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I. Introduction

This document gives a brief description of the estimation methods for population type data that can be
used with NONMEM Version V. These include, in particular, a few methods that are new with this ver-
sion, the centered and hybrid methods.The more important changes from the earlier edition published in
1992, but not all changes, are highlighted with the use of vertical bars in the right margin. Thisdocu-
ment contains no information about how to communicate with the NONMEM program.

To read this document it may be helpful to have some familiarity with the notation used with the repre-
sentation of statistical models for the NONMEM program. See discussions of models in NONMEM
Users Guide - Part I, but if one’s interest is only in using NONMEM with PREDPP, see discussions of
models in NONMEM Users Guides - Parts V and VI.Particular notation used in this Guide VII is given
next.

The jth observation from the ith individual is denoted yij . Each individual may have a different number
of observations. Eachobservation may be measured on a different scale: continuous, categorical, ordered
categorical, discrete-ordinal.† An individual can have multivariate observations, each of different
lengths. However, the multivariate nature of an observation is suppressed, as this is not relevant to the
descriptions given in this document, and so the separate (scalar-valued) observations comprising the mul-
tivariate observations are all separately indexed by j. Each multivariate observation may have a different
length. Thevector of all the observations from the ith individual is denoted yi .

It is assumed that there exists a separate statistical model for each yi . This model is called the
intraindividualmodel, or the individual modelfor the ith individual. It is parameterized byψ , a (vector-
valued) parameter common to all the separate intraindividual models, andη i , a (vector-valued) parameter
specific to the intraindividual model for yi . Under this model, the likelihood ofη i for the data yi (condi-
tional onψ ) is denoted by li(η i ; ψ ), the dependence on yi being supressed in the notation. This likeli-
hood is called here the conditionallikelihoodof η i .

When all the elements of yi are measured on a continuous scale, an often-used intraindividual model is
given by the multivariate normal model with mean Ei(η i ; θ ) and variance-covariance matrix Ci(η i ; ψ )
(usually,ψ is comprised of parametersθ which are the only ones affecting Ei , and other parameters
which, along withθ , affect Ci).†† Thistype of model shall be referred to as the mean-variancemodel.
It is usually expressed in terms of a multivariate normal vectorε with mean 0 and variance-covariance
matrix Σ. In the notation used here, the parameterψ includesΣ (ignoring the matrix structure ofΣ). For
example,

yij = f ij (η i ; θ ) + f ij (η i ; θ )ε ij

whereε ij is an instance of a univariate normal variableε with varianceΣ = σ 2. (Whenε is multivariate,
the observation yij is modeled in terms of a single instance of this multivariate random vector. A few
other observations as well may be modeled in terms of thissameinstance, and thus under the model, all
such observations are correlated and comprise a multivariate observation.) Inthis example, Eij (η i ; θ ) is
f ij (η i ; θ ) (the mean of yij ), and Ci j j(η i ; ψ ) is fij (η i ; θ )2σ 2 (the variance of yij ). Sincethe ratio of the

† This document provides a description of estimation methods that can be used with observations of the
same or different type.However, essentially, it neither contains any specific information about how to ana-
lyze observations of particular types, nor any information about how to communicate with NONMEM in
order to do this.

†† Here and elsewhere in this section an explicit assumption concerning the normal probablility distribu-
tion is made.This is done primarily to keep the discussion simple.To various degrees in different situa-
tions the normality assumption does not play as important a role as our formally making the assumption
might indicate.
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Conditional Estimation Methods - Chapter I Introduction

standard deviation of yij to the mean of yij is the constantσ , this particular model is called the constant
coefficient of variation model.

The dependence of Ci onη i is often a consequence of the intraindividual variance depending on the mean
function, as with the above example, which in turn depends onη i . This dependence represents an inter-
action betweenη i andε . With the (homoscedastic) model expressed by

yij = f ij (η i ; θ ) + ε ij

there is no such interaction; Ci j j(η i ; ψ ) is just σ 2. There are two variants of the first-order conditional
estimation method described in chapter II, one that takes this interaction into account and another that
ignores it.

When an intraindividual model involving ε is presented to NM-TRAN (the "front-end" of the NONMEM
system), the model is automatically transformed.A l inearization of the right side of the equation is used:
a first-order approximation inε ij about 0, the mean value ofε ij . Since the approximate model is linear in
ε ij , it is a mean-variance model.Clearly, if the given model is itself a mean-variance model, the trans-
formed model is identical to the given model. Consider, for example, an intraindividual model where the
elements of yi are regarded as lognormally distributed (because the normally distributedε ij appear as log-
arithms):

yij = f ij (η i ; θ ) exp (ε ij )

In this case the transformed model is the constant cv model given above. (Therefore, no matter whether
the given intraindividual model or the constant cv model is presented to NM-TRAN, the results of the
analysis will be the same.)

Alternatively, the user might be able to transform the data so that a mean-variance model applies to the
transformed data, which can then be presented directly to NM-TRAN.With the above example, and
using the log transformation on the data yij , an appropriate mean-variance model to present to NM-
TRAN would be

yij = log fij (η i ; θ ) + ε ij

(Actually, NM-TRAN allows one to explicitly accomplish the log transformation of both the data and the
f ij .) Theresults of the analysis differ depending on whether or not the log transformation is used.With-
out the log transformation, the values of the fij are regarded as arithmetic means (under the approximate
model obtained by linearizing), and with the log transformation, these values are regarded as geometric
means. Useof the log transformation (when this can be done; when there are no yij or fij with value 0)
can often lead to a better analysis.

It is also assumed that as individuals are sampled randomly from the population, theη i are also being
sampled randomly (and statistically independently), although these values are not observable. Thevalue
η i is called the randominterindividualeffect for yi . It is assumed that theη i are instances of the random
vector η, normally distributed with mean 0 and variance-covariance matrixΩ. The density function of
this distribution (atη) is denoted by h(η; Ω).

Often, some quantity P (viewed as a function of values of the covariates and theη i) is common to differ-
ent intraindividual models.For example, a clearance parameter may be common to different intraindi-
vidual models, but its value differs between different intraindividual models because the values of the
covariates and theη i differ. The randomness of theη i in the population induces randomness in P. The
quantity P is said to be a randomlydispersedparameter. When speaking of its distribution, we are imag-
ining that the values of the covariates are fixed, so that indeed, there is a unique distribution in question.

From the above assumptions, the (marginal) likelihood ofψ andΩ for the data yi is given by

L i(ψ , Ω) = ∫ l i(η; ψ )h(η; Ω)dη (1)
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In general, this integral is difficult to compute exactly. The likelihood for all the data is given by

L(ψ , Ω) =
i

Π L i(ψ , Ω) (2)

The first-order estimation method was the first population estimation method available with NONMEM.
This method produces estimates of the population parametersψ andΩ, but it does not produce estimates
of the random interindividual effects. Anestimate ofη i is nonetheless obtainable, conditional on the
first-order estimates forψ andΩ (or on any other values for these parameters), by maximizing the empir-
ical Bayes posterior density ofη i , giv en yi : [l i(η; ψ )h(η; Ω)] /L i(ψ , Ω), with respect toη. In other words,
the estimate is the mode of the posterior distribution. Sincethis estimate is obtained after values forψ
andΩ are obtained, it is called the posthocestimate. When a mean-variance model is used, and a re-
quest is put to NONMEM to compute a posthoc estimate, by default this estimate is computed using
Ci(ψ , 0). In other words, the intraindividual variance-covariance is assumed to be the same as that for the
meanindividual , the hypothetical individual having the mean interindividual effect, 0, and sharing the
same values of the covariates as has the ith individual). However, it is also possible to obtain the posteri-
or mode without this assumption.

The posterior density can be maximized using any giv en values forψ andΩ. Since the resulting estimate
for η i is obtained conditionally on these values, it is sometimes called a conditionalestimateat these val-
ues, to emphasize its conditional nature.

In contrast with the first-order method, the conditional estimation methods to be described produce esti-
mates of the population parameters and,simultaneously, estimates of the random interindividual effects.
With each different method, a different approximation to the likelihood function (1) is used, and (2) is
maximized with respect toψ andΩ. The approximation to (1) at the valuesψ andΩ depends on an esti-
mateη̂ i , and as this estimate itself depends on the valuesψ andΩ, the approximation gives rise to a fur-
ther dependence of Li on the values ofψ andΩ, one not expressed in (1).Consequently, as different val-
uesψ andΩ are tried, different estimateŝη i are obtainedas a part ofthe maximization of (2). The esti-
matesη̂ i at the valuesψ andΩ that maximize (2) constitute theestimatesof the randominterindividual
effectsproducedby themethod(except for the hybrid method†). The estimateη̂ i also depends on yi , and
so, the approximation gives rise to a further dependence of Li on yi , one also not expressed in (1).

In contrast with the first-order method, a conditional estimation method involves multiple maximizations
within a maximization. The estimatêη i is the value ofη i that maximizes the posterior distribution ofη i

given yi (except for the hybrid method††).For each different value ofψ andΩ that is tried by the maxi-
mization algorithm used to maximize (2), first a valueη̂1 is found that maximizes the posterior distribu-
tion given y1, then a valueη̂2 is found that maximizes the posterior distribution given y2, etc. Therefore,
maximizing (2) is a very difficult and CPU intensive task. Thenumerical methods by which this is
accomplished are not described in this document.

Fortunately, it often suffices to use the first-order method; a conditional estimation method is not needed,
or if it is, sometimes it is needed only minimally during the course of a data analysis.Some guidance is
given in chapter III. Briefly, the need for a conditional estimation method increases with the degree to
which the intraindividual models are nonlinear in theη i . Population pharmacokinetic models are often
actually rather linear in this respect, although the degree of nonlinearity increases with the degree of mul-
tiple dosing. Population pharmacodynamic models are more nonlinear. The potential for a conditional
estimation method to produce results different from those obtained with the first-order estimation method
decreases as the amount of data per individual decreases, since a conditional estimation method uses

† After obtaining the population parameter estimates with the hybrid method (see chapter II), NONMEM
ignores the estimates of theη i that have been produced simultaneously with the population parameter esti-
mates, and as with the first-order method, the posthoc estimates (described above) are the ones reported as
the estimates of the random interindividual effects.

†† With the hybrid method, a constrained maximum is computed.
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conditional estimates of theη i , which are all shrunken to 0, and the shrinkage is greater the less the
amount of data per individual. Many population analyses involve little amounts of data per individual.

The conditional estimation methods that are available with NONMEM and which are described in chap-
ter II are: the first-order conditional estimation method (with and without interaction when mean-vari-
ance models are used, and with or without centering), the Laplacian method (with and without centering),
and the hybrid method (a hybrid between the first-order and first-order conditional estimation methods).
For purposes of description here and in other NONMEM Users Guides, the term conditional estimation
methods refers not only to these population estimation methods, but also to methods for obtaining condi-
tional estimates themselves.

To summarize, each of the (population) conditional estimation methods involves maximizing (2), but
each uses a different approximation to (1).Actually, −2 log L is minimized with respect toψ and Ω.
This is called the objective function . Its minimum value serves as a useful statistic for comparing mod-
els. Standarderrors for the estimates (indeed, an estimated asymptotic variance-covariance matrix for all
the estimates) is obtained by computing derivatives of the objective function.
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II. Methods

A. Estimation Methods

A.1. The Laplacian Method

Let Φi(η) be −2 log li(ψ ,η), and letΓi(η) and ∆i(η) be the gradient (column) vector and hessian matrix,
respectively, of Φi evaluated atη. An approximation to−2 log Li is given by

Φ̂i + log |Ω| + log |Ω−1 + 1
2 ∆̂i | + η̂ i ′Ω−1η̂ i − ( 1

2 Γ̂i + Ω−1η̂ i)′(Ω−1 + 1
2 ∆̂i)

−1( 1
2 Γ̂i + Ω−1η̂ i)

whereη̂ i is some estimate ofη i , and Φ̂i , Γ̂i , and ∆̂i areΦi , Γi , and ∆i all evaluated atη̂ i . This results from
applying a general approximation approach to integrals, attributable to the French mathematician
Laplace, and described by De Bruijn (1961).With η̂ i equal to the conditional estimate obtained by maxi-
mizing the posterior density ofη i (in an unconstrained manner) - call this the unconstrainedconditional
estimate, this particular approximation has been used by others (Lindley, (1980); Mosteller and Wallace
(1964)), although not with a function li that is as complicated as that which often arises in population
pharmacokinetic and pharmacodynamic analyses. See also: Tierny and Kadane (1986). In this particular
case, the last term of the approximation is 0.In general, the approximation can produce reasonable re-
sults as long the posterior distribution ofη i is dominated by a single mode. On occasion, a randomly dis-
persed parameter seems to have a multimodal distribution. Seethe discussion in section B concerning
mixture models for a way to address this issue.

Each of the estimation methods uses a different variant of this approximation.However, with whatever
variant is used, when in particular, the η̂ i are taken to be conditional estimates of theη i atψ andΩ, the
general method described in chapter I becomes what we call a conditionalestimationmethod.When the
approximation is used just as it is stated above, and when theη̂ i are taken to be the unconstrained condi-
tional estimates, the method is called the Laplacianestimationmethod, to honor the individual whose
approximation plays such an essential role.However, the method itself involves an idea which is peculiar
to NONMEM implementation.Namely, the approximation to L (the likelihood function ofψ andΩ), re-
sulting from using the Laplacian approximation, is maximized.

When mean-variance models are used, the assumption can be made that each intraindividual variance-
covariance matrix Ci(η i ; ψ ) is actually given by Ci(0; ψ ), the matrix for the mean individual. With this
particular assumption, there is said to be noη, ε -interaction; see chapter I.TheΦi are computed differ-
ently, depending on whether anη, ε -interaction is assumed, as are the posterior modes.With mean-vari-
ance models, by default, NONMEM implements the Laplacian method assuming that there is noη, ε -in-
teraction. With the currently distributed NONMEM code it is possible to apply the Laplacian method
when there is anη, ε -interaction, but this code and its usage are not supported by the NONMEM Project
Group.

A.2. The FOCE Method

The matrix∆i can be approximated by another matrix. Suppose given η i , yi is comprised of statistically
independent subvectors yi(1), yi(2), etc., so thatΦi can be written as a sum over termsΦi(1), Φi(2), etc.
Then each ofΓi and∆i can be written as a sum over termsΓi(1), Γi(2), etc. and∆i(1), ∆i(2), etc., respec-
tively. An approximation Λi to ∆i is obtained by replacing each∆i(k ) in the sum for ∆i by
Λi(k ) = 1

2 Γi(k )′Γ(i)k ). This is a type of first-order approximation; terms involving second derivatives hav e
been dropped. It is called the first-orderapproximation. With this approximation, and when all thêη i
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are taken to be equal to the unconstrained conditional estimates of theη i , the method is called the first-
orderconditionalestimation(FOCE)method.

Actually, NONMEM allows the implementation of several versions of this method.

• When a mean-variance intraindividual model is used, by default, Λi(k ) is replaced by
1
2 E(Γi(k )′Γ(i)k), where E represents the expectation over yi under the intraindividual model.With
the currently distributed NONMEM code it is possible to use the FOCE method without doing this,
but this code and its usage are not supported by the NONMEM Project Group.

• The first-orderconditionalestimationmethodwithout interactionis the FOCE method applied with
intraindividual mean-variance models and assuming noη, ε -interaction. Whenthe intraindividual
variance is assumed to be homoscedastic, and moreover, to be the same across individuals, then
there is noη, ε -interaction, and in this case it may be shown that the FOCE method (without inter-
action) often produces results similar to those obtained with a method described by Lindstrom and
Bates (1990). The first-orderconditionalestimationmethodwith interactionis the FOCE method
applied with intraindividual mean-variance models, but without the no interaction assumption.
FOCE with and without interaction are both supported.With the currently distributed NONMEM
code it is possible to apply the FOCE method with intraindividual models that are not mean-vari-
ance models, but this code and its usage are not supported by the NONMEM Project Group.

A.3. The FO Method

When the first-order approximation is used (withΛi(k ) replaced by1
2 E(Γi(k )′Γ(i)k)), but when allη̂ i are

taken to be 0 (the population mean value ofη), the method is called the first-order(FO) estimation
method. With the first-order method, the termsη̂ i ′Ω−1η̂ i andΩ−1η̂ i in the Laplacian approximation are
0. Notethat since conditional estimates are not used, the first-order method is not a conditional estima-
tion method.

It can be shown that when intraindividual mean-variance models are used, the method is equivalent to the
first-order method as described, for example, in NONMEM Users Guide - Part I (also see e.g., Beal and
Sheiner (1985)). Such an earlier description is also given below in section A.6. These earlier descrip-
tions of the method apply only to mean-variance models.With the currently distributed NONMEM code
it is possible to apply the FO methodas defined above with intraindividual models that are not mean-
variance models, but this usage is not recommended, and the code is not supported by the NONMEM
Project Group.

A.4. The Hybrid Method

Suppose certain (but not all) elements ofη are chosen to be in a setκ , that the elements of̂η i correspond-
ing to the elements ofκ are taken to be 0, and that the remaining elements ofη̂ i are taken to be those
given by the Bayes posterior mode ofη i under the restriction that all elements ofη in κ are 0. The con-
ditional estimate thus defined is an example of a constrained conditional estimate. Suppose also that the
first-order approximation is made. Then the method is a hybrid between the first-order method and the
FOCE method.Accordingly, this conditional estimation method is called the hybrid method. Note that
with the definition of theη̂ i used with this method, in contrast with the definition used with the FOCE
and Laplacian methods, the last term in the Laplacian approximation is not 0.

A hybrid method can be considered that uses a weaker version of the first-order approximation.Consider
using the first-order approximation, but only for the submatrix of∆i consisting of just those partial sec-
ond derivatives such that the two variables with respect to which the differentiation occurs are inκ . This
method is not supported with the currently distributed NONMEM code.

When the intraindividual models are statistical linear models (linear in the parametersη i), the first-order,
first-order conditional, hybrid, and Laplacian methods are all the same method, the classical maximum
likelihood method.
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A.5. The Centering Methods

Theη i are assumed to be distributed in the population with mean 0.When thepopulationmodel fits the
data well, this will be reflected by the average,η, of the conditional estimates of theη i across the sam-
pled individuals (at the values of the population parameters given by the model) being close to 0.(The
converse does not necessarily hold.)Whenη is close to 0, the fit will be called centered. There is noth-
ing about the methods defined above that insures that the fit will be centered.There are infrequently aris-
ing situations where the average is "far" from 0, where the model does not fit well (as judged e.g. by the
differences yij − f ij (0,θ̂ ) with mean-variance intraindividual models) and where a method that is designed
to better center the fit might be tried (do see chapter III for some guidance).With a centeringestimation
method , the η̂ i are taken to be the unconstrained conditional estimates, and the approximation to
−2 log Li is given by

−2 log li(ψ , η̂ i − η) + log |Ω| + log |Ω−1 + 1
2 ∆̂i | + (η̂ i ′ − η′)Ω−1(η̂ i − η)

With NONMEM, there are centering FOCE and Laplacian estimation methods (with noη, ε -interaction).
A centering hybrid method is not implemented in NONMEM.

A.6. The Centering FOCE Method with the First-Order Model

The first-ordermodel is the population model which results when for all i, the ith given intraindividual
model is a mean-variance model with mean Ei(η i ; θ ) and variance-covariance matrix Ci(η i ; ψ ), and this
model is replaced by another such model with mean

Ei(0; θ ) +
∂Ei

∂η i
(0; θ )η i

and variance-covariance matrix Ci(0; ψ ).

The linearity of theη i under this model implies that the population expectation of yij is fij (0;θ ), the pre-
diction obtained by takingη i to be 0, its population mean.With mean-variance models, the FO estima-
tion method is sometimes described as the application of the maximum likelihood method to the first-
order model that results from the given model, and when using this method, it is usual to judge goodness
of fit by the differences yij − f ij (0;θ̂ ). Whena conditional estimation method is used instead of the FO
method, a centered fit may result, confirming that the population mean of theη i is 0. However, the given
intraindividual models are used, and they may be nonlinear in theη i . Therefore, conceivably, fij (0;θ )
may be a poor approximation to the population expectation of yij , and for this reason alone, an apparent
bias in the fit may result. Experience suggests, though, that this should not be a major concern (perhaps
because the nonlinear effect is small relative to the size of intraindividual variability in the residuals).If
one is concerned, there are a couple of strategies one might use.

First, the NONMEM program allows the expectation of the yij to be estimated by means of a couple dif-
ferent types of actual integration (and not just when the intraindividual models are of mean-variance
kind); see NONMEM Users Guide - Part VIII. Second, when the intraindividual models are mean-vari-
ance models, NONMEM allows the first-order model to be obtained automatically from the given model
and used with the centering FOCE method.(If the first-order model is used with the noncentering FOCE
method, the result is the same as that obtained with the FO method.)When a conditional estimation
method is needed (see chapter III), application of the centering FOCE method to the first-order model
that results from the given model may yield adequate results, and of course, the expectation of yij under
the first-order model is simply given by fij (0;θ ). Moreover, due to the linearity of the intraindividual
models (of the first-order model) in theη i , the computational requirement is substantially less than that
incurred with application of the (centering or noncentering) FOCE method to the given model. Thesav-
ings in CPU time is achieved at the expense of possibly using too simple a model (and, of course is still
not as great a savings as is achieved with the FO method).
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The first-order model may be used with the centering FOCE method, but not with the centering Lapla-
cian method (because due to the linearity, the result would be the same as that obtained with the center-
ing FOCE method). Be aware that when this model is used with the centering FOCE method, the condi-
tional estimates produced by the method are based on the first-order intraindividual models (unlike when-
ev er the noncentering FOCE method is used, where the conditional estimates are based on thegiven
intraindividual models).It is possible nonetheless to obtain posthoc estimates based on the given intrain-
dividual models, at the population estimates obtained from using the centering FOCE method with the
first-order model.A centering hybrid method is not implemented in NONMEM.

B. Mixture Models

On occasion, a model may need to incorporate a randomly dispersed parameter that has a possibly multi-
modal distribution. In this case a mixture model may be useful.This is a model where for each i, there
are several possible intraindividual models, M1, M2, ..., Mr for yi , and it is assumed that the particular
model that actually describes yi is one of these, but it is not known which one. It is assumed that the
probability that it is Mk is pk, where p1 + p2 + . . . + pr = 1. Looselyput, the ith individual is chosen
randomly from a population divided into r subpopulations, their relative sizes either being known or
unknown. Thesubpopulation of which the individual is a given member is not observable, but for each
subpopulation, a model for data from an individual from the subpopulation is available. Themixing
probabilities pk correspond to the sizes of the subpopulations and are usually treated as parameters whose
values are unknown and are estimated.With NONMEM, these probabilities can be modeled, i.e. related
to covariables, and therefore, can vary between individuals. Theparameters of these relationships can be
estimated; they are included inψ . To indicate this generality, the pk may be written pik(ψ ) (the kth mix-
ing probability for the ith individual).

Suppose, for example, that a clearance parameter of a pharmacokinetic model may be bimodally distrib-
uted in the population. Here is how this may be expressed with a population model. One may consider a
mixture model with two intraindividual models for each individual: for the ith individual, one where the
individual’s clearance is given by

CLi = θ1 exp(η i1) (3)

and another where it is given by

CLi = θ2 exp(η i2) (4)

(The parametersη i1 andη i2 are the first two elements ofη i .) For each i, the valueη i arises randomly (see
chapter I).For each i, a choice between the two intraindividual models is also viewed as one being made
in a random fashion, according to probabilities p1 and p2 (p1 + p2 = 1). As a result of this choice, a
valueη*

i , which is eitherη i1 or η i2, is also "chosen".(Consequently, if afterη i1, say, is chosen, the value
of η i2 does not influence the data.)From the point of view of not knowing what choices between intrain-
dividual models were actually made, the distribution of theη*

i across individuals is a mixture of two nor-
mal distributions, and the distribution of the CLi is a mixture of two lognormal distributions.

The first two elements of the random variableη may have the same or different variances, i.e.Ω11 may or
may not equalΩ22. If these variances are sufficiently small, while the parametersθ1 andθ2 are suffi-
ciently far apart, and if both probabilities p1 and p2 are sufficiently large (however in this regard, the vari-
ances, theθ ’s, and the probabilities must actually be considered altogether), the distribution of CLi is
bimodal. Often,the data may not allow all of the different variances between mixture components, such
asΩ11 andΩ22, to be well estimated, in which case the assumption might be made that these variances
are the same (a homoscedastic assumption).With NONMEM, this can be done explicitly, or alterna-
tively, the "sameη" can be used with both mixture components, e.g.η i1 can be used in (3) and also in
(4), instead ofη i2. NONMEM will understand thatη i1 is symbolizing two "differentη ’s", each having
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the same variance.†

Other examples of mixture models may be given. SeeNONMEM Users Guide - Part VI, section III.L.2
for an example where the mixture model describes a mixture of two joint lognormal distributions for
clearance and volume,but which is not a bimodal distribution. The differences between the models Mk

need not be differences concerning parameters; they could be differences in model form.They can be
any set of differences whatsoever.

The likelihood for yi under a mixture model is

L i(ψ , Ω) =
ri

k=1
Σ pik(ψ )L ik(ψ , Ω)

where Lik is the likelihood function for yi under the the kth possible intraindividual model for individual
i. With a mixture model, any of the estimation methods described in section A uses the defining approxi-
mation for the method with each of the Lik , k = 1, ..., r.

With a set of values for the population parametersψ andΩ, NONMEM classifies each individual into
one of the rsubpopulations. Theclassification gives the most probable subpopulation of which the indi-
vidual is a member. For each k, the empirical Bayes (marginal) posterior probability that yi is described
by Mk, giv en yi , is computed by [pik(ψ )L ik(ψ , Ω)] /L i(ψ , Ω). Theindividual is classified into the kth sub-
population if the kth probability is the largest among these r values.

† With NONMEM Version IV, the sameη can also be used, and NONMEM will understand that it is sym-
bolizing two differentη ’s with the same variance,provided the first-order estimation method is used.
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III. Usage Guidelines

A. Background

Many data sets (real and simulated) have been examined using the first-order (FO) estimation method
and, more recently, the conditional estimation methods.With many population pharmacokinetic data
sets, the FO method works fairly well. It requires far less CPU time than does a conditional estimation
method. However, from the time of its earliest usage there has been a small number of examples where
the method has not worked adequately. Evidence suggesting that the method may not be adequate with a
particular data set can be readily obtained with the goodness-of-fit scatterplot: with mean-variance
intraindividual models, a plot of observations versus (population) predictions.Consider two such scatter-
plots in Figures 1 and 2. The one in Figure 1, resulting from use of the FO method, shows a clear bias in
the fit. The data result from single oral bolus doses being given to a number of subjects; the data are
modeled with a two compartment linear model with first-order absorption from a drug depot.The scat-
terplot in Figure 2 results from use of the FOCE method without interaction. Much of the bias is elimi-
nated with the use of this method.In this situation, the benefit from the extra expenditure of computer
time that is needed with the method is substantial.

The Laplacian method can use considerably more computer time than the FOCE method, depending on
the complexity of the computations for obtaining needed second derivatives. In this example, the extra
expenditure of computer time needed with the Laplacian method is not much, but the benefit is also not
much. Thescatterplot resulting from using the Laplacian method is very similar to that of Figure 2.

The Laplacian method should perform no worse than the FOCE method (the former avoids the first-order
approximation). TheFOCE method should perform no worse than the FO method (the adaquacy of the
first-order approximation is better when theΛi are evaluated at the conditional estimates, rather than at
0). Similarly, the hybrid method should also perform no worse than the FO method, but perhaps not as
well as the FOCE method. (See e.g. Figure 3, which is the goodness-of-fit plot for the same data
described above, using the hybrid method (with two out of four η ’s "zeroed".)) Thisdefines a type of
hierarchy to the methods.

The need to proceed up the hierarchy from the FO method increases as the degree to which the intraindi-
vidual models are nonlinear in theη i increases. Theneed to use the Laplacian method increases because
as the degree of nonlinearity increases, the adequacy of the first-order approximation decreases.The
need to use the FOCE method increases because as the degree of nonlinearity increases, the adequacy of
the first-order approximation depends more on the values at which theΛi are evaluated.

Population (structurally) linear pharmacokinetic models are often rather linear (as just defined), although
the degree of nonlinearity increases with the degree of multiple dosing.With these models the Laplacian
method is rarely, if ever, needed. With simple bolus dosing, the FOCE method is often not needed,
although the example cited above serves as a reminder not to interpret this last assertion too optimisti-
cally. On the other hand, population nonlinear pharmacokinetic models (e.g. models with Michaelis-
Menten elimination) can be quite nonlinear. Population pharmacodynamic models also can be quite non-
linear, and especially with models for categorical- and discrete-ordinal-type observations, the Laplacian
method is invariably the best choice.

The ability of a conditional estimation method to produce results different from those obtained with the
FO method decreases as the degree of random interindividual variablity, i.e. "the size" ofΩ decreases.
This is because the conditional methods use conditional estimates of theη i , which are all shrunken to 0,
and the shrinkage is greater the smaller the size ofΩ. The value 0 is the value used for theη̂ i with the
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FO method. Similarly, the ability of FOCE to produce results different from those obtained with the
hybrid method decreases as the degree of random interindividual variablity, i.e. "the size" ofΩ decreases.
In fact, suppose one tries to use the FOCE method and finds that some estimates of interindividual vari-
ances are rather large compared to others.Then using the hybrid method where those elements ofη with
small variance are "zeroed", may well result in a fit about as good as that using FOCE (in contrast to that
shown in Figure 3), and if the number of elements ofη that are zeroed is large relative to the total number
of elements, CPU time may be significantly reduced.

The ability of a conditional estimation method to produce results different from those obtained with the
FO method decreases as the amount of data per individual decreases. This is because the conditional
methods use conditional estimates of theη i , which are all shrunken to 0, and the shrinkage is greater the
less the amount of data per individual. Actually, the amount of data from the ith individual should be
measured relative to the number of parameters in the model for the individual, i.e. the number of ele-
ments ofη i upon which the model really depends.As the number of parameters increases, the amount of
data decreases, and can "approach 0".Also, strictly speaking, the amount of data might be understood as
being relative to the "data design" (the poorer the design, the less useful the data) and the magnitude of
intraindividual error (the more error, the less useful the data).

With intraindividual mean-variance models where it may appear theoretically plausible that there is an
η, ε -interaction, it might seem more appropriate to use the FOCE method with interaction than to use the
FOCE method without interaction.However, when the amount of (true) intraindividual variance is large
(though the intraindividual models may be structurally well-specified), or the amount of data per individ-
ual is small, it will be difficult for the data to support anη, ε interaction, in which case the FOCE method
with interaction may produce no improvement over the FOCE method without interaction.Otherwise,
and especially when intraindividual variance is small for some observations, but not for others due to
structural model misspecification, and when there is considerable interindividual variability, the FOCE
method with no interaction can lead to a noticeably biased fit (as can the FO method).

There seems to be no consistent relationship between the value of the objective function using one
method and the value of the objective function using another method. Therefore, objective function val-
ues should not be compared across methods.However, objective function values (in conjunction with
graphical output) can provide a very useful way to compare alternative models, as long as the values are
obtained using the same method.

B. Model Form

Unless interindividual variability is small, use of a random interindividual effect in the model should be
such that quantities that depend on the effect are always computed with physically meaningful values.
For example, rather than model a clearance parameter by

CLi = θ1 + η i1 ,

it is better to use

CLi = θ1 exp(η i1)

since clearance should always be positive. With the FO method, use of either model produces essentially
the same results.(The formulas for clearance and for the derivatives of clearance with respect toη i1 are
computed only with the valueη i1 = 0.) However, with a conditional estimation method, different values
of η i1 are tried.A neg ative value for CLi can result with the first model, especially whenΩ11 is large and
large negative values ofη i1 are tried.

To take another example: Suppose that with the one compartment linear model with first-order absorption
from a drug depot, it is assumed that pharmacokinetically, for all individuals, the rate constant of absorp-
tion exceeds the rate constant of elimination, i.e. KAi > KEi . Instead of
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KA i = θ1 exp(η i1) ,

KEi = θ2 exp(η i2)

one should use

(KA − KE)i = θ1 exp(η i1)

KEi = θ2 exp(η i2)

and constrain bothθ1 andθ2 to be positive. Again, with the FO method, use of either model produces
essentially the same results. The problem with the first model is that when using a conditional estimation
method, asη i1 andη i2 vary, the value of KEi can exceed KAi , due to "flip-flop". As this can happen, or
not, from one individual to the next, if it happens at all, the conditional estimation method will "become
confused" and fail. Theconditional estimation method by itself has no way of knowing that it has been
assumed that KEi will not exceed KAi , and it cannot distinguish flip-flop from this possibility. (If phar-
macokinetically, KEi may exceed KAi , and vice versa, then if flip-flop occurs, again the conditional esti-
mation method will become confused, not being able to distinguish flip-flop from these possibilities, but
in this case, a modification of the model will not help.)

Consider again the simple model for a clearance parameter,

CLi = θ1 exp(η i1)

With the FO method, all derivatives with respect toη are evaluated at 0.Consequently, in effect, a trans-
formed model for CLi is used: a first-order approximation inη i , of the right side of the equation,

CLi = θ1 + θ1η1i

This is a constant cv type model.With the FO method, no matter whether the given model or the trans-
formed model is "used", the results of the analysis will be the same.The same is true even if covariates
are involved. However, when a population conditional estimation method is used, the results of the anal-
ysis will differ between the two models, as derivatives with respect toη are evaluated at conditional esti-
mates.

C. Role of the FO Method

The following general guidelines are offered so that conditional estimation methods are used only when
necessary, and thus unnecessary expenditure of computer time and other difficulties that sometimes arise
with conditional estimation methods (see section D) are avoided. They are based on impressions, rather
than systematic study. Clearly, there will arise situations where alternative approaches might be tried.

If the model is of a very nonlinear kind (see section A), then from the outset, a conditional method might
be used instead of the FO method.Indeed, with models for categorical- and discrete-ordinal type obser-
vations, the Laplacian method should always be used, and the remainder of this discussion concerns the
use of conditional estimation methods with models for continuous outcomes (more precisely, the intrain-
dividual models are of mean-variance type).

When analyzing a new data set and/or using a very new model with the data set, it is a good practice to
use the FO method with at least the first one or two NONMEM runs, in order to simply check the data set
and control stream. The Estimation Steps with these runs should terminate successfully, although if a
conditional estimation method is really needed, the results themselves may not be entirely satisfactory.
At this very early stage of data analysis, the user needs to be able to detect elementary errors that may
have been introduced into the data set or control stream, and to be able to detect significant modeling dif-
ficulties. Thiscannot be done easily if other unrelated problems that can arise with conditional estima-
tion methods interfere.

12
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One might do well to begin to develop a complete model, incorporating the covariates, etc., using the FO
method. Decisionsregarding the effects of covariates on randomly dispersed parameters are aided by
examining scatterplots of conditional estimates versus particular covariates. Whenthe FO method is
used, the posthoc estimates are the conditional estimates that are used for this purpose.After it appears
that the model can be developed no further, there nonetheless exists appreciable bias in the final fit, think
about how this bias might be well-explained by model misspecification that has not been possible to
address (e.g. there is a known covariate effect, and the covariate has not been measured). The use of an
estimation method cannot really compensate for bias due to model misspecification, and one should not
imagine that a conditional estimation method is any different.

After model development is complete using the FO method, if there seems to be no bias in the fit, you
might simply want to do one run with FOCE to check this impression.If after this, the fit does not sig-
nificantly improve, you can stop. After model development is complete using the FO method, if there
seems to be no bias in the fit, consider doing one run with FOCE to obtain the best possible estimates of
variance-covariance components. The variance-covariance components are often estimated better using
FOCE (but realize that sometimes, they may be estimated very similarly by FO - see discussion in sec-
tion A), and when these estimates are important to you, it can therefore be worthwhile investing the time
needed with the additional FOCE run.It is not necessary to use FOCE to sharpen the estimates of vari-
ance-covariance components until after an adequate model is developed using the FO method.

After model development is complete using the FO method, if appreciable unexplainable bias remains,
do try using FOCE.Indeed, do not hesitate to try FOCE before model development is complete when a
number of initial concientious attempts to improve your model using FO have resulted inconsiderable
bias, and when conditions are such thata priori , the FO and FOCE results are not expected to be very
similar (see background section). When the intraindividual models you are using permit the possibility
of an η, ε -interaction that the data may be rich enough to support, try FOCE with interaction.If the use
of FOCE significantly reduces the bias, continue to develop the model using FOCE.Or, before embark-
ing on continued model development, first experiment with the hybrid method to see whether this pro-
duces as much bias reduction as does FOCE, along with significant improvement in run time over FOCE.
Continued model development may entail repeating much of the work already done with the FO method.
In particular, try adding covariates rejected when using the FO method, and reconsider alternative ways
that the covariates already accepted can enter the model. As a result of the cost involved in possibly
needing to repeat work already undertaken with the FO method, the question of how soon one begins to
try FOCE is not clearly answerable.Surely, increased computational times must be considered, and usu-
ally one wants to delay using a conditional estimation method until use of such a method seems to be
clearly indicated.

The model might be very nonlinear, in which case try the Laplacian method.If after using the FOCE and
Laplacian conditional estimation methods, an appropriate goodness-of-fit plot is unsatisfactory, then
there is very likely a modeling difficulty, and one must seriously acknowledge this.

D. Role of Centering Methods

If after concientious modeling using the appropriate (noncentering) conditional estimation method(s), a
model results with which substantial bias still appears in the fit, there is probably a model-related expla-
nation for this, though it may allude one. In these circumstances, one may want to proceed to obtain the
best possible fit with the model in hand.The fit that has been obtained using the noncentering condi-
tional estimation method is not necessarily the best fit that may be obtained with the misspecified model.

The bias may be reflected by an uncentered fit.When a population conditional estimation method is
used, the average conditional estimate for each element ofη is given in NONMEM output (the condi-
tional estimates being averaged are those produced by the method), along with a P-value that can be used
to help assess whether this average is sufficiently close to 0 (the null hypothesis). Theoccurence of at
least one small P-value (less than 0.05, though when the P-value is small, it can be much less than 0.05)
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indicates an uncentered fit.

A centering method might be tried. Using centering FOCE or centering Laplacian, one should notice that
the P-values are somewhat larger (although perhaps some are still less than 0.05), and often one will also
notice considerable improvement in the fit to the data themselves. Whenit is necessary to use a centering
method, the population parameter estimates (at least those identified with the misspecified part of the
model) are themselves of little interest; population predictions under the fitted model are what is of inter-
est. Also,because the model is misspecified, one should anticipate possible problems with model valida-
tion and model applications involving extrapolation.

Although it may be that (at least in certain specifiable situations) fits with centering methods are in gen-
eral no worse than those obtained with appropriate noncentering methods, this idea is not yet well
enough tested.Moreover, routine use of centering methods will mask modeling problems.Centering
methods should be used only when, after concientious modeling, bias in fit seems unavoidable. CEN-
TERING METHODS SHOULD NOT BE ROUTINELY USED. Whenthe model is well-specified, it
seems unlikely that when using an appropriate noncentering method, bias in fit will result, and there
should be no expectation that any further improvement can be gained with a centering method.

Even when the fit is centered, it may be possible (though rare) that the fit to the data themselves still
shows bias (see remarks in chapter II).One might then also use centering FOCE with the first-order
model, subject to the same cautions given above. (Recall that in this case, the conditional estimates of
theη i resulting from the centering method are based on linear intraindividual models. When centering is
actually needed, these conditional estimates should probably be adequate for whatever purposes condi-
tional estimates might be used.It is possible nonetheless to obtain posthoc estimates based on the given
intraindividual models.)

Even when a model is well-specified, it may be so complicated (e.g. it uses difficult differential equa-
tions) that to use it with a conditional estimation method requires a great amount of computer time.In
this case, if indeed a conditional estimation method is needed, one might use centering FOCE with the
first-order model, even though centering per se may not be needed.In this situation, use of centering,
along with the first-order model, is just a device allowing a conditional estimation method to be imple-
mented with less of a computational burden. Acompromise is achieved; the fit should appear to be an
improvement over that obtained with the FO fit, but it may not be quite as good as one obtained with the
noncentering FOCE or Laplacian methods.Because the first-order model is automatically obtained from
the given model, the final form of the given model (obtained after completing model development) is
readily available, and with this model, one might try to implement one run using either the noncentering
FOCE or Laplacian methods and compare results.

E. Role of the Hybrid Method

As already noted in section A, use of the hybrid method may require appreciably less computer time than
the FOCE method and yet result in as good a fit. There is another important use of this method.

A change-pointparameterof the ith intraindividual model is a parameter of the model such that for any
value of yi , the derivative of l i with respect to this parameter, evaluated at some value of the parameter (a
change-pointvalue ), is undefined. An example of this is an absorption lagtime parameter A of a phar-
macokinetic model for blood concentrations Cp.If a dose is given at time 0, then the derivative of the
pharmacokinetic expression for Cp at time t with respect to A, evaluated at A= t is undefined. Soif
moreover, an observation yij occurs at time t (so that the expression for Cp must be evaluated at this
time), then the derivative of l i evaluated at A= t is undefined (for any value of yij or for any of the other
observations of yi). Thereforeunder these circumstances, if the change-point parameter is randomly dis-
persed, andη i may assume a value at which A= t, thenΓi is undefined at this value, and, strictly speak-
ing, all estimation methods described in chapter II are undefined.But practically speaking, a method will
fail only when, during the search to minimize−2 log L, a value ofη̂ i at which A= t cannot be avoided.
A symptom that this is happening, when there is a randomly dispersed change-point parameter, is a
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search terminization with a large gradient, i.e. some gradient elements are 104 or larger. Often, a lagtime
is estimated to be very near the time of the first observation within an individual record, and so the prob-
lem described here can be a very real problem.One remedy is to delete observations at times that are too
close to estimated lag times.However, aside from entailing the deletion of legitimate data, there can also
be implementation problems with this strategy.

If the hybrid method is used, and the element(s) ofη associated with the change-point parameter - denote
this byζ - is zeroed, this reduces the number (across individuals) of valuesζ̂ i at whichΓi could possibly
be undefined in the computation, as only the value of the change-point parameter for the typical subject is
needed in the computation.Indeed, unless the change-point parameter itself depends on a covariate, only
at the value ζ̂ i = 0 can Γi possibly be undefined in the computation. Thus, the chance of the problem
occurring is reduced (but not eliminated).†

F. Problems

A conditional estimation method can demonstrate somewhat more sensitivity to rounding error problems
during the Estmation Step than will the FO method.When the search for parameter estimates terminates
with rounding error problems, oftentimes intermediate output from the Estimation Step will indicate the
accuracy with which each of the final parameter estimates has been obtained.For example, 3 significant
digits may be requested for each estimate, but for some estimates, less than 3 digits is actually obtained.
If only a little less than 3 digits is obtained (e.g. 2.7-2.9), and if the gradient vector of the objective func-
tion with the final parameter estimates is small (e.g. no element is greater than 5 in absolute value), then
this degree of accuracy is probably acceptable. If much less accuracy is obtained, but only with those
estimates where this might be expected and where this is tolerable (e.g. estimates ofΩ elements), then
again, one might regard the Estimation Step as having terminated successfully. (The order of the parame-
ter estimates printed in the iteration summaries is: theθ ’s in their subscripted order, followed by the
(unconstrained)Ω elements, followed by the (unconstrained)Σ elements. Notethough, that these esti-
mates are those of the scaled transformed parameters (STP), rather than the original parameters; see
NONMEM Users Guide - Part I, section C.3.5.1.)

With a conditional estimation method (in contrast with the FO method), NONMEM can more readily ter-
minate during the Estimation Step with a PRED error message indicating e.g. that a nonallowable value
for a parameter has been computed in PRED code, perhaps a negative value for a rate constant.†† This is
because a parameter may be randomly dispersed, and with a conditional estimation method, values ofη
different from 0 are tried, as well as are different values ofθ , and some of these values might result in a
nonallowable value of the parameter. If such a termination occurs, then, if not already doing so, consider
modeling the parameter in a way that prevents it from assuming a nonallowable value, e.g if the parame-
ter cannot be negative, consider using a model such as P= θ1 exp(η1) (see section B). Sometimes this
cannot completely solve the problem, e.g. if the parameter cannot also be 0, the model just given will not
insure this (η1 can be very large and negative). So,a termination may still occur. The next step is to try
to include theNOABORT option on the $ESTIMATION record (see NONMEM Users Guide - Part IV,
section IV.G.2). However, doing so will have no effect if the termination occurs during the 0th itera-
tion.††† TheNOABORT option activates one type of PRED error-recovery (THETA-recovery), and the
other type (ETA-recovery) is always activated, without using the option. So the option may not need to
be used initially, and if PREDPP is being used, to have used the option before a termination has actually
occured has the detrimental effect that this can mask the occurrence of an error detected by PREDPP, of
which the user needs to be informed.With PREDPP, never use theNOABORT option untilyou have had
an opportunity (i) to see what happens when you do not use it, i.e. to see the contents of PRED error mes-
sages that might arise when you do not use the option, (ii) to respond, if possible, to these messages in a

† Keep in mind that with the hybrid method, even though the elements ofζ are zeroed, an estimate of the
magnitude of random interindividual variability in the parameter is still obtained.
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sensible way (other than using the option), and (iii) to see what happens after you have done this.

Perhaps the operating system, rather than NONMEM, terminates the program with a message indicating
the occurrence of a floating point exception in a user-code. Again, this may be because a valueη is tried
which results in the exception when a value of a randomly dispersed parameter is computed.Underflows
are ignorable, and terminations due to underflows should be disabled (see NONMEM Users Guide - Part
III). With an operand error, or overflow, or zero-divide, the user needs to identify where the exception
occurs in the code.For this purpose, the use of a debugger, or debugging print statements in the code,
may be helpful. Then perhaps the exception may be avoided by using PRED error-recovery in the user-
code, i.e. by using the EXIT statement with return code 1 (see NONMEM Users Guide - Part IV, section
IV.G.2). Try this, and rerun.If with the earlier run, the termination occured after the 0th iteration, and if
PREDPP is not being used, rerun the problem using theNOABORT option on the $ESTIMATION record.
If the termination occured after the 0th iteration, and if PREDPP is being used, rerun, but do not use the
NOABORT option. If the termination still occurs, then rerun a second time, this time using theNOABORT
option. If the termination occurs during the 0th iteration, theNOABORT option has no effect. Sucha ter-
mination can arise due to a problem with either the data set, user code, or control stream.Different initial
estimates might be tried (perhaps smaller interindividual variances).

†† An PRED error message arises when PRED error-recovery (see NONMEM Users Guide - Part IV, sec-
tion IV.G) is used in a user’s PRED code, or if PREDPP is used, in a user’s PK or ERROR code.PREDPP
itself uses PRED error-recovery.
††† A termination during the 0th iteration can arise due to a problem with either the data set, user code, or
control stream. Different initial estimates might be tried (perhaps smaller interindividual variances).
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.                                                                                      *            .

.                                                                    *       *                      .

.                                                                                      *            .

.                                                                                      *            .

.                                                                                                   .
3.30E+00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.         .         .         .         .         .         .         .         .         .         .
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F
igure 2

PRED VS. CONC
-1.00E-01            4.20E-01            9.40E-01   PRED     1.46E+00            1.98E+00            2.50E+00

.                   .                   .                   .                   .                   .

.         .         .         .         .         .         .         .         .         .         .
-1.00E-01... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.   3                                                                                               .

.   $VGA2  2      2                     *                 *                 3                 3     .

.    2B9J236             *                                                                    3     .

.       5*78** *   *     2              *                                                     *     .

.         *9**222 32      *           *                                                       2     .

.          3   3*.   * * *         *     *                                                          .

.            * 2* 3*.** 2   *    *    *  *                                                    *     .

.          *       * 22*  *        *                      *                    *              *     .

.               * 2  *2* 2*2             *                                                          .
5.80E-01.                    *3 *  **    *    * *                   *                                       ..

.                     2    *  .  * *                                           *                    .

.                     3    **    *                                                                  .

.                     *          **2                      *                                   *     .

.                                2    .   2    *   *    *                                           .

.                     *    *     3 *     .                               *                    *     .

.                                 *     * 2. * *                                                    .

.                                *            .     *                                               .

.                                3      * *  *  .      *                                         *  .

.                                2*       *        *   **                   *  *                    .
1.26E+00.                                *        *           .     *    *                        *      *  ..

.                                         *    *    *  *.     *    *                      *         .

.                                         2  *         *   .     *       *                          .

.                                         3            *     .*  *                 *             2  .

.                                *                     *    * * .* *     *                    *  *  .
CONC    .                                                  **  2           *        *                       .

.                                         *             *        *   .             *             *  .

.                                         *            2         2      .   *      *             *  .

.                                                      *                   .*             2      *  .

.                                                      2                     .     *      *         .
1.94E+00.                                                      *         2          *   .  *      *      2  ..

.                                                                2          *     .                 .

.                                                                                    .    *      *  .

.                                                      *         *          2      3    .        *  .

.                                                                *          2      2      3         .

.                                                                                  *      2  .      .

.                                                                *          *                  .    .

.                                                                           *                    *. .

.                                                                *                 *                .

.                                                                                             *  *  .
2.62E+00.                                                                           2                       ..

.                                                                                  *                .

.                                                                                  *                .

.                                                                                                *  .

.                                                                                                   .

.                                                                                         *         .

.                                                                           *      *                .

.                                                                                         *         .

.                                                                                         *         .

.                                                                                                   .
3.30E+00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.         .         .         .         .         .         .         .         .         .         .
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igures

F
igure 3

PRED VS. CONC
-1.00E-01            3.60E-01            8.20E-01   PRED     1.28E+00            1.74E+00            2.20E+00

.                   .                   .                   .                   .                   .

.         .         .         .         .         .         .         .         .         .         .
-1.00E-01... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.   3                                                                                               .

.   L$O97   2      2                      *                 *                  3                 3  .

.     AAF8234              *                                                                     3  .

.       425552  *  *       2              *                                                      *  .

.         * 922**2*4       *           *                                                         2  .

.          *2  *2* .  ** *          *     *                                                         .

.            * ****3 **  2   *   *     *  *                                                      *  .

.           *      * *3* . *        *                       *                   *                *  .

.                * 2 *2* 2 3.             *                                                         .
5.80E-01.                     4  * * * . *     * *                   *                                      ..

.                     2    *     *.*                                            *                   .

.                     3    * *   *   .                                                              .

.                     *          ****   .                   *                                    *  .

.                                2        2.    *   *   *                                           .

.                     *    *     3 *          .                           *                      *  .

.                                 *      *2  *  *.                                                  .

.                                *                  .*                                              .

.                                3       **  *         .*                                          *.

.                                2*       *         *   2 .                 *   *                   .
1.26E+00.                                *        *                  *   *                         *       *..

.                                         *     *    *  *     * .  *                       *        .

.                                         2  *          *        * .      *                         .

.                                         3             *     *  *   .             *               2.

.                                *                      *    **  * *    . *                      * *.
CONC    .                                                   **  2          *       .*                       .

.                                         *             *        *            .    *               *.

.                                         *             2        2          *    . *               *.

.                                                       *                   *       .      2       *.

.                                                       2                          *   .   *        .
1.94E+00.                                                       *        2          *      *      .*       2..

.                                                                2          *                .      .

.                                                                                          *    .  *.

.                                                       *        *          2      3               *.

.                                                                *          2      2       3        .

.                                                                                  *       2        .

.                                                                *          *                       .

.                                                                           *                      *.

.                                                                *                 *                .

.                                                                                                * *.
2.62E+00.                                                                           2                       ..

.                                                                                  *                .

.                                                                                  *                .

.                                                                                                  *.

.                                                                                                   .

.                                                                                          *        .

.                                                                           *      *                .

.                                                                                          *        .

.                                                                                          *        .

.                                                                                                   .
3.30E+00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.         .         .         .         .         .         .         .         .         .         .
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