICALL, IDEF, THETA, IREV,EVTREC, N, INDXS, IRGG, GG, NETAS)
IMPLICIT DOUBLE PRECISION (A-2Z)
REAL EVTREC
SAVE
INTEGER ICALL, IDEF, IREV,N, INDXS, IRGG, NETAS
DIMENSION IDEF (7,*),THETA(*),EVTREC (IREV, *), INDXS (*),GG(IRGG, 11, *)
COMMON/PRRAND/ETA (10) ,EPS (10)
COMMON/PROCM1 /NEWIND
INTEGER NEWIND
COMMON/ROCM12/MSEC
INTEGER MSEC
COMMON/NMPRD4 /KA, K, CL, SC,Y,A00011,A00012,A00015,A00020,A00021
COMMON/NMPRD4/A00014, BBBBBB (0989)
IF (ICALL.LE.1) THEN
IDEF (1, 01)
IDEF (1, 02)
IDEF (3,02)
CALL GETETA (ETA)
RETURN
ENDIF
IF (NEWIND.NE.2) THEN
IF (ICALL.EQ.4) THEN
CALL SIMETA (ETA)
ELSE
CALL GETETA (ETA)
ENDIF
ENDIF
WT=EVTREC (N, 05)
KA=THETA (01)+ETA (01)

C A00011
A00011=1.DO
K=THETA (02) +ETA (02)

C A00012
AQ00012=1.DO
CL=THETA (03) *WT+ETA (03)
SC=CL/K/WT
B00001=1.DO/K/WT

C A00014
A00014=B00001
B00002=-CL/K/K/WT

C A00015
A00015=B00002*A00012
GG(01,1,1)=K
GG(01,03,1)=A00012
GG(03,1,1)=KA
GG(03,02,1)=A00011

-9
1
4

DERIVATIVE OF KA W.R.T. ETA(01)

DERIVATIVE OF K W.R.T. ETA(02)

DERIVATIVE OF SC W.R.T. ETA(03)

DERIVATIVE OF SC W.R.T. ETA(02)

160

NM-TRAN Guide - Appendix VII

GG (04,1,1)=sC

GG (04,03,1)=A00015
GG (04,04,1)=A00014
IF (MSEC.EQ.1) THEN
B00003=-1.DO0/K/K/WT

C A00016 = DERIVATIVE
AQ00016=B00003*A00012
B00004=-1.D0/K/K/WT
B00005=CL/K/K/K/WT

C A00018 = DERIVATIVE
AQ00018=B00005*A00012
B00006=CL/K/K/K/WT

C A00019 = DERIVATIVE
A00019=B00006*A00012+A00018

C A00020 = DERIVATIVE
AQ00020=A00012*A00019

C A00021 = DERIVATIVE

A00021=A00012*B00004
GG(04,03,03)=A00020
GG(04,04,03)=A00021
ENDIF

RETURN

END

SUBROUTINE ERROR

IMPLICIT DOUBLE PRECISION

REAL EVTREC
SAVE

(A-2)

INTEGER ICALL, IDEF, IREV,N, INDXS
DIMENSION IDEF (*), THETA (*), EVIREC (IREV,*), INDXS (*),G(10,%*)

DIMENSION HH (10, *)

COMMON/PRRAND/ETA (10) ,EPS (10)

COMMON/ROCM12 /MSEC
INTEGER MSEC

COMMON/NMPRD4 /KA, K,CL, SC,Y,A00011,A00012,A00015,A00020,A00021

COMMON/NMPRD4/A00014, BBBBBB (0989)

IF (ICALL.LE.l) THEN
IDEF (2) =2
H(1l,1)=1.0D0

RETURN

ENDIF

IF (ICALL.EQ.4) THEN

CALL SIMEPS (EPS)
ENDIF

Y=F+EPS (01)

F=Y

RETURN

END

OF

OF

OF

OF

OF

B0000O1

B00002

B00002

A00015

A00015

ETA(02)

ETA (02)

ETA(02)

ETA (02)

ETA (03)

(ICALL, IDEF, THETA, IREV, EVTREC, N, INDXS, F, G, HH)

161

NM-TRAN Guide - Appendix VIII

Appendix VIII. Additional NM-TRAN Control Streams

The NM-TRAN control stream listed in chapter V specifies that ADVAN2 be used. The results from
NONMEM-PREDPP, using this control stream along with the NM-TRAN data set listed in Appendix VI,
can be essentially duplicated, using NM-TRAN control streams which specify different ADVAN’s, but
which name the the same data set. Two such control streams are given here, one specifying ADVAN7
and the other specifying ADVANG6. See Guide III for some relative performance statistics. The two con-
trol streams are recorded on the NONMEM distribution medium; see Guide II1.

162

NM-TRAN Guide - Appendix VIII

NM-TRAN Control Stream Specifying ADVAN7

SPROB THEOPHYLLINE POPULATION DATA
SINPUT ID DOSE=AMT TIME CP=DV WT
SDATA THEOPP

S$SSUBROUTINES ADVAN7Y
SMODEL COMP= (DEPOT, INITIALOFF,DEFDOSE) COMP= (CENTRAL, DEFOBS, NOOFF')

SPK
; THETA (1) =MEAN ABSORPTION RATE CONSTANT (1/HR)
; THETA (2) =MEAN ELIMINATION RATE CONSTANT (1/HR)
; THETA (3) =SLOPE OF CLEARANCE VS WEIGHT RELATIONSHIP (LITERS/HR/KG)
; SCALING PARAMETER=VOLUME/WT SINCE DOSE IS WEIGHT-ADJUSTED
CALLFL=1
K12=THETA (1) +ETA (1)
K20=THETA (2) +ETA (2)
CL=THETA (3) *WT+ETA (3)
S2=CL/K20/WT

STHETA (.1,3,5) (.008,.08,.5) (.004,.04,.9)
SOMEGA BLOCK(3) 6 .005 .0002 .3 .006 .4

SERROR
Y=F+EPS (1)

SSIGMA .4

SEST MAXEVAL=450 PRINT=5

SCov

STABLE ID DOSE WT TIME

$SCAT (RES WRES) VS TIME BY ID

163

NM-TRAN Guide - Appendix VIII

NM-TRAN Control Stream Specifying ADVAN6

SPROB THEOPHYLLINE POPULATION DATA
SINPUT ID DOSE=AMT TIME CP=DV WT
SDATA THEOPP

$SSUBROUTINES ADVANG6 TOL=5
SMODEL COMP= (DEPOT, INITIALOFF,DEFDOSE) COMP= (CENTRAL, DEFOBS, NOOFF')

SPK
; THETA (1) =MEAN ABSORPTION RATE CONSTANT (1/HR)
; THETA (2) =MEAN ELIMINATION RATE CONSTANT (1/HR)
; THETA (3) =SLOPE OF CLEARANCE VS WEIGHT RELATIONSHIP (LITERS/HR/KG)
; SCALING PARAMETER=VOLUME/WT SINCE DOSE IS WEIGHT-ADJUSTED
CALLFL=1
KA=THETA (1) +ETA (1)
KE=THETA (2) +ETA (2)
CL=THETA (3) *WT+ETA (3)
S2=CL/KE/WT

STHETA (.1,3,5) (.008,.08,.5) (.004,.04,.9)
SOMEGA BLOCK(3) 6 .005 .0002 .3 .006 .4

SDES
DADT (1)=-KA*A (1)
DADT (2)= KA*A(1l)-KE*A (2)

SERROR
Y=F+EPS (1)

$SSIGMA .4

SEST MAXEVAL=450 PRINT=5

Scov

STABLE ID DOSE WT TIME

$SCAT (RES WRES) VS TIME BY ID

164

NM-TRAN Guide - Appendix IX

Appendix IX. Another Example with PREDPP

Figures 7, 11, and 25 of NONMEM Users Guide, Part VI, show a PK routine, an ERROR routine and a
NONMEM control stream (with embedded data), respectively. Problem summary pages from NON-
MEM and PREDPP, resulting from Figures 7, 11, and 25 are shown in Figures 27-28 of Part VI. NM-
TRAN inputs and outputs are given on the following pages of this appendix. The inputs correspond to
Figures 7, 11, and 25. The resulting problem summary page from NONMEM is a just a little different
from that shown in Figure 27 of Part VI due to the fact that NM-TRAN generates EVID, MDV and ID
data items. The NM-TRAN data set and control stream are recorded on the NONMEM distribution
medium; see Guide III.

165

NM-TRAN Guide - Appendix IX

NM-TRAN Data Set

320 .0 .
.27 1.71
.52 7.91

1. 8.31
1.92 8.33
3.5 6.85
5.02 6.08
7.03 5.4
9. 4.55
12. 3.01
24.3 .90

NM-TRAN Control Stream

SPROBLEM THEOPHYLLINE SINGLE SUBJECT DATA

SINPUT DOSE=AMT TIME CP=DV
SDATA DATA3
SSUBROUTINES ADVAN2

SPK
CALLFL=1
KA=THETA (1)
K=THETA (2)
SC=THETA (3)

SERROR
Y=F+ERR (1)

STHETA (0,1.7) (0,.102) (0,29)

SESTIMATION MAXEVAL=240 PRINT=2

SCOVR

STABLE TIME

SSCAT CP VS TIME

$SSCAT PRED VS TIME
SSCAT RES VS TIME
$SSCAT PRED VS CP UNIT

166

NM-TRAN Guide - Appendix IX

NONMEM Data Set - FDATA

320 .0 111
.27 1.71 0 0 1
.52 7.91 0 0 2
1. 8.31 0 0 1
1.92 8.33 0 0 2
3.5 6.85 0 0 1
5.02 6.08 0 0 2
7.03 5.4 0 01
9. 4.55 0 0 2
12. 3.01 0 0 1
24.3 .90 0 0 2
NONMEM Control Stream - FCON
FILE FSTREAM
PROB THEOPHYLLINE SINGLE SUBJECT DATA
DATA 1 0O 11 6 0
ITEM 6 3 5 11 1 0 0 0 0 0 0
INDX 4 2 1 0 0 0 0 0 0 0 0
LABL DOSE TIME Cp EVID MDV .ID.
FORM
(3E5.0,3F2.0)
STRC 3 1 0 0 0 1 0 0 0
THCN 1 0 0
THTA 1.7 .102 29
LOWR 0 0 0
UPPR 1000000 1000000 1000000
DIAG 2
ESTM 0 240 3 2 0 0 0 0 0 0 0
COVR 0 0 0 0 1
TABL 1 1 0 0
TABL 1 2 0
SCAT 1 4
SCAT 2 3 0 0 0 0 0 0 0
SCAT 2 7 0 0 0 0 0 0 0
SCAT 2 8 0 0 0 0 0 0 0
SCAT 3 7 0 0 0 1 0 0 0

167

NM-TRAN Guide - Appendix IX

Generated and User-Supplied Subroutines - FSUBS

The NONMEM VI versions are shown. With NONMEM 7 and higher, MODULES are used rather than |
COMMONS.
SUBROUTINE PK(ICALL, IDEF, THETA, IREV,EVTREC, N, INDXS, IRGG, GG, NETAS)
IMPLICIT DOUBLE PRECISION (A-2Z)
REAL EVTREC
SAVE
INTEGER ICALL, IDEF, IREV,N, INDXS, IRGG, NETAS
DIMENSION IDEF (7,*),THETA(*),EVTREC (IREV, *), INDXS (*),GG(IRGG, 11, *)
COMMON/PRRAND/ETA (10) ,EPS (10)
COMMON/ROCM12/MSEC
INTEGER MSEC
COMMON/NMPRD4 /KA, K, SC, Y, BBBBBB (0996)
IF (ICALL.LE.1) THEN
IDEF (1,01)
IDEF (1, 02)
IDEF (3, 02)
RETURN
ENDIF
KA=THETA (01)
K=THETA (02)
SC=THETA (03)
GG(01,1,1)=K
GG(03,1,1)=KA
GG(04,1,1)=sC
RETURN
END
SUBROUTINE ERROR (ICALL, IDEF,THETA,IREV,EVTREC,N, INDXS,F, G, HH)
IMPLICIT DOUBLE PRECISION (A-2Z)
REAL EVTREC
SAVE
INTEGER ICALL, IDEF, IREV, N, INDXS
DIMENSION IDEF (*), THETA(*), EVIREC (IREV, *), INDXS(*),G (10, *)
DIMENSION HH (10, *)
COMMON/PRRAND/ETA (10) ,EPS (10)
COMMON/ROCM12/MSEC
INTEGER MSEC
COMMON/NMPRD4 /KA, K, SC, Y, BBBBBB (0996)
IF (ICALL.LE.1l) THEN

-9
1
4

IDEF (2)=2
HH(1,1)=1.0DO
RETURN

ENDIF

IF (ICALL.EQ.4) THEN
CALL SIMETA (ETA)
ENDIF

Y=F+ETA (01)

F=Y

RETURN

168

NM-TRAN Guide - Appendix IX

END

NONMEM File Stream - FSTREAM

DATA FDATA

* Kk k%

NM-TRAN Report - FREPORT

NM-TRAN VERSION II LEVEL 1.0

SUBROUTINES FROM THE PREDPP LIBRARY:

PRED PREDI CHECK SADVAN ADVAN2 SSSO TRANS1 INEN
GENERATED DP SUBROUTINES:

PK ERROR

NONMEM SUBROUTINES: ALL

