
NONMEM Users Guide - Part V

Introductory Guide

December 2017

by

Alison J. Boeckmann

Lewis B. Sheiner

Stuart L. Beal

NONMEM Project Group
University of California at San Francisco

ICON plc, Gaithersburg, Maryland

Copyright by the Regents of the University of California
1994, 2009
Copyright by ICON plc
2011, 2012, 2013,2015,2017
All rights reserved



Preface

This edition of "NONMEM Users Guide - Part V Introductory Guide" is distributed with
NONMEM 7.4. It revises the version of November 2013, which appeared with NON-
MEM 7.3. Details that have changed since the previous edition have been corrected, and
some new features have been added.

Significant changes since the previous version are marked with bars.

Examples of NONMEM outputs have not been updated.They remain as they were in
1994 and are from NONMEM IV. With later versions of NONMEM there are changes in
the outputs. In some cases the wording has been changed; there is new content; and the
numerical results may have changed slightly. But none of this affects the features and
methodology that Lewis Sheiner described in chapters 2, 10, and 11.

True to its purpose as an instructional guide for new users of NONMEM, this Guide
remains oriented to the classic NONMEM methods and basic features (through NON-
MEM VI). References to even earlier versions of NONMEM and PREDPP have been
deleted.

Chapter 12 (Brief Descriptions of Other Features) has been revised. Sections1-5 have
been expanded to be more complete.A new section, 2.8. Output-Type Compartments,
describes a feature that has always been part of PREDPP, but was not documented.Note
sub-sections titled "More About ...". Section 6 ("Supplemental List of Features through
NONMEM 7.4") is is a summary of all features of NONMEM not mentioned elsewhere
in this guide.

Appendix 4 is new to this version. It contains implementation details for the records
listed in Appendix 3.
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Chapter 1 - Introduction to NONMEM, PREDPP, and NM-TRAN

1. What This Chapter is About

This chapter introduces a computer program called NONMEM. It also introduces two
programs that are distributed with NONMEM and make it easier to use: PREDPP and
NM-TRAN. Thescope of this text itself is described, and suggestions are made for read-
ing it. A somewhat detailed technical description of the components of NONMEM is
then given. Thefinal section is a list of additional references.

2. Intr oducing NONMEM

2.1. What is NONMEM?

NONMEM stands for "Nonlinear Mixed Effects Model." NONMEM is a computer pro-
gram, written in FORTRAN 90/95, designed to fit general statistical (nonlinear) regres-
sion-type models to data.

NONMEM was developed by the NONMEM Project Group at the University of Califor-
nia at San Francisco for analyzing population pharmacokinetic data in particular.† These
are data typically collected from clinical studies of pharmaceutic agents, involving the
administration of a drug to individuals and the subsequent observation of drug levels
(most often in the blood plasma).Proper modeling of these data involves accounting for
both unexplainable inter- and intra-subject effects (random effects), as well as measured
concomitant effects (fixed effects). NONMEMallows this mixed effect modeling.Such
modeling is especially useful when there are only a few pharmacokinetic measurements
from each individual sampled in the population, or when the data collection design varies
considerably between these individuals. However, NONMEM is a general program
which can be used to fit models to a wide variety of data.

Like many nonlinear regression programs, NONMEM does not have any "built in" mod-
els (such as the linear model) with which it can compute a predicted value given the cur-
rent values of the regression parameters. Instead, NONMEM calls a subroutine having
entry name PRED ("prediction") to obtain a predicted value. PREDalso must compute
for NONMEM partial derivatives with respect to certain random variables. Dependingon
the model and the kinds of doses, PRED may be very simple or may be very complicated.
A user can write his own PRED subroutine. This can be as simple or complicated as is
necessary, and may involve calls to its own subprograms.

2.2. What is PREDPP?

PREDPP stands for "PRED for Population Pharmacokinetics". It is a PRED subroutine
for use with NONMEM and is the second major component distributed with NONMEM.
Whereas NONMEM is a general nonlinear regression tool, PREDPP is specialized to the
kinds of predictions which arise in pharmacokinetic data analysis. It can compute predic-
tions according to many different pharmacokinetic models, according to a great variety of
dosing regimens. Almostall the examples in this guide use PREDPP.

† NONMEM versions up through VI are the property of the Regents of the University of California, but ICON
Development Solutions has exclusive rights to license their use. NONMEM 7 is the current version of the soft-
ware and is the property of ICON Development Solutions.
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2.3. What is NM-TRAN?

NM-TRAN stands for "NONMEM Translator". Itis the third major component distrib-
uted with NONMEM. It is a separate, "stand-alone" control language translator and data
preprocessor. When NM-TRAN is used, a NONMEM run includes two separate steps:
first the NM-TRAN step, in which a file of NM-TRAN records (which begin with "$")
are translated into several NONMEM input files, and second the NONMEM step itself.
All the examples in this guide use NM-TRAN.We strongly recommend its use.

Note that neither NM-TRAN nor NONMEM-PREDPP run interactively. Files of com-
mands and data are created by means of (say) the operating system editor. Then NM-
TRAN and NONMEM are executed, using these files as input. Figure 1.1 shows the rela-
tionship between NONMEM, PREDPP, and NM-TRAN.

A file of NM-TRAN
records A data file

NM-TRAN

NONMEM

PREDPP

Control and data
files for NONMEM

NONMEM output report

Fig 1.1. NONMEM, PREDPP, and NM-TRAN. A user-written PRED subroutine could be included instead

of PREDPP.

2.4. Scopeof this Introductory Guide

This Guide is intended to be read by new users of NONMEM-PREDPP. Typically, such
users have pharmacokinetic data, either from a population or from a single individual†, to
be fit to a standard pharmacokinetic model (e.g., a one or two compartment linear mam-
millary model). However, new users with nonstandard models, or with pharmacoki-
netic/pharmacodynamic data, may also find this guide helpful.

It is assumed that NONMEM and its components are already installed on the user’s com-
puter and that the user wants to learn to use them as quickly as possible. This guide does
not tell how to perform the installation or how to run an installed NONMEM under a par-
ticular operating system; the new user will have to ask experienced users what the local
commands are.However, someone who is installing NONMEM at a new site may find it
useful to review this guide to get a quick overview of NONMEM, its component pro-
grams, its inputs, and its outputs.

This guide is not a text book in pharmacokinetics or statistics. Readers should be familiar
with basic concepts in pharmacokinetics and statistical data analysis.We also assume a

† The terms "population" and "single individual" are used in this guide. NM-TRAN and NONMEM outputs
refer to POPULATION and SINGLE-SUBJECT data and analysis.
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very basic familiarity with FORTRAN.

2.5. Contentsof this Introductory Guide

Chapter 2 contains two examples of the use of NONMEM. The first presents data from
a single individual; estimates are obtained of his pharmacokinetic parameters. The sec-
ond presents data from a group of individuals; estimates are obtained of the pharmacoki-
netic parameters of the population which this group represents. The examples serve to
introduce NONMEM notation, input and output, and to provide an idea of what is possi-
ble using the system.

Chapter 3 presents the notation and definitions we will use to discuss models for individ-
ual data. The relationship of these models to data is discussed, and the distinction
between so-called fixed effects and random effects is made.

Chapter 4 extends this discussion to models for population data.

Chapter 5 discusses NONMEM’s fitting criterion, the parameter estimates obtained by
using this criterion, and the standard errors of these estimates.It then discusses how to
do hypothesis tests with NONMEM.

Chapter 6 tells how to create data files for NONMEM-PREDPP and how to describe
them using the $DAT A and $INPUT records of NM-TRAN. It also discusses the Data
Preprocessor feature of NM-TRAN.

Chapter 7 tells how to use NM-TRAN to write simple $SUBROUTINE records for
PREDPP, how to write $PK records for individual data, and how to write $PK records for
population data.

Chapter 8 tells how to write simple $ERROR records for PREDPP. Chapters 7 and 8 are
meant to be read in parallel with Chapters 3 and 4.

Chapter 9 tells how to use NM-TRAN to specify the remaining choices for an analysis.
It tells how to assign initial values to parameters ($THETA, $OMEGA, $SIGMA
records), how to specify what analysis tasks to perform ($ESTIMATION, $COVARI-
ANCE records), and how to specify certain additional output ($TABLE, $SCATTER-
PLOT records).

Chapter 10describes NONMEM’s output in detail.

Chapter 11 outlines the process of model building, showing how a simple model can be
made more complex to better fit the data.

Chapter 12 briefly describes a variety of features of PREDPP and NONMEM that are
somewhat advanced for this text but are of interest to most users of NONMEM.Refer-
ences are given to other documents in which additional information can be found.

Chapter 13discusses errors that can occur during a NONMEM run.

Appendix 1 describes PREDPP’s most commonly used pharmacokinetic models
(ADVAN subroutines).

Appendix 2describes alternative parameterizations (TRANS subroutines) for these mod-
els.

Appendix 3 is a list of NM-TRAN records.

2.6. How to Read this Guide

Readers who are completely new to NONMEM should read this guide starting with
Chapter 2; the examples presented are used again in the later chapters. Chapters 2-5 are
theoretical in nature. Chapters 6-12 describe the details of building the input for
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NONMEM-PREDPP and interpreting the output. Readers who have non-pharmacoki-
netic data to fit can skip (or skim) Chapters 3, 4, 7, and 8. Readers who already have
some familiarity with certain topics (e.g., who have used other nonlinear analysis pro-
grams to analyze data) can concentrate on the chapters of interest to them.We strongly
recommend that all users "graduate" to the more thorough NONMEM documentation
listed in Section 4 of this chapter.

Throughout the guide, examples are given of NM-TRAN records. These examples
appear in boldface:
$THETA .01

Examples are also given of (fragments) of input data files. They appear as follows:
ID AMT TIME DV
2 320. 0. 0.
2 0. .27 1.71

Alphabetic characters such as ID, AMT, etc., are shown for descriptive purposes. They
arenotpart of the actual data file.

3. A Brief Technical Overview

In this section we discuss the components of NONMEM in some detail.First-time read-
ers may prefer to skip this section and go directly to Chapter 2, which gives an example
of a NONMEM run, and return to this section later (if at all).

3.1. NONMEM

NONMEM is written (almost) entirely in ANSI FORTRAN 90/95. It is distributed on
CD-ROM as FORTRAN source code, some of which is encrypted.It can be compiled
and run on any computer which has a FORTRAN 90/95 compiler and sufficient memory
and speed to run a large, computationally intensive program.

NONMEM consists of a main program and many subroutines, all of which are required
for each NONMEM run. As discussed above, one subroutine, PRED, is not included in
NONMEM itself.

3.2. PREDPPand the PREDPP Library

PREDPP is not a single subroutine. It is a collection of FORTRAN subroutines. Some of
these are always needed but must be supplied by the user himself (see PK and ERROR
below). Othersare always needed and are supplied; these are called the kernel routines.
Others (subroutines ADVAN and TRANS, for example) are also always needed, and are
supplied, but are chosen from different versions corresponding to different pharmacoki-
netic models. The collection of supplied routines constitutes the PREDPP Library.

3.3. Subroutines PK and ERROR

Tw o very important subroutines of PREDPP are called PK and ERROR. PKcomputes
the values of the population or individual pharmacokinetic parameters (e.g., CL and V) of
a giv en model and accounts for the "differences" between individual and population val-
ues. ERROR accounts for the "differences" between predicted and observed values.
These two subroutines are where the basic task of modelling is carried out; this task is the
user’s responsibility. Chapters 7 and 8 are devoted to a description of these subroutines.

Figure 1.2 shows the major components of PREDPP.
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PREDPP kernal subroutines

ADVAN  and TRANS

PK

ERROR

Figure 1.2. Components of PREDPP. ADVAN and TRANS are chosen from the PREDPP library. PK and

ERROR are user-supplied.

3.4. Building an Executable Module for NONMEM

Whether PREDPP is used or a special purpose PRED subroutine is written, the PRED
subroutine must be combined ("linked") with NONMEM; this process (which is some-
times is called "link editing" or "loading") must take place before the actual NONMEM
run. TheNONMEM-PRED combination is generally called a "load module" or "exe-
cutable module". Compiling and linking are processes which are operating system
dependent; each installation must supply its own commands and procedures for these
tasks. They may be done before the NM-TRAN step or between it and the NONMEM
step. Thischoice is discussed in Section 3.7 below. For certain platforms, a front-end
interface provided by the NONMEM Project Group (nmfe74.bat for MS/DOS; nmfe74
C-shell script for Unix-type) can be used to perform these steps, and can create all both
types of load modules described below: generated subroutines and user-written subrou-
tines.

3.5. NM-TRAN

NM-TRAN provides the following services: control language translation, model specifi-
cation via FORTRAN-like statements (called abbreviated code), partial differentiation,
and preprocessing of the data. They are discussed separately.

3.6. Control Language Translation

NM-TRAN includes a language for communicating control information to NONMEM.
NM-TRAN records are free-form (i.e., spacing between options within a record and the
order of the records and their options is flexible) and use English words (or their abbrevi-
ations) for options.For example, the record name $ESTIMATION may be abbreviated to
$EST; the option name SIGDIGITS may be abbreviated to SIG.Either spaces or commas
may be used to separate options.Defaults are understood for most options, allowing the
records to be relatively compact. Considerable error checking is performed by NM-
TRAN. This reduces the number and severity of the errors that can occur during the
NONMEM run. NM-TRAN also produces messages that warn the user of possible errors
in the data and/or control stream.

NM-TRAN translates a file of NM-TRAN control records into NONMEM control
records, which use a fixed-field, predominately numerical control language.

3.7. ModelSpecification via Abbreviated Code

With PREDPP, FORTRAN subroutines PK and ERROR are needed to specify parts of the
pharmacostatistical model.In most cases, these specifications can be directly expressed
within NM-TRAN records $PK and $ERROR, using FORTRAN-like assignment and
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conditional statements called abbreviated code.These statements are implemented by
NM-TRAN as complete FORTRAN subroutines in file FSUBS, incorporating the abbre-
viated code. An intermediate step between the NM-TRAN and NONMEM steps is
needed to compile these subroutines and link them with NONMEM-PREDPP.

The message "Recompiling certain components" will be displayed at the console at this
step.

Figure 1.3 shows how the compile and link step relates to the two steps of Figure 1.1.

A file of NM-TRAN
records A data file

NM-TRAN

NONMEM

PREDPP

Control and data
files for NONMEM

NONMEM output report

FORTRAN
compiler  and
loader

A file of
FORTRAN  subroutines:
PK and ERROR

Generated
PK,ERROR

Figure 1.3. Building a NONMEM load module with generated FORTRAN subroutines. An intermediate

step is placed between the two steps of Figure 1.1.

If the user supplies complete PK and ERROR subroutines (i.e., $PK and $ERROR
records are not used), then the NONMEM load module can be built at any time.

Note that even when PREDPP is not used, the same options exist. For example, if the
desired model can be expressed via a $PRED record, then NM-TRAN will generate a
complete PRED subroutine.However, whereas NM-TRAN’s FORTRAN-like syntax is
sufficient for most purposes of writing PK and ERROR subroutines, it is not sufficient for
writing any but the simplest of PRED subroutines.

3.8. Partial Differentiation

NONMEM requires that PRED (whether PREDPP or user-written) compute more than
just predicted values. Itmust also compute certain partial derivatives with respect to the
random variablesη and ε described in Chapters 3 and 4. When $PK, $ERROR, or
$PRED records are used, NM-TRAN performs symbolic differentiation to generate the
code needed to compute these derivatives. Thisrelieves the user of a major burden.

3.9. DataPreprocessor

NM-TRAN includes a Data Preprocessor program which allows the user greater flexibil-
ity in constructing his data file than is allowed in a data file input directly into NON-
MEM. This is discussed in Chapter 6.

4. Additional Documentation

More information can be found in the other parts of the NONMEM Users Guide, all of
which may be found as pdf files on the NONMEM distribution medium.
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Part I - Users Basic Guide
A thorough, step by step discussion of the various features and some of the statisti-
cal concepts involved in using NONMEM, including many examples.

Part II - Users Supplemental Guide
A continuation of Part I which includes advanced features of NONMEM.

Part III - NONMEM Installation Guide
A guide for installing NONMEM, PREDPP, and NM-TRAN.

Part IV - NM-TRAN Guide
A complete reference guide to NM-TRAN and the Data Preprocessor.

Part V - Introductory Guide
The present document.

Part VI - PREDPP Guide
A complete reference guide to PREDPP.

Part VII - Conditional Estimation Methods
A description of these methods and some guidelines for their use.

Part VIII - Help Guide
A fast way to locate information on a given word or topic. The content of the Help
Guide is also supplied on the NONMEM distribution medium as both text files
("on-line help") and html files for on-line searching.

NONMEM V Supplemental Guide
Describes new features of NONMEM V.

Introduction to Version VI
Describes new features of NONMEM VI.

Introduction to NONMEM 7.4.0
Describes new features of NONMEM 7.1, 7.2, 7.3, and 7.4

NONMEM7_Technical_Guide
Technical Guide on the Expectation-Maximization Population Analysis Methods in
the NONMEM 7 Program.New with NONMEM 7.2; revised for NONMEM 7.3
and for NONMEM 7.4

useful_variables
New with NONMEM 7.3; revised for NONMEM 7.4 A description of variables that
are available via the NM-TRAN include file util\nonmem_general_reserved.
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1. What This Chapter is About

In this chapter, two examples of the use of NONMEM will be given. Thefirst estimates
pharmacokinetic parameters of an individual from his data; the second estimates so-called
population parameters from data from a group of individuals. Theexamples serve to
introduce NONMEM notation, input and output, and to provide an idea of what is possi-
ble using the system. The second example will be discussed again in Chapter 11.

2. An Individual’ s Theophylline Kinetics

Figure 2.1 shows the input used to fit a model to observations of theophylline plasma con-
centrationvs time in a single individual after a single dose of 320 mg.

$PROB SIMPLE NONLINEAR REGRESSION - THEOPHYLINE
$INPUT ID AMT TIME DV
$DATA P2DATA
$SUBROUTINE ADVAN2
$PK
KA=THETA(1)
K=THETA(2)
V=THETA(3)
S2=V
$ERROR
Y=F+ERR(1)
$THETA (0, 1.7) (0, .102) (0, 29.)
$OMEGA 1.2
$ESTIMATION PRINT=5
$COVARIANCE
$TABLE ID AMT TIME
$SCATTER PRED VS DV UNIT

Figure 2.1. The input (i.e., NM-TRAN control records) for analysis of some individual theophylline data.

The first line (record) gives a name to the problem. The rest of the lines (records) discuss
the data, the model, and the desired output. Before going into these in some greater
detail, you may want to look right now at figures 2.1 and 2.2, and then 2.4 and 2.5.Fig-
ure 2.2 shows the data for this problem, and figures 2.4 and 2.5 show some of NON-
MEM’s output. All you need to know to get a good idea of what this analysis shows is
that the one-compartment model with first-order absorption has been used; the observed
concentrations and the times of observation after the bolus dose are in columns 4 and 3,
respectively, of figure 2.2; and that the symbol DV stands for dependent variable (the
observed concentrations, in this case).You should, for example, even at this point, be
able to tell that the estimate of Volume of Distribution (V in figure 2.1, and THETA(3) in
figure 2.4) is 32 liters (L), with a standard error of±1. 26L. Now consider the figures in
greater detail.

2.1. TheNM-TRAN Control Records

The second record of figure 2.1 names the data items that appear on each data record, and
the third record gives the name of the file containing the data records, P2DAT A in this
example. Figure2.2 shows the contents of P2DAT A.
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2 320. 0. 0.
2 0. .27 1.71
2 0. .52 7.91
2 0. 1. 8.31
2 0. 1.92 8.33
2 0. 3.5 6.85
2 0. 5.02 6.08
2 0. 7.03 5.4
2 0. 9. 4.55
2 0. 12. 3.01
2 0. 24.3 .90

Figure 2.2. The contents of the data file containing the data records.

According to the second record of figure 2.1, the third data item (column) of a data record
is TIME, the time associated with the event described by that data record. The event at a
given time (for this simple data set) can either be the administration of a dose or the
acquisition of an observation. Thesecond data item of a data record is AMT, amount (in
this case in mg) of the dose given at TIME, the time of the record.Apparently, 320 mg is
given at time zero (first record of figure 2.2), and no further doses are given (all zeros in
column 2 thereafter).The fourth data item (column) in P2DAT A is named DV, for
Dependent Variable (the measured plasma theophylline concentration), as already men-
tioned. So,all of the data records, except the first, give the time after the 320 mg dose,
and the concentration of theophylline (in mg/L) measured in a plasma sample drawn at
that time. The first data item is labelled ID for the IDentification number of the patient.
Here it happens to be 2.

2.2. TheModel

The fourth record of figure 2.1 identifies the pharmacokinetic model PREDPP is to use:
the one-compartment model with first-order absorption. It is implemented by an ADVAN
subroutine (see Chapter 1, Section 3.2) which is called ADVAN2 (See Chapter 7).Figure
2.3 shows the part of the output of NONMEM for this problem that verifies the user’s
choice of model. It also describes the features of the model in terms of its compartments.
Of relevance to this problem are the DEPOT compartment (where the dose goes, and
from which drug enters the central compartment by a first order process), and the CEN-
TRAL compartment itself. Note, for example, that the default compartment for doses
(i.e., where PREDPP will add doses if not otherwise instructed) is the DEPOT compart-
ment, as it should be.
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ONE COMPARTMENT MODEL WITH FIRST-ORDER ABSORPTION (ADVAN2)

MAXIMUM NO. OF BASIC PK PARAMETERS: 3

BASIC PK PARAMETERS (AFTER TRANSLATION):
ELIMINATION RATE (K) IS BASIC PK PARAMETER NO.: 1
ABSORPTION RATE (KA) IS BASIC PK PARAMETER NO.: 3

COMPARTMENT ATTRIBUTES
COMPT. NO. FUNCTION INITIAL ON/OFF DOSE DEFAULT DEFAULT

STATUS ALLOWED ALLOWED FOR DOSE FOR OBS.
1 DEPOT OFF YES YES YES NO
2 CENTRAL ON NO YES NO YES
3 OUTPUT OFF YES NO NO NO

Figure 2.3. The PREDPP output that verifies the user’s choice of model.Features of the model are dis-
cussed, such as the names and numbering of parameters, and the attributes of the various compartments in the
model.

The fifth input record (figure 2.1) signals the start of the user’s specification of the model
for the pharmacokinetic parameters. This specification is given in the next 4 lines of so-
called abbreviatedcode(the $PK record, along with this abbreviated code is called the
$PK block). Some of the parameters that NONMEM estimates are denoted byθ herein,
and are labeled THETA in NONMEM input and output. The model specified in figure
2.1 is very simple. It says that a different unknown constant (NONMEM parameter) is to
be assigned to each pharmacokinetic parameter: first-order absorption rate, KA (line 1 of
the PK block, after the $PK record - THETA(1)), rate constant of elimination, K (line 2 -
THETA(2)), and volume of distribution, V (line 3 - THETA(3)). TheS2 parameter (a so-
called scale parameter) is discussed in Chapter 3, Section 2.2.

The sixth input record (figure 2.1 - 11th line) signals the start of the user’s specification of
the (statistical) model for the lack of fit of the pharmacokinetic model to the data.This
specification is given in the next line of abbreviated code (the $ERROR record, along
with this line of abbreviated code is called the $ERROR block).The model here says that
observations differ from predictions by an additive error (ERR(1)).

Record 7 ($THETA) gives NONMEM information about possible values of each element
of θ in the format: lower bound, initial estimate, upper bound.When, as in this particular
record, only two numbers are given for an element ofθ , these are understood to mean the
lower bound and initial estimate; the upper bound is unlimited.Record 8 ($OMEGA)
gives NONMEM an initial estimate of the variance of ERR(1). This statistical parameter
is often denoted byσ 2 in statistical discussions, but with data from a single individual, it
is denoted byΩ in NONMEM documentation, and by OMEGA in NONMEM input and
output. Itis understood that a variance parameter is always nonnegative. The $OMEGA
record is further discussed in Chapter 9, Section 3.

2.3. TheOutput

Record 9 ($ESTIMATION) instructs NONMEM to obtain estimates of the parameters,
and the next record ($COVARIANCE) asks that it also obtain standard errors of the
parameter estimates.The output is shown in figure 2.4. It requires little discussion.The
first item, the minimum value of the objective function, is a goodness of fit statistic, much
like a sum of squares (and as with a sum of squares, the lower the value, the better the fit).
The parameter estimates (the parameter values at which the objective function is mini-
mized) and their standard errors follow. Note that the estimate of OMEGA, too, has a
standard error. Unlike most fitting programs, NONMEM treats this parameter like any
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other.
************************************************************************************************************************
******************** ********************
******************** MINIMUM VALUE OF OBJECTIVE FUNCTION ********************
******************** ********************
************************************************************************************************************************

************************************************** 8.940 **************************************************

************************************************************************************************************************
******************** ********************
******************** FINAL PARAMETER ESTIMATE ********************
******************** ********************
************************************************************************************************************************

THETA - VECTOR OF FIXED EFFECTS *********************

TH 1 TH 2 TH 3

1.94E+00 1.02E-01 3.20E+01

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

ETA1

ETA1 8.99E-01

************************************************************************************************************************
******************** ********************
******************** STANDARD ERROR OF ESTIMATE ********************
******************** ********************
************************************************************************************************************************

THETA - VECTOR OF FIXED EFFECTS *********************

TH 1 TH 2 TH 3

6.28E-01 7.35E-03 1.25E+00

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

ETA1

ETA1 5.44E-01

Figure 2.4. NONMEM output giving the goodness of fit statistic (the minimum value of the objective func-

tion) the parameter estimates, and their standard errors.

The next to last control record asks NONMEM to print a table displaying the input data
and certain computed quantities.A portion of a NONMEM table is shown in figure 10.10
of Chapter 10. The last control record asks NONMEM to make a scatterplot of the pre-
diction of each plasma concentration (PRED) VS the observed value (DV) and to draw
the line of identity (UNIT, for "unit slope" line) on the plot.The plot is shown in figure
2.5.
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PRED VS. DV
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. *  .

. .  .
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. .  .

. .  .
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. .  .

. .  .

. .  .

. .  .
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. . .
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. . .

. . .

. . .

. . * .

. . .

. . .

. . .

. . .

. . * .
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8.50E+00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . .

Figure 2.5. A scatterplot of the observed data (DV) vs the predictions of the best-fitting model parameters

(PRED). Theline of identity (intercept = 0; slope = 1) is drawn. If all points fell on that line, the fit would be

perfect.

3. A Population Model for Phenobarbital

About 60 infants were given phenobarbital therapeutically. A plasma concentration was
measured in each some hours after the first (loading) dose, followed by multiple mainte-
nance doses.A second, and sometimes a third concentration were measured later. In all,
155 concentrations were observed. Figure2.6 gives the NM-TRAN control records.The
data are too lengthy to show in full, but figure 2.7 shows the data for the first individual†.
Figures 2.8 - 2.10 have some relevant output. Again, most of the analysis results are
apparent from the figures, and you should try to see if you can figure them out before
going further. Note that the $INPUT record now defines a new data item, WT, the patient
weight. It’s value is given on every data record for an individual, in the column indicated.
This is so despite the fact that WT may not change within an individual. Thisis a bit rep-
etitious, but convenient.

† File PHENO of NONMEM distribution medium contains the complete data set.
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$PROBLEM PHENOBARB
$INPUT ID TIME AMT WT APGR DV
$DATA PHENO
$SUBROUTINE ADVAN1
$PK

TVCL=THETA(1)
CL=TVCL+ETA(1)
TVVD=THETA(2)
V=TVVD+ETA(2)

; THE FOLLOWING ARE REQUIRED BY PREDPP
K=CL/V
S1=V

$ERROR
Y=F+ERR(1)

$THETA (0,.0047) (0,.99)
$OMEGA .0000055, .04
$SIGMA 25
$ESTIMATION PRINT=5
$TABLE ID TIME AMT WT APGR
$COVARIANCE
$SCATTER PRED VS DV UNIT
$SCATTER RES VS WT

Figure 2.6. NM-TRAN control records for analysis of some population phenobarbital data.

1 0. 25.0 1.4 7 .
1 2.0 . 1.4 7 17.3
1 12.5 3.5 1.4 7 .
1 24.5 3.5 1.4 7 .
1 37.0 3.5 1.4 7 .
1 48.0 3.5 1.4 7 .
1 60.5 3.5 1.4 7 .
1 72.5 3.5 1.4 7 .
1 85.3 3.5 1.4 7 .
1 96.5 3.5 1.4 7 .
1 108.5 3.5 1.4 7 .
1 112.5 . 1.4 7 31.0

Figure 2.7. The first individual’s phenobarbital data.

3.1. TheNM-TRAN Control Records

The records are very similar to those for the theophylline problem.The new features are
that the model has changed (it is implemented by ADVAN1, not ADVAN2), the model
for the pharmacokinetic parameters is more complicated, and an additional scatterplot is
requested. Thedata for each infant is similar to those shown in figure 2.7; however, now
all of the data records for each infant start with thesamevalue for the ID data item (col-
umn 1), but this value differsbetweeninfants.

3.2. TheModel

ADVAN1 implements the one-compartment (monoexponential) model, without first order
absorption. Noabsorption model was needed for this problem because all concentrations
were measured many hours after the last (oral) dose, so absorption could be considered to
be complete, and, for the purposes of data analysis, immediate.

The parameters of the one-compartment model are defined by the abbreviated code fol-
lowing the $PK statement: Clearance (CL) and Volume of Distribution (V).However,
here each parameter is not simply equal to one of NONMEM’s parameters (an element of
THETA). Rather, CL, for example, is equal to a parameter (THETA(1)) plus a new term,
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ETA(1). The latter expresses interindividual variability, and stands for the deviation of
the individual’s true clearance (CL) from the population value (TVCL, Typical Value of
CLearance, which, in turn, is simply THETA(1)). This model is essentially different
from the theophylline model, because it incorporates interindividual variability (some-
thing that an individual model need not do).Note that since PREDPP ultimately needs
the values of microconstants, rather than physiological-based pharmacokinetic parameters
such as clearance, code must be given for K, the rate constant of elimination.There is,
though, a simple alternative to writing this additional line of code. It is discussed in
Chapter 3 Section 2.1.

The abbreviated code after the $ERROR record is exactly the same as that with the theo-
phylline data and expresses the same model for lack-of fit between observations and pre-
dictions for an individual. The$OMEGA and $SIGMA records, which give NONMEM
information about the estimated variances of the ETA and ERR variables, are discussed in
Chapter 9, Section 3.Previously the initial estimate of the variance of ERR(1) was given
on a $OMEGA record. Here it is given on a $SIGMA record. This difference in NON-
MEM conventions between individual type data and population type data will be dis-
cussed more fully in Chapters 3 and 4.

3.3. TheOutput

NONMEM is again instructed to estimate the parameters and their standard errors.The
results are shown in figures 2.8 and 2.9.

************************************************************************************************************************
******************** ********************
******************** MINIMUM VALUE OF OBJECTIVE FUNCTION ********************
******************** ********************
************************************************************************************************************************

************************************************** 717.203 **************************************************

************************************************************************************************************************
******************** ********************
******************** FINAL PARAMETER ESTIMATE ********************
******************** ********************
************************************************************************************************************************

THETA - VECTOR OF FIXED EFFECTS *********************

TH 1 TH 2

5.48E-03 1.40E+00

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

ETA1 ETA2

ETA1 6.85E-06

ETA2 0.00E+00 2.86E-01

SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS ****

EPS1

EPS1 8.01E+00

Figure 2.8. NONMEM output giving the goodness of fit statistic (the minimum value of the objective func-

tion) and the parameter estimates for the phenobarbital problem.
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************************************************************************************************************************
******************** ********************
******************** STANDARD ERROR OF ESTIMATE ********************
******************** ********************
************************************************************************************************************************

THETA - VECTOR OF FIXED EFFECTS *********************

TH 1 TH 2

4.86E-04 7.84E-02

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

ETA1 ETA2

ETA1 2.27E-06

ETA2 ......... 8.34E-02

SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS ****

EPS1

EPS1 1.49E+00

Figure 2.9. NONMEM output giving the standard errors of the parameter estimates for the phenobarbital

problem.

Note that now there are estimates of the variances of the interindividual differences in CL
(OMEGA - ETA1) and V (OMEGA - ETA2), as well as of the residual error variance
(denoted by SIGMA in NONMEM output when the data are from a population; again,
see Chapters 3 and 4). There are also standard errors for these estimates.

The next-to-last control record asks NONMEM to make the same kind of scatterplot as in
the theophylline problem: a plot of the predictions vs the observations. Here,a prediction
for an individual’s observation is based on typical (population) values of the pharmacoki-
netic parameters (see figure 2.8), rather than the values of the pharmacokinetic parame-
ters for the specific individual. Theplot is shown in figure 2.10.
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PRED VS. DV
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Figure 2.10.A scatterplot of the observed data (DV) vs the predictions with the best fitting model parameters

(PRED). Theline of identity (intercept = 0; slope = 1) is drawn. If all points fell on that line, the fit would be

perfect. Here,in contrast to figure 2.5, the data arise from many different individuals. Onecannot tell which

data came from which infant.

Although the fit is fairly good, the points far to the right of the line of identity of figure
2.10 indicate that there are many predictions (PRED) that are much higher than their cor-
responding observations (DV). This is seen from another point of view in the second
scatterplot. Thisscatterplot plots residuals (RES) vs patient weight (from the data item,
WT — see figure 2.6).A residual is the difference between an observed concentration
and its prediction (the same prediction used in the scatterplot of figure 2.10). The residu-
als reflect not only lack of fit between observations and predictions for a given individual
(the variance SIGMA), but also interindividual variability (the variances comprising
OMEGA). They can be thought of as reflecting the part of the data that the model does
not explain. As can be seen from figure 2.11, there is a clear relationship between the
sign and magnitude of the residuals and patient weight. Here, the patients with the
largest weights have the most negative residuals; i.e., their predictions are much larger
than their observations. Theseare the same points that fell on the far right of figure 2.10.
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RES VS. WT
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Figure 2.11.A scatterplot of the residuals (RES) vs patient weight (WT). The pattern suggests that observa-

tions are underpredicted in infants with low weight, and overpredicted in those with higher weights.

An obvious explanation is that Clearance or Volume, or both, increase with weight, so
that without weight being taken into account, too high a prediction is being made for a
larger infant and too low a prediction is being made for a smaller infant, all other things
(i.e., dose) being equal.To see if accounting for weight improves the fit, the run specified
in figure 2.12 can be done.
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$PROBLEM PHENOBARB WITH WEIGHT IN MODELS FOR CL AND V
$INPUT ID TIME AMT WT APGR DV
$DATA PHENO
$SUBROUTINE ADVAN1
$PK

TVCL=THETA(1)+THETA(3)*WT
CL=TVCL+ETA(1)
TVVD=THETA(2)+THETA(4)*WT
V=TVVD+ETA(2)

; THE FOLLOWING ARE REQUIRED BY PREDPP
K=CL/V
S1=V

$ERROR
Y=F+ERR(1)

$THETA (0,.0027) (0,.70) .0018 .5
$OMEGA .000007, .3
$SIGMA 8
$ESTIMATION PRINT=5
$COVARIANCE
$TABLE ID TIME AMT WT APGR DV
$SCATTER PRED VS DV UNIT
$SCATTER RES VS WT

Figure 2.12. NM-TRAN control records for fitting a model taking into account the effect of patient weight to
the population phenobarbital data.

Now both TVCL and TVVD are linear functions of weight with, in the case of TVCL, for
example, intercept THETA(1), and slope THETA(3). Bothslope and intercept are "popu-
lation" parameters since they relate weight to typical population values of the pharma-
cokinetic parameter. Now we see why WT is giv en in every data record: the abbreviated
PK code may need to be evaluated at each event time. If WT did not change over time
within any patient, it could be given only on the first data record for each patient, but then
slightly more complicated abbreviated code would be needed. The output from running
the input of figure 2.12 is shown in figures 2.13 - 2.16.

************************************************************************************************************************
******************** ********************
******************** MINIMUM VALUE OF OBJECTIVE FUNCTION ********************
******************** ********************
************************************************************************************************************************
************************************************** 609.134 **************************************************

************************************************************************************************************************
******************** ********************
******************** FINAL PARAMETER ESTIMATE ********************
******************** ********************
************************************************************************************************************************

THETA - VECTOR OF FIXED EFFECTS *********************

TH 1 TH 2 TH 3 TH 4

1.43E-11 1.21E-01 4.77E-03 9.18E-01

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

ETA1 ETA2

ETA1 1.36E-06

ETA2 0.00E+00 7.51E-02

SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS ****

EPS1

EPS1 8.71E+00

Figure 2.13. The minimum objective function value and parameter estimates for the phenobarbital data,

using the model of figure 2.12, which takes into account the effect of patient weight.
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************************************************************************************************************************
******************** ********************
******************** STANDARD ERROR OF ESTIMATE ********************
******************** ********************
************************************************************************************************************************

THETA - VECTOR OF FIXED EFFECTS *********************

TH 1 TH 2 TH 3 TH 4

9.49E-11 1.46E-01 2.24E-04 1.13E-01

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

ETA1 ETA2

ETA1 7.24E-07

ETA2 ......... 3.63E-02

SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS ****

EPS1

EPS1 1.71E+00

Figure 2.14.The standard errors of the parameter estimates for the phenobarbital data, using the model of

figure 2.12, which takes into account the effect of patient weight.

Note the improvement in the minimum objective function value (it drops 108 points), and
the profound decreases in the sizes of the estimates of the interindividual variances; now
that weight is in the model, there is less unexplained interindividual variability. As will
be discussed in Chapter 5, the decrease in the objective function can be used for a formal
hypothesis test of the appropriateness of the new model (figure 2.12) for the effect of
weight on the pharmacokinetic parameters.

Note also the very small values estimated for THETA(1) and for its standard error. The
intercept term of TVCL does not appear to be an important part of the model.This model
is refined in Chapter 10, Section 6.2, where it is seen that deleting THETA(1) and
THETA(3) produces a model that fits as well as the model including them.
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Figure 2.15.A scatterplot of predictions vs observations for the phenobarbital data, using the model of figure

2.12, which takes into account the effect of patient weight. Compare to figure 2.10.

The scatterplots (figures 2.15 and 2.16) confirm that the new model is an improvement:
the group of points far to the right of the line of identity have disappeared from the PRED
vs DV plot, and the plot of residuals vs weight no longer shows a pattern.
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Figure 2.16.A scatterplot of residuals (RES) vs patient weight (WT) for the phenobarbital data, using the

model of figure 2.12, which takes into account the effect of patient weight. Compare to figure 2.11.

4. Overview

The examples in this chapter illustrate some of the most important and useful features of
NONMEM.

° NONMEM can fit both individual and population models.

° NONMEM has a menu of pharmacokinetic models from which the one appropriate
to the problem at hand can be chosen.

° The user specifies the relationship of pharmacokinetic parameters to independent
variables (such as WT in the phenobarbital example), using "population" parame-
ters that will be estimated.

° The user also specifies which parameters vary between individuals, and the form
(model) for this variability, as well as the form (model) for the differences between
observations from an individual and their predictions for this individual.

° NONMEM estimates parameters describing both kinds of variability.

° NONMEM provides estimates (standard errors) of the precision of its parameter
estimates, including those describing variability.

° NONMEM provides a means of deciding whether one model (e.g., that including
weight’s effect on CL and V) fits the data better than another using the minimum
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objective function value, a goodness-of-fit statistic.

° NONMEM provides (limited) graphics, useful in judging the adequacy of the model
currently fit to the data.
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Chapter 3 - Models for Individual Data

1. What This Chapter is About

In this chapter, the notation and definitions we will use to discuss models for individual
data will be presented. The relationship of these models to data will be discussed, and a
distinction between pharmacokinetic structural models (that describe the underlying
shape and form of the data) and statistical error models (that describe the "errors" or dif-
ferences between observations and structural model predictions) will be made.Several
error models will be discussed, as will a useful modelling device, the indicator variable.

2. PharmacokineticStructural Models for Individual Data

By individual datawe usually mean data from a single individual (animal or human).
One could also be concerned with data comprised of a pharmacokinetic response at just
one time point from each of a number of individuals. Call this type of data single-
responsepopulationdata.This name comes from the fact that data such as these can, of
course, be regarded as a particular instance of the more general data type, population
data; i.e., data comprised of oneor more pharmacokinetic responses at different time
points from a number of individuals sampled from a population.Although one can dis-
cuss the treatment of single-response population data as population data, they are often
treated just as are individual data.

A simple pharmacokinetic model for data from a single individual is the monoexponen-
tial ("one-compartment") model:

A j = De−kt j (3.1)

This model describes the typical time course of amount of drug in the body (A), as a
function of initial dose (D), time (t), and aparameter, k. As we may be interested inA at
several possible times, we explicitly note this by the subscriptj which indexes a list of
times,t0, t1, . . . ,t j , . . . , tn.

A way to write a generic form for a structural model, omitting details of its structure, is

y j = f (x j , φ ) (3.2)

wherey stands for some "response" (dependent variable) of interest (A in (3.1)), the sym-
bol f stands for the unspecified form of the model (a monoexponential such as in (3.1)),
which is a function of known quantities,x (t j and D in (3.1)), andparameters, φ (k in
(3.1)). Thequantities in x areknown, because they are either measured or controlled, and
therefore, are called fixed effects,in contrast to effects which are not known and are re-
garded as random (see below). Theparameters in the parameter vectorφ are called fixed
effectparametersbecause they quantify the influence of the fixed effects on the dependent
variable. Eachone of an individual’s pharmacokinetic parameters is a particular type of
fixed effect parameter. With NONMEM, parameters comprisingθ are (usually) fixed ef-
fect parameters, but these may or may not be an individual’s pharmacokinetic parameters
(contrast figures 2.1 and 2.6). Here we shall use the symbolφ for the parameter vector
comprised specifically of an individual’s pharmacokinetic parameters (although there will
be some exception to this).

Aside from the fact that the values given by a structural model are usually not the values
observed due to measurement error or model misspecification, an amount of drug (A of
(3.1)) is usually not itself observable. Instead,we may observe a  concentration (C) of
drug. We need an "observation scaling" model to describe the relationship betweenA
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andC. This might be

C̃ j =
A j

V
(3.3)

where V is another parameter, Volume of Distribution. (We denote the concentration in
model (3.3) by the symbol̃C, to distinguish it, the model-predicted value, from the actu-
ally observed value,C. This will soon be discussed further.) PREDPP assumes that
there is always an observation scaling model like (3.3) that relates an amount of drug (in
some compartment of the body) to the observation, and therefore always expects a param-
eter, Sn that scales (i.e. divides) the predicted amount in thenth compartment. Inthe
example above, S1 is simply V. In other examples, to be discussed later, Sncan be more
complicated. Ifa value forSn is not specified, it is taken to be 1.For the rest of this dis-
cussion, it is convenient to assume thatφ itself includes a scaling parameter (if such is
needed, and even though such a parameter is not usually regarded as one of an individ-
ual’s pharmacokinetic parameters) and thatf actually includes observational scaling.
Note, considering the example of (3.3), thatx ≡ (D, t), andφ ≡ (k, V). Thusx andφ of
(3.1) are in general lists of things (vectors), not single things (scalars).

PREDPP implements a number of pharmacokinetic models, such as the one-compartment
model (3.1), (3.3). These will be discussed more fully in Chapter 7. There is no need for
further general discussion of kinetic models, as we assume the readers of this document
are familiar with pharmacokinetics.However, two modelling features deserve further
comment, alternative parameterizations and the special parameter,Sn.

2.1. Alternative Parameterizations

Recall the phenobarbital example of Chapter 2.For the first run, the input contained,
among other things, some lines of code defining the variablesCL andV, and then the line

K = CL/V

This line was needed because PREDPP expects the one-compartment model to be param-
eterized using the parameterK , the rate constant of elimination, not clearance and vol-
ume of distribution. However, we chose to estimate typical population values forCL and
V, so we had to relate these parameters to THETA and then relateK to CL andV. This is
an example of reparametrization of a model so that the pharmacokinetic parameters used
are those of primary interest to the modeler. In fact, we may use any parameterization we
wish, so long as we are willing to include the reparameterization line(s) that translate our
parameters into those expected by PREDPP. (Chapter 7 discusses the parameters
PREDPP expects for the various models it implements.)However, there is a program
called TRANS which automatically does this translation.Different versions of TRANS
exist in the PREDPP Library and correspond to translations of different parameterizations
into that expected by PREDPP.

2.2. TheScale Parameter, S

Usually, observations are concentrations. So, as in model (3.3),S will usually be set
identical toV. Howev er, S is not always simplyV. Some examples should clarify this
point. (In the discussion below, we avoid the notationSn, and useS, to refer to the scale
term for the amount in the compartment in which concentrations are being measured.)

2.2.1. SDepends on a Known Constant

This almost trivial case occurs when one wishes to match the units of predicted responses
to those of the data.For example, supposeD is in milligrams, but concentrations are in
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ng/ml. If no scaling is done, the units ofV will be kiloliters (i.e.,V=1 corresponds to
V=1000 liters).To avoid this, one might choose the model

S = V/1000

thereby converting the units ofA into micrograms, and since mcg/L≡ ng/ml, the units of
V become liters. Of course, one could recode one’s data, dividing all concentrations by
1000 (or multiplying the dose by 1000) and avoid this, but that may not be convenient.

2.2.2. SDepends on a Parameter

Later in this chapter we will discuss a model used when the data arise from two different
assays (call them assay 1 and assay 2).In such a case, there may be a systematic (multi-
plicative) bias of one assay relative to the other. If we wish to allow for this possibility,
we might need a model such as

S =




V,

hV,

if assay is1

if assay is2

whereh is a new parameter that measures the proportional bias of the assays (i.e., bias
causes the apparent volume of distribution to be different for data from the two assays).
The parameterh is not really a pharmacokinetic parameter, but for the purpose of this dis-
cussion it can be included inφ .

2.2.3. SDepends on an Element of x

Later in this chapter we will describe a model useful when two kinds of responses are
measured, plasma and urine concentrations.In the case of urine concentrations, the pre-
dicted total drug in the urine during a time period (available from an "output" compart-
ment present in all models implemented by PREDPP; see Chapter 7) would have to be
scaled by the actual urine volume during that time period.This volume would be an ele-
ment ofx, and S would be set equal to it.

3. StatisticalModel for an Individual’ s Observations

One does not, in fact, ever observe the predicted plasma concentration (or any other pre-
dicted response). What one observes is a measured value which differs from the pre-
dicted value by some (usually small) amount called a residualerror(also called intra-indi-
vidual error). We reg ard this error as a random quantity (see below). We will want
NONMEM to fit our model to our data, and in so doing, provide us with estimates of the
model parameters. The way NONMEM’s fit follows the data is determined largely by
what we tell it about the nature of the errors (see Chapter 5).We must therefore provide
NONMEM with another model, an error model.

There are many reasons that the actual observation may not correspond to the predicted
value (e.g.C̃ as given by the right side of (3.3)) The structural model may only be
approximate, or the quantities inx may have been measured with error, or, as is always
true, pharmacokinetic responses may be measured with some error (assay error).It is too
difficult to model all these sources of error separately, so we usually make the simplifying
assumption that each difference between an observation and itsprediction(i.e. each error)
is a randomly occurring number. When the data are from a single individual, and the
error model is the Additive error model (see Section 3.1, below), the error is denoted byη
herein, by ETA in NONMEM output, and by ETA or ERR in NM-TRAN input. (When
data are from a population, and the same error model is used, this error will be denotedε ;
see Chapter 4.) Therefore a model for the jth observation,y j , could be written
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y j = f (x j ,φ ) + η j (3.4)

Implicit in using the symbolη in this way is the assumption that all residual errors come
from probability distributions with mean zero and the same (usually unknown) variance.
(The error variance is the meansquarederror.) Morecomplicated error models involving
η can be written (see below). A schematic of model (3.4) is shown for the structural
model of (3.1), (3.3) in figure 3.1. Because this model describes the influence of both
fixed effects (x j ) and random effects (η j ), it is called a Mixed EffectsModel (hence the
name, NONMEM:NONlinear Mixed EffectsModel). Mixed effects models, in general,
may have more than one random effect, and more than one type of random effect (Chap-
ter 4); (3.4) is only a particularly simple example.

C

t

error

Figure 3.1.C vs t for a monoexponential model. The solid line isf (x,φ ); the circles are the observed data

points. Anerror is indicated.

Even though errors are unpredictable random quantities, some information about them is
usually assumed, and some can be estimated.First, it is assumed that the mean error is
zero. Thissimply means that were the true values for the parameters inφ known, the
model would have no systematic overall bias (e.g., be systematically below or above the
data points, on average).

A second aspect of the error, one that can be estimated by NONMEM, is its typical size.
Since errors may be positive or neg ative, their typical size is not given by their mean
(which is zero), but by their standard deviation, the square root of their variance. Onecan
always simply convert the variance into the standard deviation, and conversely. NON-
MEM output gives estimates of the error variance. With individual data this variance is
denoted in this text byω 2, and by OMEGA in NONMEM input and output.The standard
deviation (SD) of the error is denotedω herein. Thereason that OMEGA, rather than, for
example, OMEGA SQ stands forω 2 in NONMEM input and output will be discussed in
Section 3.8.(We will see, in Chapter 4, that when the error is symbolized byε , not η, its
variance will be denotedσ 2 in this text, and SIGMA, not OMEGA, in NONMEM input
and output.) Here, the parameterω 2 quantifies the influence of the random effect, η on
the observations,y. It is therefore called a randomeffectsparameter.
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3.1. TheAdditi ve Error Model

The symbolη is always used to denote a random quantity whose probability distribution
has mean zero and varianceω 2. Model (3.4) says that the errors themselves can be so
regarded, and since an observation equals its prediction (under the structural model) plus
an error, model (3.4) is called the Additiveerror model.This model is illustrated in figure
3.2.

C

t

Figure 3.2.C vs t for a monoexponential model. The middle line isf (x,φ ); the outer lines give the approxi-

mate "envelope" for additive errors. Don’t be fooled by the apparent widening of the gap between the upper

and lower curves as time increases: the vertical distance from the middle line to either outer line is every-

where the same.

3.2. TheConstant Coefficient of Variation and Exponential Models

NONMEM allows an error model which can be more complicated than that of (3.4).One
such more complicated, but useful model is the ConstantCoefficientof Variation (CCV),
or Proportionalerror model,

y j = f (x j ,φ ) + f (x j ,φ )η j = f (x j ,φ )(1 + η j ) (3.5)

A fractional error is an error expressed as a fraction of the corresponding prediction.The
CCV model says that a fractional error can be written as anη, i.e. as a random quantity
with mean zero and varianceω 2. Under this model, the variance of an error itself is pro-
portional to the squared prediction, withω 2 being the proportionality factor, and so is not
constant over observations. Since,under this model, the standard deviation of the error,
and also ofy, is ω f (x,φ ), and since the mean ofy is f (x,φ ) (whenφ assumes its true
value), the coefficient of variation ofy is just the constantω (the coefficient of variation
of a random quantity is defined as its standard deviation divided by its mean). This is the
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reason the CCV error model is so named. Also for this reason,ω 2 is dimensionless, in
contrast to having units equal to those of the squared observation as with the Additive
model. Thiserror model is illustrated in figure 3.3.

C

t

Figure 3.3.C vs t for a monoexponential model. The middle line isf (x,φ ); the outer lines give the approxi-

mate "envelope" for constant coefficient of variation errors.

The exponentialerror model is

y j = f (x j ,φ ) exp(η j ) (3.5a)

This model is sometimes referred to as the log-normal model, because it it is additive if
logs are taken (and because eta sj is assumed to be normally distributed):

log y j = log f (x j ,φ ) + η j (3.5b)

See Chapter 8, Section 3.2 for a discussion of this model.

3.3. CombinedAdditi ve and CCV Error Model

When most observations obey the CCV model but some observations may be near the
lower limit of detection of an assay, a model which may be useful is one which is a com-
bination of both the Additive and CCV error models:

y j = f (x j ,φ ) + f (x j ,φ )η1 j + η2 j . (3.6)

Here there are two types ofη ’s, η1 and η2. Thefirst has varianceω 2
1; the second has a

possibly different variance,ω 2
2. NONMEM permits several types ofη ’s. Under this

model, the variance of the error portion of the model isω 2
1 f (x j ,φ )2 + ω 2

2. When the pre-
diction is near zero, the variance is approximately constant, namelyω 2

2. This is the
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smallest variance possible and corresponds, perhaps, to the limit of assay precision.
When the prediction is considerably greater than zero, the variance is approximately pro-
portional to the squared prediction.

3.4. ThePo wer Function Model

A model that has both the additive and the CCV error models as special cases, and
smoothly interpolates between them in other cases is the Power Function model:

y j = f (x j ,φ ) + f (x j ,φ )pη j . (3.7)

Here f (x,φ ) is raised to thepth power in the error model, rather than the 0th power
(Additive error model; notea0 = 1 for any number,a) or the first power (CCV model).
The parameterp is a fixed effects parameter, even though its role in the overall model is
to modify the variance model, not the structural model.With NONMEM all fixed effect
parameters must be elements of the general parameter vectorθ . If we want the Power
Function Model to interpolate between the additive and CCV models,p must be con-
strained to lie between 0 and 1. NONMEM allows this (see Chapter 9). While one might
be tempted to combine the Power Function model with the Additive model, much as the
CCV and Additive model were combined above, such a combination model can lead to
identifiability difficulties, and for this reason such a combination should be avoided.

3.5. Two Different Types of Measurements

Another more complicated error model can arise when more than one type of measure-
ment is made. Suppose, for sake of illustration, that the observations are drug concentra-
tions, but that they are measured with two different assays. If one assay may be more
precise than the other, then this is equivalent to saying that one assay has a smallerω 2

than the other. We would like to be able to take this into account in the analysis (i.e., not
pay as much attention to the less precise observations), and perhaps (if we have enough
data) estimate the relative precision of the assays as well.To do this in the notation we
have introduced, an independent variable indicating which observations are obtained with
which assay is needed: we call such an independent variable an indicator variable.

3.5.1. Useof an Indicator Variable

Let one of the data items (an element ofx) be labeledASY, and let ASYj take the value 1
if the assay used fory j was of the first type, and the value 0, if it was of the 2nd type.
The variable,ASY is an indicator variable, and it allows us to write an additive type error
model, say, as

y j = f (x j ,φ ) + ASYjη1 j + (1 − ASYj )η2 j (3.8)

Here there are two types ofη ’s, η1 andη2. Thefirst applies to the first type of assay, and
has varianceω 2

1; the second applies to the second type of assay, and has a possibly differ-
ent variance,ω 2

2. NONMEM permits several types ofη ’s. Different types ofη ’s can be
correlated, and NONMEM can allow this. However, this is something we would only
need to consider in the example at hand if the same blood sample were measured by both
assays. We will not emphasize this possibility in this introductory guide. (This possibil-
ity also applies to random variables describing unexplained interindividual differences
with population data; see Chapter 4)

When the assay is done by the first method,ASYwill be unity, and (3.8) becomes

y j = f (x j ,φ ) + η1 j (3.8a)
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so that the variance of the error isω 2
1. When the assay is done by the second method,

ASYwill be zero, and (3.7) becomes

y j = f (x j ,φ ) + η2 j (3.8b)

so that the variance of the error is nowω 2
2. Bothω 2

1 andω 2
2 are random effect parameters.

An equivalent form of the model that can be implemented easily is

y j =




f (x j ,φ ) + η1 j ,

f (x j ,φ ) + η2 j ,

if ASYj is 1

if ASYj is 0
(3.8c)

3.6. Two Different Types of Observations

The same need for separate scales for different measurements can arise when more than
one type of observation is made. Suppose both plasma concentrations (C) and urine con-
centrations (Cu) are measured. The structural model forC j might be (3.1), (3.3). If we
assume that urine is collected between each observation ofC, then the structural model
for Cuj , the drug concentration in the urine collected between timet j−1 and timet j might
be

C̃uj = fo
D

Vuj
(e−kt j−1 − e−kt j ) (3.9)

where fo is the fraction of drug excreted unchanged (a parameter), andVuj is the urine
volume collected between timet j−1 and t j (a data item)†. Assuming again, for sake of
the example, that we want to use an additive type error model for the observations, the
problem is that urine concentrations can be orders of magnitude larger than plasma con-
centrations, so that, while an additive error model might be appropriate for either type of
observation alone, the two types of observations must have different typical error magni-
tudes; i.e., different variances (ω 2’s).

An indicator variable can again be used. Let the indicator variableTYPbe unity if the j th

observation is aC, and 0 if it is aCu. We now need to use it for both the structural and
error models, so that:

y = TYPjC̃ j + (1 − TYPj )C̃uj + TYPjη1 j + (1 − TYPj )η2 j (3.10)

A l ittle thought shows that the indicator variable selects the correct prediction (C̃ or C̃u)
and the correct error term for each observation (y).

An equivalent form of the model that can be implemented easily is

y =




C̃ j + η1 j ,

C̃uj + η2 j ,

if TYPj is 1

if TYPj is 0
(3.10a)

3.7. More Than One Indicator Variable

Of course, there could be three types of assays, or more, and similarly, more than two
types of observations. Oneusually needs one less indicator variable than types of things
to be distinguished.So, if there were three assays, one would defineASY1 and ASY2.
ASY1 would be 1 if the assay were of the first type, and zero otherwise;ASY2 would be
1 if the assay were of the second type, and zero otherwise. The error model for the data

† With all PREDPP pharmacokinetic models there is an output compartment for which the total amount of drug
leaving the system is computed automatically. The concentration in the urine is then obtained by setting the
scaling parameter for the output compartment toVu.
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would require three types ofη ’s, η1,η2, andη3.

y j = f (x j ,φ ) + ASY1 jη1 j + ASY2 jη2 j + (1 − ASY1 j )(1 − ASY2 j )η3 j (3.11)

Equation (3.11) results in the following:

Assay ASY1 ASY2 Type ofη var(y j )

1 1 0 η1 ω 2
1

2 0 1 η2 ω 2
2

3 0 0 η3 ω 2
3

An equivalent form of the model that can be implemented easily is

y j =







f (x j ,φ ) + η1 j ,

f (x j ,φ ) + η2 j ,

f (x j ,φ ) + η3 j ,

if ASY1 j is 1

if ASY2 j is 1

if ASY1 j is 0 and ASY2 j is 0

(3.10a)

3.8. TheGeneral Mixed Effects Model for an Individual

We hav ejust seen examples of more complicated error models than the simple Additive
model. We here give a mathematical form for the most general mixed effects model that
is considered within the scope of this document:

y j = f (x j ,φ ) + h′(x j ,φ )η j (3.12)

whereh is a vector valued function ofx and parametersφ (where the latter is interpreted
broadly to contain parameters such asp of (3.7)), andη is a vector of different differentη
types. Thenotationh′ denotes vector transpose. When there is more than oneη type,
there will be several ω 2’s, one for each type. The collection of these is denotedΩ and is
labeled OMEGA in NONMEM input and output.This collection is regarded as a diago-
nal matrix (diagonal for now; but see Chapter 4), rather than as a vector. We will use the
symbolω 2

k andω kk interchangeably in this text to denote the (diagonal) element of this
matrix found in positionk, k.
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1. What This Chapter is About

In this chapter, models for data from (animal or human) populations will be discussed.
These models describe observations from a number of individuals sampled from the pop-
ulation. Thedistinguishing feature of the data to which such models apply is that there is
more than oneobservation from some (usually most) individuals. A population model
includes the structural model of Chapter 3, but also a new model, which shall be called
the parametermodel,for each individual’s kinetic parameters. The parameter model can
have both fixed and random effects. Apopulation model also includes the error model of
Chapter 3.

2. General

Individuals differ, and the types, degrees and causes of these differences are often what
we want to learn. NONMEM was designed to help us learn these things.These individ-
ual differences can be due to fixed and/or random effects, but they all manifest them-
selves by affecting the value of an individual’s parameters,φ . That is, first, each individ-
ual is regarded as having his own particular value ofφ . If the data come from
i = 1, . . . ,N individuals, then we may rewrite the (not completely) general mixed effects
model, (3.4) foryij , the j th observation from thei th individual, as

yij = f (xij ,φ i ) + ε ij (4.1)

Eq (4.1) is now (part of) a population model because it explicitly recognizes, through the
subscript,i , that the data come from distinct individuals. Notetoo that we have written ε ,
rather thanη. According to NONMEM conventions, when modeling data from apopula-
tion, the random effects in the residual errors are denoted byε , their individual variances
by σ 2, and the collection of the variances by the matrixΣ, denoted SIGMA in NONMEM
input and output.We also adopt the same convention here as we did forΩ: thekth diago-
nal element ofΣ is interchangeably denotedσ 2

k or σ kk.

When dealing with population data, the symbolη is reserved for random effects influenc-
ing the vectorsφ i , as is now explained. We can write a general model (but not yet as gen-
eral a model as we will present later) forφ i :

φ i = g(zi ,θ ) + η i (4.2)

It is called the parametermodel.Here,g is a structural (though non-kinetic) type model
(of which examples will be given shortly), which is a function of fixed effects, zi , and
fixed effects parameters,θ . Note that since, in general,φ is a vector,g must be a vector-
valued function, and for the same reason,η is usually a vector. This will be discussed
further later. All fixed effects, whether they are part of the kinetic structural model, or are
part of the parameter model, are input to NONMEM in a uniform way. For the purposes
of this discussion, the symbolz is used for the particular fixed effects ing, such as the in-
dividual’s height, weight, and so forth (this will be discussed further in a moment).Even
though most oftenφ is regarded as time invariant, as is done in most of the discussion in
this document, fixed effects can change with time, and thus kinetic parameters withinφ
can change with time. This will be discussed further in Section 3.4.2.
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3. Structural Parameter Models

The symbol in (4.2) for the fixed effects parameter vector isθ , not φ . As mentioned in
Chapter 3, we reserve the symbolφ , in this document, for an individual’s fixed effect
parameters and use the symbolθ for a vector ofpopulation(fixed effects and possibly
random effects) parameters.

Recall the phenobarbital example of Chapter 2.For the second run, the input contained
the line of code

TVCL = THETA(1) + THETA(3)*WT

Translated into the symbols we are using here, this is

C̃li = θ1 + θ3WTi (4.3)

In (4.3),θ1 andθ3 are the first and third elements of the parameter vectorθ , andWTi is an
element ofzi (recall that this value of weight appears as a data item). The tilde over CL
is meant to distinguish this typical population value of clearance from thei th individual’s
actual value of clearance. According to this model,C̃Li will be the same for any two
individuals both of whom have the same value of weight. Equation (4.3) defines an ele-
ment (the one associated with clearance) of the vector-valued functiong. Note that in
(4.3), we use the subscripti to stress that this equation applies to thei th individual, but
there is no confusion when, as in the NM-TRAN input, and in the following, the subscript
is omitted. It should always be understood that all variables and data items used in the
parameter model definition refer to the same individual. Many different models are pos-
sible to describe the dependence of individual parameters on fixed effects. However, cer-
tain model forms are simple, easy to use, and cover most cases.An assortment of these
will be discussed briefly next.

3.1. Linear Models

The simplest form thatg can take, and the most common, is one that is linear inθ . An
example is (4.3): all elements ofθ appear as linear coefficients of terms involving data
items. Thedata items themselves can appear nonlinearly, without affecting the linearity
with respect toθ . For example, if clearance is the sum of renal and non-renal compo-
nents, and renal clearance is believed to be proportional to renal function as described
according to a standard formula involving the elements ofz: age (AGE), serum creatinine
(SECR), and weight (WT), then one might write

C̃Lmet = θ1WT (4.4)

RF = WT
1. 66−. 011AGE

SECR
(4.5a)

C̃Lren = θ4RF (4.5b)

C̃l = C̃Lmet + C̃Lren (4.6)

Clearly, RF is a nonlinear function ofSECR, for example, and so, therefore, isC̃l, but C̃l
is linear inθ , and (4.4 - 4.6) is still considered a linear model. (Do not worry about the
non-consecutive numbering of the elements ofθ ; a model forC̃L is being developed (an
alternative to 4.3), and the missing elementsθ2 andθ3 will appear presently.)
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3.2. Multiplicati ve Models

Multiplicative models are linear models, but on a logarithmic scale. For example, if
patients covering a very wide range of weights are studied, metabolic clearance might
vary with weight, but not linearly, and a substitute for (4.4) might be

˜LClmet = θ1 + θ2log(WT) (4.4.1)

C̃lmet = exp( ˜LCLmet)

Note that the logarithm ofC̃Lmet ( ˜LCLmet) is linear inθ , but C̃Lmet itself is not. Of
course, (4.4.1) can also be written

C̃lmet = θ1WTθ2 (4.4.2)

Models (4.4.1) and (4.4.2) are equivalent so far asC̃l is concerned, but θ1 of (4.4.2) corre-
sponds to exp(θ1) of (4.4.1).

3.3. SaturationModels

A useful model for processes reaching a maximum is a hyperbolic model.For example,
if a second drug, (whose steady-state plasma concentration,Cpss2 is known and available
in the data set), is present in some individuals and it is believed that this second drug is an
inhibitor of the metabolism of the study drug, one might wish to use

C̃lmet = WT

θ1 −

θ2Cpss2
θ3 + Cpss2




(4.4.3)

This model is shown in figure 4.1. The inhibition is expressed by the ratio occurring
within the brackets and is a concave hyperbola, asymptoting to a maximum value equal to
θ2. It is identical in form to the familiar Michaelis-Menten model.

CL met
WT

Cpss

θ

θ - 2θ

θ3

1

1

2

Figure 4.1.A hyperbolic model for metabolic clearance of drug on the ordinate, as inhibited by another drug

at steady-state concentrationCpss2 on the abscissa.
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3.4. Modelswith Indicator Variables

Indicator variables were discussed in Chapter 3 in connection with the error model.They
can be quite useful when modelling individual parameters. They are usually used in a lin-
ear model.For example, if the clinical condition, heart failure, is noted as "present" or
"absent", one can define an indicator variable, HF which equals 0 if heart failure is
absent, and 1 if it is present. If metabolic clearance is thought to be affected by heart fail-
ure, one might choose

C̃lmet = (θ1 − θ2HF)WT (4.4.4)

Here, the non-heart-failure cases will have C̃lmet = θ1WT, while the heart-failure cases
will have C̃lmet = (θ1 − θ2)WT†.

3.4.1. Combinations

Given the basic building blocks of linear, multiplicative and saturation models, these can
be combined in the usual algebraic ways (usually by addition) to make more complex
models. For example, one could use (4.4.3), (4.5), and (4.6) as a model forC̃l. A non-
additive example arises if plasma and urine concentrations are both observed and
(kinetic) model (3.6) is to be used for the latter. The parameterfo, the fraction of drug
excreted unchanged into the urine might be modeled as

fo =
C̃lren

C̃l
(4.7)

whereC̃lren is given by (4.5) andC̃l by (4.6) (using any of the (4.4) variants).

3.4.2. Time Varying z

As mentioned in Section 2, although most of the time the data items affecting an individ-
ual’s φ do not change over the course of his data, they occasionally do, and PREDPP can
handle this.For example, if an individual had heart failure for part of his observation
period, but not the rest,̃Clmet, according to (4.4.4) should change.Or, if acute renal fail-
ure occurred during a patient’s observation period,C̃lren would change, according to
model (4.5).

PREDPP implements its kinetic model recursively: given the state of the system at timet j

(by state we mean the amounts of drug in all the compartments), it updates (i.e. advances)
the state to that at timet j+1, using the value ofz (and in general, the value ofx) at time
t j+1 to compute a value ofφ holding between timest j and t j+1. The value ofz used to
compute thisφ is that value found on the data record with timet j+1. So, in order to have
φ change appropriately asz does, one places a value ofz which is typical for the time
period t j to t j+1 on the data record associated with the time pointt j+1. This will not
always be easy since the relevant element(s) ofz may not be measured at, for example,
the midpoint of the time interval (the value at themidpoint of the time interval is a good
choice for thetypical value for the interval). If not, one will have to use some interpola-
tion method to arrive at the typical value. Theimportant point is that the values of the
independent variables at timet j+1 determine the values of the individual’s parameters
applying to the entire periodt j to t j+1.

† Heart failure is expected to decrease metabolic clearance. If it does, using a minus sign in (4.4.4) allows the
more pleasing result thatθ2 will be estimated as positive. The model is identical to one with a positive sign, but
thenθ2 would probably be negative. If θ2 were constrained to be non-negative, then the sign chosen in the
model statement would, of course, be important.
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3.5. Structural Kinetic Models

The kinetic models (i.e., the models for responses such as drug concentrations) used
when performing a population analysis do not differ at all from those used for an individ-
ual analysis. One still needs a model for the relationship ofy to φ and x, and this rela-
tionship does not depend on whetherφ changes from individual to individual or with time
within an individual.

4. Population Random Effects Models

Under NONMEM conventions, there are two lev els of random effects, andη and ε are
the symbols used for the vectors of first and second level random effects, respectively.
With data from a single individual, only first-level random effects are needed.However,
with data from a population of individuals, both first- and second-level random effects are
needed. First-level effects are needed in the parameter model to help model unexplain-
able interindividual differences inφ , and second-level effects are needed in the (intraindi-
vidual) error model.For example, in (4.2) there is an element ofη i , ηV

i , that is the differ-
ence between the individual valueVi (an element ofφ ) and Ṽi , the typical value ofVi .
This is a first-level random effect. In(4.1) ε ij is the error betweenyij and f (xij ,φ i ). This
is a second-level random effect.

4.1. Modelsfor I nterindividual Errors

The difference betweenφ i and g(zi ,θ ) is called an interindividual error. It arises from a
few sources: the functiong may be only approximate, and/orz may be measured with er-
ror. It is reg arded as a random quantity, and it may be modeled in terms ofη variables.
As usual, each of these variables is assumed to have mean 0 and a variance denoted byω 2

which may be estimated. This variance describes biological population variability.

The difference betweenyij and f (xij ,φ i ) is called an intraindividual error.It has been dis-
cussed at some length in Chapter 3.Although in that discussion about individual data,
this difference was modeled in terms ofη variables, in this discussion about population
data, it is modeled in terms ofε variables. Eachε variable is assumed to have mean 0
and a variance denoted byσ 2 which also may be estimated.

Each pair of elements inη has a covariance, and NONMEM can also estimate this,
although often we choose to assume that the covariance is zero (we made this same
assumption for the different elements ofη in Chapter 3, Section 3.5.1).
A covariance between two elements ofη, ηk andηm, say, is a measure of statistical asso-
ciation between these two random variables. Theircovariance is related to their correla-
tion, ρ km (ρ km ≡ ρ mk) by

cov(ηk,ηm) = ρ kmω kω m (4.8)

(Note that now that we are suppressing the subscripti on η, we may, without confusion,
use the subscript position to designate elements ofη.)

The variances and covariances among the elements ofη are laid out in a covariance
matrix, calledΩ, and labeled OMEGA in NONMEM input and output.This matrix was
defined in Chapter 3, Section 3.8, but some additional comment here may be helpful.If η
has, for example, 3 elements,Ω has the following form:

ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33
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Here, as previously,ω kk is another way of writing the varianceω 2
k, andω km (k ≠ m) is the

covariance betweenηk andηm.

The elementsω11, ω22, ω33 are called the diagonalelementsof the matrix. If the nondi-
agonal elements (the covariances) are all zero, i.e. the correlation among all pairs ofη el-
ements is zero, the matrix is called a diagonal matrix. The lower triangularelementsof
the matrix are the elements

ω11

ω21 ω22

ω31 ω32 ω33

To specify the matrix only its lower triangular elements need be given (and these are all
NONMEM does give), since from (4.8) it is clear that for allk, m, ω km = ω mk.

4.1.1. Additive/Multiplicati ve Models and the Exponential Model

Frequently, the model for an interindividual error is the simple additive one (as in (4.2)),
such as

V = Ṽ + η2 (4.9)

A feature of (4.9) is that the resulting units forω 2 depend on the units of the parameter
(V in this case).For example, this model was used in the theophylline problem of Chap-
ter 2 (Figure 2.6). The final estimate ofω 2

2 is .286(Figure 2.8). Assuming that the units
of V are liters, we interpret this to mean that the standard deviation of V between individ-
uals is .53 Liters ( .53 =√ . 286).

Perhaps even more often, a multiplicative model equivalent to the Constant Coefficient of
Variation (CCV) error model (3.5) is used, such as

V = Ṽ(1 + η2) (4.10)

This model is also referred to as the proportional error model.
A feature of (4.10) is that the resulting units forω 2 are independent of the units of the
parameter (V in this case). When this model is used in the theophylline problem instead
of the additive model, so that Figure 2.6 contains the codeV=TVVD*(1+ETA(2))
instead ofV=TVVD+ETA(2), then NONMEM estimatesω 2

2 to be .146. We interpret this
to mean that the coefficient of variation of V in the population is 38% (.38 =√ . 146).

The exponential model is

V = Ṽ exp(η2) (4.10a)

During simulation, (Chapter 12, Section 4.8), the exponential and proportional models
give different results. During estimation bythe first-order method, the exponential
model andproportional models give identical results, i.e., NONMEM cannot distinguish
between them.During estimation by a conditional estimation method,the exponen-
tial and proportionalmodels for inter-individual variability give different results.The
exponential model is preferred for conditional estimation methods. (See NONMEM
User’s Guide Part VII, Conditional Estimation Methods.)

4.1.2. OtherModels

Occasionally, a model for an individual’s pharmacokinetic parameter might involve scal-
ing anη, as in (3.6), or two or moreη ’s as in (3.10). For example, a study might involve
patients in the intensive care unit (ICU) and others on non-acute care units. It might be
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reasonable to suppose that some aspects of the kinetics of ICU patients (e.g., metabolic
clearance of drug) are more variable, due to unmeasured factors (e.g., hepatic function)
that vary greatly among acutely ill patients.Even though the variation is, in reality, due
to a potentially measurable fixed effect (hepatic function), if information on this fixed
effect is not available, differences caused by it must be assigned to random factors (η). In
this case, one might wish to use an indicator variable,ICU (which equals 1 if the patient
is in the ICU, and 0, otherwise), and a model such as

Clmet = C̃lmet + (1 − ICU)η1 + ICUη2 (4.11)

In addition to model (4.11) we might have, for example,

Clren = C̃lren + C̃lrenη3 (4.12a)

Cl = Clren + Clmet. (4.12b)

Models (4.11) and (4.12) together, along with suitable models for̃Clren andC̃lmet, form a
complete model for an individual’sCl parameter, and involve 3η ’s.

4.1.3. GeneralForm for the Parameter Model

As we have just seen in (4.10) and in (4.11)-(4.12), an element ofη need not act in a sim-
ple additive way and may act solely on an intermediate variable (e.g.Clmet). Indeed,
there may be more or fewer elements inη than inφ , the elements inη may act in nonlin-
ear ways to influenceφ , and one element ofη may influence more than a single element
of φ . We now giv e a more general form for the parameter model than (4.2) and then an
example illustrating it.

The general form of the parameter model is

φ i = g(zi ,θ ,η i ) (4.13)

Here,g is a very general function of fixed effects, zi , fixed effects parameters,θ , and a
vector ofη ’s, η i . The dimensions of the vectorsφ i andη i need not be the same. An indi-
vidual’s kinetic parameter may change with time. As explained in Section 1.6, with
NONMEM-PREDPP changes can occur only at discrete time points.Therefore, the
parameter actually can be regarded as being a number of parameters, each one applying
to a different time period. The parameterφ i in (4.13), being a vector of all the kinetic
parameters for thei th individual, can be regarded as encompassing these time-interval-
specific parameters.

An example utilizing this generality is provided by a model for observations of both
plasma and urine drug concentrations, similar to the one presented previously. Ignoring
the details of the structural part of the model, consider the following model

Clmet = C̃lmet + η1

Clren = C̃lren + η2

Cl = Clmet + Clren (4.14)

fo =
Clren

Cl

V = Ṽ + η3
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In this model,φ = (V, Cl, fo); the parametersClmet andClren are regarded as intermediate
parameters. We hav eη = (η1, η2, η3), where bothη1 andη2 influence bothCl (linearly)
and fo (nonlinearly).

4.2. StatisticalModels for an Individual’ s Observations

Model (4.1) can be generalized by incorporating a model like those given in Chapter 3 for
the residual errors, i.e. for the differences between theyij and f (xij ,φ i ), rather than using
just the simple Additive model. A particular instance of such a model may have sev eral
types ofε ’s, and as mentioned in Section 2, the variances of theseε ’s are denoted by
σ 2’s. With a population model these variances could change from individual to individ-
ual. With NONMEM, they are considered as constants over individuals. Theε ’s can co-
vary. A covariance matrixΣ, like the Ω matrix given in Section 4.1, gives the variances
and covariances of theε ’s, as already discussed at the end of Chapter 3.This does not
preclude the magnitudes of the errors from being affected by fixed effects. Amodel such
as (3.8) can still be used. This is shown explicitly by the general model given in the next
section.

5. ThePopulation Mixed Effects Model

We hav enow presented all of the parts needed to fully define a population model. It may
be useful to recap this information by stating the entire general model here:

yij = f (xij ,φ i ) + h′(xij ,φ i )ε ij (4.15a)

φ i = g(xij ,θ ,η i ) (4.15b)

cov(ε ij ) = Σ; cov(η i ) = Ω

ε ij , ε kl independent for (i , j ) ≠ (k, l )

η i , ηk independent fori ≠ k

ε ij , ηk independent for alli , j , k,

where here,ε ij is a vector, along with xij , φ i , θ andη i , and Σ andΩ are square matrices
with dimensions equal to those ofε ij andη i .

To try to represent the relationship between all the fixed and random effects of a popula-
tion model graphically, consider figure 4.2. The model corresponding to this figure is

yij =
D

Vi
exp[−(Cli /Vi )tij ] + ε ij

Cli = θ1 + θ2RFi + ηCl
i (4.16)

Vi = V

var(ε ij ) = σ 2; var(ηCl
i ) = ω 2

Cl

where theVi are all equal to a constantV, i.e. there is no random interindividual variabil-
ity in the volume of distribution, so that for the sake of this example,η i is just a scalar.
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Figure 4.2. Random and fixed effects influence observation, Cij , from the population point of view. Open

circle, lower left, is population parameter predicted clearance, closed circle is true clearance fori th individual

which differs from population prediction byηCl
i , chosen randomly from a distribution (upper left) with mean

0 and SDωCl . Similarly, lower right, the observed C at time tij (open square) differs byε ij from the true

value (closed circle) by an errorε ij , chosen independently from a distribution with mean 0 and SDσ ε . TheC

corresponding to the population-based prediction is also shown (upper curve, open circle).
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1. What This Chapter is About

In this chapter, we discuss the fitting criterion that NONMEM uses, parameter estimates,
and standard error estimates.We then discuss how to form confidence intervals for
parameters and do hypothesis tests with NONMEM.

2. ModelFitting Criterion

In principle, all fitting procedures attempt to adjust the values of the parameters of the
model to give a "best fit" of the predictions to the actual observations. Theset of param-
eters that accomplish this are called the parameter estimates, and are denoted here asθ̂ ,
Ω̂, and Σ̂. Methods differ in how they define "best". The criterion that NONMEM uses is
a Least Squares (LS) type criterion. The form of this criterion varies as the error model
varies, and as population models with multiple random effects must be considered.We
briefly discuss these various criteria next, to give the reader a feel for what NONMEM is
doing. A detailed knowledge of the statistical basis for the choice of fitting criterion is
not necessary either to use or interpret NONMEM fits.In this chapter, a fixed effects
parameter will be denoted by aθ ; the distinction between individual fixed effects parame-
ters (φ ) and population fixed effects parameters will not be important here.

2.1. LeastSquares for Individual Data with an Additive Error Model

For the Additive error model (3.4), the Ordinary Least Squares criterion (OLS) chooses
the estimatêθ so as to make the sum of squared (estimated) errors as small as possible.
These estimates cause the prediction, here denotedỹ, to be an estimate of the mean value
of y, which is intuitively appealing. The prediction is obtained by computing the value
for y under the model with parameters set to their estimated values andη set to zero†.

2.2. LeastSquares for Individual Data with Other Types of Error Models

The simple OLS criterion just defined becomes inefficient and is no longer the "best" one
to use when the error model is other than the Additive error model. It treats all estimated
errors as equally important (i.e. a reduction in the magnitude of either of two estimated
errors that are of the same magnitude is equally valuable in that either reduction
decreases the sum of squared errors by the same amount), and this results in parameter
estimates that cause all errors to have about the same typical magnitude, as assumed
under the Additive model. TheCCV error model, though, says that the typical magnitude
of an error varies monotonically with the magnitude of the (true) prediction of y. In prin-
ciple, Weighted Least Squares (WLS) gives a fit more commensurate with the CCV or
other non-Additive error model. WLS chooseŝθ as that value ofθ minimizing

OWLS(θ ) =
j

Σ w j (y j − ỹ j )
2 (5.1)

Eachw j is a weight which, ideally, is set proportional to the inverse of the variance ofy j .
In the CCV model this variance is proportional toỹ2

j (evaluated at the true value ofθ ).
Use of such weights will down-weight the importance of estimated squared errors associ-
ated with large values ofỹ and promote the relative contribution of those associated with
small values of̃y.

† η, not ε , since we follow the NONMEM convention and, when discussing individual type data as here, useη
to denote the random effects of a single level that appear in the model, those in the residual error model.
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In many cases, users can supply approximate weights, and the WLS objective function
can be used as stated in (5.1). When, as with the CCV model for example, the ideal
weights depend on the true values of parameters, these true values can be replaced by ini-
tial estimates, and then the WLS objective function as given in (5.1) can be minimized.
Alternatively, instead of viewing OWLS as a function ofθ only through the estimated
error’s dependence onθ , it can be viewed as a function ofθ through both that dependence
and also through the ideal weights’ dependence onθ . The entire function can then be
minimized with respect toθ . That this creates a problem is most easily seen when the
error model contains a parameter which is not itself a parameter of the structural model,
but which, nonetheless, must be regarded as an element ofθ . Such an error model is the
Power Function model of (3.7), and the "extra" parameter isp. The WLS objective func-
tion with the reciprocal variance ofy j substituted forw j is†

O∗
WLS(θ ) =

j
Σ





(y j − ỹ j )
2

ω 2 ỹp
j





(5.2)

In this case ifp were set to a very large number, while the other parameters inθ were
only such as to make all ỹ j > 1, then all ỹp

j would be very large, and the summation
would attain a very small value. (The value ofω 2 is irrelevant to the minimization with
respect toθ .) Thus,all elements inθ other thanp would be indeterminate (as long as
they were such that all̃y were greater than 1); a most unsatisfactory state of affairs.

There is a way to deal with this problem that preserves the spirit of least-squares fitting,
and NONMEM uses it.In essence, it adds to the WLS objective function a term propor-
tional to the sum of the logarithms of the error variances. Thusa penalty is paid for
increasing the error variances without a concomitant decrease in the estimated errors
themselves. Thismodified objective function is called the Extended Least Squares (ELS)
objective function. It is minimized with respect to all parameters of the structural and
error models simultaneously (in the current example,θ andω 2, as p can be considered an
element ofθ ). Note that the objective function may be negative. This has no particular
significance.

2.3. LeastSquares for Population Data

The complications arising from a population model are due entirely to the random
interindividual effects occurring in the parameter model.To deal with this, NONMEM
uses an approximation to the true model. The approximate model is linear in all the ran-
dom effects. For this linearized model, the vector of mean values for the observations
from thei th individual is the vector of true predictions for these observations. Thesepre-
dictions are obtained from the model by setting the parameters to their true values and by
setting all the elements of bothε andη to zero. In other words, these are the true predic-
tions for the mean individual with fixed effects equal to those of thei th individual. For
this linearized model it is also possible to write a formula for the variance-covariance
matrix of the observations from thei th individual. Thismatrix is a function of the indi-
vidual’s fixed effects and the population parametersθ , Ω, and Σ. Finally, the ELS objec-
tive function discussed above is generalized to be a sum over individuals, rather than
observations, and where thei th term of the sum involves a squared error between a vector
of observations and an associated vector of predictions, weighted by the reciprocal of the
associated variance-covariance matrix for thei th individual.

† Again, we call attention to the symbols used for the random effects parameter: the termω 2 appears in the

objective function, (5.2), notσ 2, because we are discussing individual type data, not population type data.
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3. Parameter Estimates

It is useful to consider how to estimate parameters that do not appear in the model we use
to fit the data, but are, instead, functions of them (e.g. the half-life parametert 1

2
= . 693 /k,

when the rate constant of eliminationk is the model parameter).

It is always possible, of course, to parameterize the model in the function of interest.For
example, we have already seen (Chapters 2 & 3) that we may use the function (parame-
ter)Cl in the one-compartment model instead ofk. Howev er, we may be interested in the
values of several alternative parameterizations (e.g., we may want to know k, clearance,
and half-life). Rather than rerun the same problem with several alternative parameteriza-
tions, we can use the fact that the LS estimate of a function of the parameters is given by
the same function of the LS parameter estimates.Formally, if θ ′ = q(θ ) is the function of
interest, thenθ̂ ′LS = q(θ̂ LS). E.g. Letting θ ′ = t 1

2
, θ = k, and q(θ ) = . 693 /θ , then

t̂ 1
2

= . 693 /k̂.

4. Precision of Parameter Estimates

Clearly, it is almost impossible for the estimates to actually be the true values. Theques-
tion is: how far are the true values from the estimates?To discuss this question, imagine
replicating the entire experiment (gathering new data, but keepingx fixed) multiple times.
Also, for simplicity, imagine that the model has only one scalar parameter, θ , and that its
true value,θT is known. If, after each replication, the estimate ofθ is recorded, and a his-
togram of these values is plotted, one might see something like figure 5.1A or 5.1B.

θTθT

A. B.

Figure 5.1.Tw o hypothetical histograms of estimates of a single parameter upon replication of a given exper-

iment. Leftpanel (A): The estimates have small variance (spread) but are biased (the mean of the estimates

differs from the true value,θT ); Right panel: The estimates have large variance but are relatively unbiased.

The difference between the estimate and the true value,θT , obviously differs from repli-
cation to replication. Let this difference be called the estimationerror.We cannot know
the estimation error of any particular estimate (if we could, we could know the true value
itself, by subtraction), but we can hope to estimate the mean error magnitude. Since er-
rors can be positive or neg ative, a measure of magnitude that is unaffected by sign is de-
sirable. Thisis traditionally the Mean Squared Error (MSE). TheMSE can be factored
into two parts:

MSE= B2 + SE2 (5.2)

whereB is the bias of the estimates (mean (signed) difference between the estimates and
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the true value) andSE is the standard error of the estimates (SE2 is the variance of the
estimates). Asillustrated in figure 5.1, theMSE can be about the same for two types of
estimates while both their bias andSE differ. It is very hard to estimate the bias of an
estimator unless the true parameter value is, in fact, known. This is not true of theSE:
the standard deviation of the distribution of estimates of a parameter on replication is the
SE; no knowledge of the true value of the parameter is required. In many situations, LS
estimators of fixed effects parameters are unbiased, although in nonlinear problems, such
as most pharmacokinetic ones, this cannot be assured.

4.1. Distribution of Parameters vs Distribution of Parameter Estimates

Figure 5.1 illustrates the distribution of parameter estimates that might result if an experi-
ment were replicated. The bias and spread depend on the estimation method, the design
of the experiment (x, which implicitly includesn) and on the true parameter values,
including the variances (and covariances) of the random effects influencingy. If, for
example, more observations were obtained in each experiment (more individuals in a
population study), the spread of the estimates (one from each experiment) would decrease
until, in the limit, if an infinite number of observations were obtained in each experiment,
ev ery estimate would be the same (equal to the true value plus the bias of the estimator).
Thus, the distribution of the estimate tells us nothing about biology or measurement error,
but only about theprecisionof the estimate itself.

In contrast,Ω and Σ tell us about unexplained (or random) interindividual variability
(biology) or error magnitude (biology plus measurement error), not about how precisely
we know these things.No matter how many observations we make, interindividual vari-
ability will remain the same size (but the variability of our estimate of its size will
decrease), as will the measurement error variability of a particular instrument.

It is very important not to confuse variability (e.g., between individuals) in a model
parameter with variability in the estimate of that parameter, despite the fact that the terms
we use to describe both variabilities are similar. Thus an element ofη, sayη1 has avari-
ance, ω11, while the estimate ofω11, ω̂11, also has avariancegiven by the square of the
standard error for̂ω11. Indeed, the use of the term "standard error" rather than "standard
deviation" to name a measure of the spread in the distribution of the parameterestimate
rather than in the parameter helps call attention to the distinction between these two types
of things.

4.2. ConfidenceInter val for a Single Parameter

Acknowledging that any particular estimate from any particular experiment is unlikely to
equal the true parameter value implies that we should be interested in "interval" estimates
of parameters as well as (instead of?) point estimates. An interval estimate of a parame-
ter is usually a range of values for the parameter, often centered at the point estimate,
such that the range contains the true parameter value with a specified probability. The
probability chosen is often 95%, in which case the interval estimate is called the 95%
Confidence Interval (CI).

A CI is often based only on the parameter estimate and itsSE. In the next sections we
discuss three questions about such CIs a little further. (i) How to estimate theSE from a
single set of data (we cannot replicate our experiment many times and construct a his-
togram as in figure 5.1). (ii) Given an estimate ofSE, how to use that number to compute
a (95% confidence) interval with 95% chance of containing the true parameter value. (iii)
Given an estimate ofSE, how to compute a confidence interval for a function of the
parameter.
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4.2.1. Estimatinga Parameter’s Standard Error

Remarkably, the SE of a parameter estimate can be estimated using only the data from a
single experiment. Theidea is that the data give us estimates of the variances of all ran-
dom effects in our model, from which we can estimate the variability in future data (if we
were to replicate the experiment). Thatis, the SE of the estimates on replication depends
only on quantities we either know or hav eestimates of: thex, the number ofy observed
(n), and the variances of all random effects.

It is a little beyond the scope of this discussion to give the method by which NONMEM
actually estimates theSE of a parameter estimate; however, examples of how this can be
done are found in any statistical textbook on regression. NONMEMpresents the esti-
mated standard error for each parameter of the model (including the random effects
parameters,Ω andΣ) as part of its output.

4.2.2. Relatingthe Confidence Interval to the SE

Statistical theory tells us not only how to compute theSE of a parameter estimate, but
also that for a LS estimate (and many other kinds of estimates), the shape of the distribu-
tion of the estimates is approximately Normal if the data set is large enough. This means
that we may use percentiles of the Normal distribution, to compute confidence interval
bounds (whenn is small, thet distribution is often used instead; this is discussed in statis-
tics texts). In general, a 100(1-α )% confidence interval for a single parameter, θ say, is
computed aŝθ ± Z1−α /2SE. HereZ1−α /2 denotes the 1− α /2 percentile of the Normal dis-
tribution. Aspreviously noted,α is often chosen to be .05, in which caseZ is approxi-
mately 2.

4.2.3. AConfidence Interval for a Function of a Single Parameter

As discussed above, one can reparameterize the model in terms of the new parameter, and
NONMEM will then estimate its standard error. If re-running the fit presents a problem,
there is a simple way to compute a confidence interval for a functionq of a single param-
eter. If the lower and upper bounds of a 100(1-α )% confidence interval for̂θ are denoted
bl and bu, respectively, then a 100(1-α )% confidence interval forq(θ̂ ) has lower and
upper boundsq(bl ) and q(bu), respectively. This confidence interval, however, is not nec-
essarily centered atq(θ̂ ).

4.3. Multiple Parameters

4.3.1. Correlation of Parameter Estimates

A truly new feature introduced by multiple parameters is the phenomenon of correlation
among parameter estimates.NONMEM outputs a correlation matrix for the parameter
estimates. The(i , j ) element of the matrix is the correlation between the ith and jth
parameter estimates.A large correlation (e.g.≥ . 95) means that the conditional distribu-
tion of the ith estimate, given a fixed value of the jth estimate, depends considerably on
this fixed value. Sometimeseach parameter estimate of a pair that is highly correlated
has a large standard error, meaning that neither parameter can be well-estimated.This
problem may be caused by data that do not distinguish among the parameters very well,
while a simpler model, or a different design, or more data might permit more precise esti-
mates of each.

As a simple example, imagine a straight line fit to just two points, both at the same value
of x: neither slope nor intercept can be estimated at all as long as the other is unknown,
but fixing either one (simplifying the model) determines the other. Both parameters could
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be estimated by observing another point at some other value ofx (more data), or, still
using just 2 points, by placing these points at two different values ofx (modifying the
design). Thus,when standard errors are large, it is useful to examine the correlation
matrix of parameter estimates to see, in particular, if some simplification of the model
may help.

4.3.2. ConfidenceInter vals for a Function of Several Parameters

There is an approximate formula for computing a standard error, and hence a confidence
interval for a function of several parameters (e.g., a confidence interval for half-life when
the estimated parameters areCl andV). It uses the standard errors of the parameter esti-
mates and the correlations between the parameter estimates.However, discussion of this
formula is beyond the scope of this introduction. If a confidence interval for a function of
several parameters is desired, it is often more convenient to re-fit the data with the model
reparameterized to include the function as an explicit parameter.

5. HypothesisTesting

Before going into details, a note of caution is in order about hypothesis testing in general.
The logic of hypothesis testing is that one sets up a hypothesis about a parameter’s value,
called the nullhypothesis,and asks if the data are sufficiently in conflict with it to call it
into question. If they are, one rejects the null hypothesis. However, logically, if they are
not, one has simply failed to reject the null hypothesis; one does not necessarily have suf-
ficient data to accept it.An extreme example will make this clear. Let the null hypothe-
sis be any assertion at all about the state of nature.Gather no evidence bearing on the
question. Clearly, the evidence (which is void) is insufficient to reject the null hypothesis,
but just as clearly, in this case the evidence provides no support for it either.

In less extreme cases there is a way to view failure to reject as lending some support to
the null hypothesis, but the matter is problematic. It is somewhat less problematic to use
a confidence interval to quantify support for a null hypothesis. Anull hypothesis is an
assertion that a parameter’s true value is found among a set of nullvalues.A confidence
interval puts reasonable bounds on the possible values of a parameter. One can then say
that the evidence (the data from which the parameter estimate is derived) doessupport a
null hypothesis (about the value of the parameter) if the null values are included in the in-
terval and that the evidence fully support the null hypothesis if all nonnull values lie out-
side. Anexample will help make this clear.

Consider that mean drug clearance in adults varies linearly with the weight of the individ-
ual to aclinically significant degree. Formally, this can be put as a statement about a
regression coefficient in a model such as

Cl = θ1 + θ2(WT − 70), (5.3)

The null hypothesis might be thatθ2 is close to zero, i.e.that it is not so different from
zero as to be clinically significant.To make this precise, suppose that we know that mean
clearance for a 70 kg person (i.e.,θ1) is about 100 ml/min.If θ2 were .20 ml/min/kg or
less, a 50 kg increment (decrement) in weight from 70 kg would be associated with less
than a 10% change in total clearance.This is clinically insignificant, so the appropriate
null values forθ2 might be 0.0 to .20, assuming, of course, that a physical lower bound
for the parameter is zero. (More usually in statistical discussions a set of null values con-
sists of a single number, e.g. 0.) If the confidence interval forθ2 only includes null values
(e.g., it is .10 to .15), one might then safely conclude that weight, if it has any effect at all,
has noclinically significant effect, and that the data fully support the null hypothesis. If
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the confidence interval includes null values and others (e.g., it is 0.0 to .60), one would
conclude that there is some support for the null hypothesis, but that there is also some
support for rejecting it.In this case the data are insufficient to allow outright acceptance
or rejection. If the confidence interval includes no null values (e.g., it is .80 to 1.3), one
would reject the null hypothesis and conclude that weight has a clinically significant (lin-
ear) effect on clearance.

For these reasons, we urge caution when performing hypothesis tests and suggest that
confidence intervals are often more useful.None the less, the popularity of hypothesis
tests requires that they be done, and we now describe two methods for so doing, the first
somewhat more approximate and less general than the second, but easier to do.

5.1. HypothesisTesting Using the SE

A straight-forward way to test a null hypothesis about the value of a parameter is to use a
confidence interval for this purpose. In other words, if the confidence interval excludes
the null values, then the null hypothesis is rejected. As described in Section 4.2.2, such a
confidence interval is based on the estimated standard error. This method generalizes to a
hypothesis about the values of several parameters simultaneously, but this is beyond the
scope of this introduction.

5.2. HypothesisTesting Using the Likelihood Ratio

An approach that involves the extra effort of re-fitting the data has the advantage of being
less approximate than the one that uses a confidence interval based on the SE.This
method is the so-called Likelihood Ratio Test.

The basic idea is to compare directly the goodness of fit (as indicated by the minimum
value of the extended least squares objective function) obtained between using a model in
which the parameter is fixed to the hypothesized value (thereducedmodel) and a model
in which the parameter must be estimated (thefull model).

5.2.1. Definition— Full/Reduced Models

A model is a reduced model of a full model if it is identical to the full model except that
one or more parameters of the latter have been fixed to hypothesized values (usually 0).
Consider the examples:

E.g. #1. Valid Full/Reduced Pair:

Full model: C̃l = θ1 + θ2WT

Reduced model:̃Cl = θ1

E.g. #2. Invalid Full/Reduced Pair:

Full model: C̃l = θ1WT

Reduced model:C̃l = θ1

In example #1, fixingθ2 to 0 produces the reduced model, while in example #2, no
parameter of the full model can be fixed to a particular value to yield the "reduced"
model. Itwill always be true that if the models are set up correctly, the number of param-
eters that must be estimated will be greater in the full model than in the reduced model.
Note that this is not so for example #2.

5.2.2. Reduced/FullModels Express the Null/Alternative Hypotheses

The reduced model expresses thenull hypothesis; the full model expresses analternative
hypothesis. In example #1 above, the null hypothesis is "typical value of clearance is
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independent of weight", and the alternative is "typical value of clearance depends linearly
on weight."

Note an important point here: the alternative hypothesis represents aparticular alterna-
tive, and the likelihood ratio test using it will most sensitively reject the null hypothesis
only whenthis particular alternative holds. If the full model were that "the typical value
of clearance is inversely proportional to weight" (so that as weight increases, the typical
value of clearance decreases, a situation which rarely holds), the likelihood ratio test
using the alternative we hav estated would not be particularly sensitive to rejecting the
null hypothesis, and we might fail to do so. In contrast, we might succeed in rejecting
the null hypothesis if we used some other alternative model closer to the truth.

5.2.3. TheLikelihood Ratio Test

Part of the NONMEM output is the "Minimum Value of the Objective Function" (see
Chapter 2). Denote this byl . If NONMEM’s approximate model were the true model,
then l would be minus twice the maximum logarithm of the likelihood of the data (for
those readers unfamiliar with likelihoods, and curious as to what they are, we suggest
consulting a statistics textbook). Statisticaltheory tells us that the difference in minus
twice the maximum log likelihoods between a full and reduced model can be referenced
to a known distribution. Thus,to perform the Likelihood Ratio Test, one proceeds as fol-
lows.

Let l f be the minimum value of the objective function from the fit to the full model, and
let l r be the corresponding quantity from the fit to the reduced model. Fit both models
separately yieldingl f andl r , and form the statistic,

C2 = l r − l f

This statistic is approximately distributed chi-square (χ 2) with q degree of freedom,
whereq is the number of parameters whose values are fixed in the reduced model.For an
α -level test, compareC2 to χ 2

1−α (q), the 100(1-α ) percentile of theχ 2 distribution.

In particular, when exactly one parameter of the full model is fixed in the reduced model,
a decrease of 3.84 in the minimum value of the objective function is significant at
p < .05.

If NONMEM’s approximate model (linear in the random effects) were the true model,
and in addition,f were linear in the fixed effects, thenC2/q would be (approximately)
distributed according to theF distribution with q, and n − p degrees of freedom
(F(q, n − p)). SinceqF(q, n − p) is equal to χ 2(q) only whenn is "large", and is greater
otherwise, it is more conservative to referenceC2 to qF(q, n − p) in all instances, even
when f is nonlinear.

6. ChoosingAmong Models

An idea related to hypothesis testing is this: when faced with alternative explanations
(models) for some data, how does one use the data to determine which model(s) is (are)
most plausible?When one of the models is a reduced sub-model of the other, and there is
somea priori reason to prefer the reduced model to the alternative, then the Likelihood
Ratio test can be used to test whether this a priori preference must be rejected (at theα
level). However, when one gives the matter some thought, there is usually littleobjective
reason to prefer one model over another on a priori grounds.For example, although pos-
sibly more convenient, a monoexponential model is, if anything, less likely on biological
grounds than a biexponential.
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Not only may there not be a cleara priori probability favoring one contending model
over another, but the two models may not form a full and reduced model pair. In such cir-
cumstances, one must rely on some goodness-of-fit criterion to distinguish between the
models. Considerchoosing between just two models (the ideas to be discussed readily
generalize to more than two), denoted modelA and modelB. If the number of free
parameters in modelA (pA) is the same as that ofB (pB), then here is a reasonable crite-
rion: favor the model with the better fit. Note that there is nop value associated with this
statement; no hypothesis is being tested.

Unfortunately, if pA ≠ pB one cannot simply comparel A and l B and choose the one with
the smaller value. Thereason is best understood whenA and B are a full and reduced
model pair. The full model willalwaysfit the data better (i.e., have a smaller l ) as it has
more free parameters to adjust its shape to the data.While the same is not always true for
any pair of non-linear models with different numbers of parameters, it is often true: the
model with the greater number of parameters will fit a given data set better than the
model with fewer parameters.Yet the larger (more parameters) model may not really be
better; it may, in fact, fit an entirely new data set worse than the simpler model if its better
fit to the original data was simply because it exploited the flexibility of its extra parame-
ter(s) to better fit some random aspect of that data.

Based on the above intuitive argument, it seems that one should penalize the larger model
in some way before comparing the likelihoods. Thisintuition is formally realized in the
Akaike Information Criterion (AIC) which says that one should computeAIC = l A − l B +
2(pA − pB), and choose modelB if AIC is >0, and modelA if AIC is <0. The second
term penalizes modelA if pA > pB, and vice versa. WhenpA = pB, the AIC reduces to
the comparison ofl A andl B described previously.
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1. What This Chapter is About

This chapter tells how to create data for analysis by NONMEM-PREDPP. It tells how to
describe the data using $DAT A and $INPUT records. The requirements for formatting
the data for NONMEM-PREDPP are somewhat more stringent than are the requirements
for formatting the data for NM-TRAN. The Data Preprocessor is a component of NM-
TRAN which modifies the data so that it becomes formatted appropriately for NON-
MEM-PREDPP.

2. DataSets for NONMEM

2.1. DataRecords

A data set for NONMEM analysis consists of a series of records ("lines" in the terminol-
ogy of editing programs).Each record must consist of a fixed number of data items and
each must have the same format. Figure 6.1 shows how such a data set may be pictured.
In data base terminology, this is a "flat" structure.

Data Data Data Data
item item item ... item
#1 #2 #3 #n

Record #1
Record #2
Record #3
.
.

Figure 6.1. A NONMEM input data set. Each data record is a row; each type of data item is in a different

column.

NONMEM imposes no limit on the number of records in the data set.It does not (nor
does PREDPP or NM-TRAN) sort the data records before processing them, so the data
records must already be in the correct sequence.NONMEM itself cannot be instructed to
delete or drop records from the data set, but see the DROP and IGNORE options of the
$DAT A record, below.

2.2. DataItems

NONMEM reads records from the data set with a FORTRAN FORMAT specification,
and so each data item must occupy a fixed number of character positions.Data items are
always numbers.However, if no particular number is appropriate for a given data item on
a giv en record, the data item is called a nulldataitem; it may be given the numerical val-
ue 0 or the nonnumerical value ".", or left blank.Zero’s were used in the first two lines of
the Theophylline example of Chapter 2, which appeared as follows:

2 320. 0. 0.
2 0. .27 1.71
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The Data Preprocessor allows each value in the data set to occupy only as many character
positions as it needs, so long as the data items are separated by blanks (spaces) or com-
mas. Tab characters may also be used as separators if they are stored as explicit charac-
ters, e.g., ASCII 011, although this is platform-dependent and should be tested carefully.
When there are no commas or tabs, the value "." or 0mustbe used to hold the place of a
null data item. The two lines above could have been entered as follows:

2 320. 0. 0.
2,,.27,1.71

(Note the use in the second line of adjacent commas ",," to denote a null data item.)

The contents of the data items must be purely numeric; i.e., character values such as Y, N,
M or F may not be recorded. Instead, numeric codes such as 0 or 1 must be used.

With NONMEM VI, the number of data items per data record is given by constant PD in
file SIZES. The default value is20. With NONMEM 7.1, the default value is 50.With
NONMEM 7.2, there is no limit on the number of data items per data record. If the value
in SIZES is not sufficient, a larger value may be specified on the $SIZES record.

2.3. Clinical Data and Data Conversion

Clinical data often has a "hierarchical" file structure, with (say) two record formats: a
patient record, containing fixed information about a patient (ID number, sex, age, prior
history of smoking or drug use, etc), followed by one or more visit records, containing
doses and physical observations during the course of the study. Visit records may not
ev en contain the same number of items as patient records, nor have the same format.The
hierarchy is shown schematically in figure 6.2.

Patient record

Visit record

Visit record

...

Patient record

Visit record

Visit record

...

Figure 6.2.A hierarchical data file.Patient and visit records have different formats.

NONMEM cannot accept such data.For NONMEM, the (fixed) information on the
"patient" record must be copied onto every "visit" record, and the "patient" records must
be eliminated.This is the user’s responsibility and is typically done in a one-time data
conversion step using the system editor and/or a specially written computer program.If
an individual’s data is to be deleted because he did not complete the study or had an
adverse outcome, it should be done at this time. In addition, numeric codes should be
substituted for alphabetic codes.Clinical data sometimes includes multi-digit, non-con-
secutive patient identification numbers drawn from some patient identification system.
Such patient identification numbers can be used with NONMEM as the identification data
item described in Section 6.2.However, it is preferable to append to each patient’s data
records numbers from the sequence 1, 2, 3, ..., for use as the ID data item. This will
make it easier to read a scatterplot which includes ID along one of the axes (e.g., residual
vs ID).

When there is a large amount of data, we strongly suggest that a small amount of data
(from one or two individuals) be prepared for NONMEM-PREDPP analysis and a run in
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which only tables and scatterplots are output be made to check that the data is correctly
prepared before a great deal of labor is expended on the remainder.

3. DataSets for PREDPP

When PREDPP is used with NONMEM, the data must meet additional requirements.
First, PREDPP is concerned with time-ordered events such as dose events, which intro-
duce drug into the system at particular times, and observation events, which report obser-
vations taken at particular times.PREDPP insists that these events be recorded on sepa-
rate records.That is, dosing information cannot be recorded on the same record as an
observed value. Second,PREDPP requires that the time of each event be recorded on
each data record, and that the physical sequence of the data records be the same as their
sequence in time.(E.g., if a dose event immediately precedes an observation event in
time, then the dose event record must immediately precede the observation event record.)
Again, neither PREDPP nor the Data Preprocessor will physically sort or resequence the
data records.

4. The$DAT A Record

The $DAT A record describes the characteristics of the external data file to be processed
by NONMEM. NONMEM is not a data base management system and does not store a
data set between runs; once a file has been prepared for NONMEM, it must be re-read
each time it is to be analyzed.The first character string appearing after $DAT A is the
name of the file containing the data. Since it is to be used in a FORTRAN OPEN state-
ment, this name may not include embedded special characters such as slashes (/ or \),
commas, semi-colons, parentheses, equal signs or spaces unless it is surrounded by single
quotes ’ or double quotes ". Thefilename may contain 80 characters. (If a file is to be
opened by NONMEM rather than by NM-TRAN, thefilename may not contain
embedded spaces, and may contain at most 71 characters.)A FORTRAN format specifi-
cation suitable to read the data may follow the file name; this is optional and can be sup-
plied by the Data Preprocessor. The choice is discussed more fully in Section 10.4 of this
chapter.

Certain options may be specified if desired. Among these are:

RECORDS=n
This tells the number of records to be read from the data file. If omitted, the records
are read to the end-of-file or to a NONMEM FINISH record (Users Guide II).The
RECORDS option may be used to limit NONMEM processing to the initial portion
of the file and is useful during the early stages of debugging.

RECORDS=label
"Label" is a data item label.The data records for the problem will start at the place
where the file is positioned before data records are read and include all contiguous
data records having the same value for the data item. In particular, the ID label may
be used (or alternatively, the option may be coded RECORDS=IR,
RECORDS=INDREC, or RECORDS=INDIVIDUALRECORD) to obtain the data
for a single individual.

IR,INDREC,INDIVIDUALRECORD.

NOREWIND|REWIND
With the first problem specification in a control stream, the file is positioned at its
initial point so that the first record in the file is used.The options REWIND and
NOREWIND apply only with a $DAT A record in a subsequent problem
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specification.
REWIND: Reposition the file at the start.
NOREWIND: Leave the file at its current position so that the next record in the file
is read. Used when the $DAT A record with the previous problem specification
included the RECORDS option so that NM-TRAN did not read to a physical end-
of-file. Thisis the default.

LRECL=n
This tells the length of the physical data records. It is required if the operating sys-
tem associates a fixed physical record length with every disk fileandconsiders it a
fatal I/O error if a READ command requests more characters than the records con-
tain. If this is true of your operating system, the operating system will issue an
error message when you first run NM-TRAN without the LRECL option in the
$DAT A record.

WIDE
This requests that the NONMEM data set produced by NM-TRAN always contain
single-line records, and that these records always include at least one space between
data items. Such a data set can be further processed by other programs.(The
default is NOWIDE, in which case NM-TRAN limits the records to 80 characters
by creating multi-line records and/or eliminating spaces between data items if nec-
essary.) It may not be used if a FORTRAN format specification is present.It also
provides an extra character for relative times computed by the Data Preprocessor.

NULL=c
This requests that the NONMEM data set produced by NM-TRAN contain the char-
acter c in place of null data items.For example, NULL=0 requests that all null data
items be replaced by 0. The syntax NULL=’c’ and NULL="c" is also permitted.
The default is NULL=’ ’. It may not be used if a FORTRAN format specification is
present.

IGNORE=c
This instructs NM-TRAN to ignore data records having character c in the first char-
acter position ("column 1") of the record.This allows the use of "comment"
records in the NM-TRAN data set.The syntax IGNORE=’c’ and IGNORE="c" is
also permitted. It may be used even if a FORTRAN format specification is present.
The character @ has a special meaning. It signifies that any data record containing
an alphabetic character (or special characters @ or #) as its first non-blank character
(not just in column 1) should be ignored. Alphabetic characters are the letters A-Z
and a-z.Thus, a table file produced by NONMEM in an earlier run can be used as
an NM-TRAN data set.Any header lines included in this table can be dropped by
specifying IGNORE=@.

When the IGNORE option is omitted, any records containing the character # in col-
umn 1 are ignored.

IGNORE=(list), ACCEPT=(list)
This form of the IGNORE option allows records to be dropped based on the values
of data items. For example,

IGNORE=(GEN.EQ.1,AGE.GT.60).
Records having GEN equal to 1 or AGE greater than 60 are dropped. All others are
accepted. TheACCEPT option allows records to be accepted based on the values
of data items.FORTRAN logical operators .EQ., .NE., .GT., .GE., .LT., .LE. may
be used, as well as FORTRAN 90 logical operators ==,/=, >, >=, <, <=.

-53-



Chapter 6 - Data Sets, $DAT A and $INPUT Records, and the Data Preprocessor

Special operators .NEN. and .EQN. request that character strings be converted to
numeric prior to being compared (nm73). See Guide VIII for more information.

LAST20=nn
"nn" is a 2 digit number that specifies the highest 2-digit year that is assumed to be
in the 21st. century, i.e., that represents 20nn rather than 19nn. See Section 10.1.5
below.

TRANSLATE
The translate option must be followed by parentheses enclosing a list of one or
more translate specifications. For example,

$DATA filename TRANSLATE(TIME/24,II/24)

Translate specificationTIME/24 causes the value of TIME to be divided by 24,
whether or not day-time translation occurs (i.e., whether or not relative times are
being computed). This has the effect of changing the unit of TIME from hours to
days. Similarly, translate specificationII/24 causes the value of II (interdose
interval) to be divided by 24 whether or not ":" appears in any II value. With NON-
MEM 7.3, any value may be given for dividing time and II values, and any preci-
sion may be requested. See Section 10.1.4 below.

5. The$INPUT Record

This record describes how many data items there are on each data record, the order of the
data items, and tells what the labels of the data items are.

5.1. DataItem Labels

A data item label is one to four letters (A-Z) or numerals (0-9).With NONMEM 7 a
label consists of 1-24 letters (A-Z), numerals (0-9), and the character ’_’.(The length 24
is specified by constant SD in SIZES)
The first character must be a letter. These labels are the ones which will be used in other
records (such as $PK or $SCATTERPLOT), and will appear in NONMEM’s output. The
order of the data items on the data records is not important, but must be the same on all
data records in the data set. In both the examples of Chapter 2, the ID data items hap-
pened to be the first ones in the data records, and the DV data items happened to be the
last ones. This order was arbitrary.

5.2. Reserved Labels and Synonyms

Certain data item labels are reserved in that they identify data items which are recognized
specifically by NONMEM, PREDPP, or NM-TRAN. Thedata items they label are them-
selves called NONMEM, PREDPP, or NM-TRAN data items, respectively.

• Reserved NONMEM data item labels are: ID, L2, DV, and MDV. They are dis-
cussed in Section 6 of this chapter and in Section 4.2 of Chapter 12.Additional
reserved NONMEM data item labels are: MRG_, RAW_, and RPT_. See Guide
VIII for a discussion of these items.

• Reserved PREDPP data item labels are: TIME, EVID, AMT, RATE, SS, II, ADDL,
CMT, PCMT, CALL, and CONT. They are discussed in Section 7 of this chapter
and in Section 2.4 of Chapter 12.With NONMEM 7.2, additional reserved
PREDPP data items are the extra EVID labels, XVID1, XVID2, XVID3, XVID4,
and XVID5. See Guide VIII for a discussion of these items.
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• Reserved NM-TRAN data item labels are: DATE, DAT1, DAT2, DAT3, and L1.
DATE, DAT1, DAT2, and DAT3 are discussed in Section 10.1 of this chapter; L1 is
discussed in Section 4.2 of Chapter 12.

If you do not want to use the reserved label, you can supply two labels: the reserved label
and a "synonym". Eitherlabel can be used in subsequent records, but only the synonym
will appear in NONMEM output.For example,
$INPUT PNO=ID,CONC=DV,DOSE=AMT,WT,....

The first three data items are given the labels PNO, CONC, and DOSE. These labels are
synonyms for the NONMEM data items ID and DV and for the PREDPP data item AMT.
The last data item is given the label WT and is not a reserved data item; it is an example
of fixed effect ("concomitant") datax

When $PK and $ERROR records are present, certain labels may not be used at all as data
item labels.These are: the labels for the basic and additional PK parameters for the phar-
macokinetic model, as listed in Appendices 1 and 2 (e.g., for ADVAN1 and TRANS2:
CL, V, S1, S2, F1, F0), and specific labels for the arguments of the PK and ERROR sub-
routines: IDEF, IREV, N, GG, IRGG, HH, and G.

5.3. Dropping Data Items via DROP

If no format specification is included on the $INPUT record, then another synonym,
DROP, may be used with any data item. DROP may be used as a synonym more than
once. Itidentifies data items to be dropped (i.e. eliminated) from the NM-TRAN data set
by the Data Preprocessor while constructing the NONMEM data set.This provides a
way to limit the number of data items in the NONMEM data set and to eliminate non-
numeric data items.

6. NONMEM Data Items

6.1. DV Data Item

There must always be a DependentVariable dataitem labeled DV. This is a value of an
observation. Therecan be only one DV data item per data record. The position of the
DV data item (and the ones described below) is not important.However, its position
must be the same on all records.

6.2. ID Data Item for Population Data

When the data is from a population, NONMEM expects the Identificationdataitem, la-
beled ID, and expects the data to be organized into two or more "individual records".An
individual recordis a group of contiguous data records having the same value for the ID
data item and presumably containing data from the same individual. ID data item values
need not be consecutive, increasing, unique, nor begin with 1.E.g., 3, 5, 6, 10, 3, etc. is a
possible sequence of ID values. Notethe two instances of 3 as ID data item values. As
long as these two instances are separated by different ID data item values (e.g. 5, 6, 10),
they represent different individuals.

6.3. MDV data item

If there are records in an input data set which do not contain values of observations, then
NONMEM needs to be informed of this fact. Thisis done using the MissingDependent
Variabledataitem labeled MDV. The values of MDV are:
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0 The DV data item of the data record contains a value of an observation. Therecord
is referred to as an observationrecord.

1 The DV data item of the data record doesnotcontain a value of an observation.

NONMEM 7 limits the number of observation records per individual record to 250.To
change this limit, see Users Guide III.With NONMEM 7.3, there is no limit on the num-
ber of observation records.

When PREDPP is used, the Data Preprocessor is able to recognize which records contain
observed values and which do not, and it can supply the MDV data item if it is not
already present in the data set, i.e. if the label MDV does not occur in the $INPUT record.
(When PREDPP is not used, the Data Preprocessor cannot do this.)

7. PREDPPData Items

7.1. TIME Data Item

PREDPP will in general need the
Time dataitem, labeled TIME. With NONMEM 7.4, the value of TIME may be nega-
tive. With earlier versions of NONMEM, the value of TIME must be non-negative.
Within an individual record, values of TIME may not decrease.(Exceptions exist for re-
set and reset-dose events; see Section 7.3.) The units are optional (e.g., minutes or
hours), but should be consistent with other units used in the problem.The TIME of the
first event record may be zero or non-zero.(If non-zero, then PREDPP in effect subtracts
this value from all other TIME values within the same individual record, so that PREDPP
always works with relative time values.) TheData Preprocessor permits TIME to be ex-
pressed as clock time (e.g., 8:30, representing the time, half-past 8 o’clock). Such times
are converted by the Data Preprocessor into relative times. Detailsare given in Section
10.1 below.

7.2. AMT, RATE, SS, II: Dose-related Data Items

Doses are described using one or more of these four data items, depending on the kind of
dose. Adetailed discussion of these data items and of dose records in general is deferred
to Section 8 below.

7.3. EVID Data Item

When PREDPP is used, all data records are also called event records.Every event record
must contain an Event Identificationdataitem identifying the kind of event described by
the record, and labeled EVID.The values of EVID and the five kinds of event records
are:

0 Observation event. This record contains an observed value (in the DV data item).
Dose-related data items such as RATE and AMT must be 0.

1 Dose event. This record describes a dose. The contents of the DV data item are
ignored.

2 Other event. Thisrecord is used for a variety of purposes. It can be used to obtain
a predicted value at a point in time at which no actual observation or dose event
took place; it can be used to turn a compartment off or on at a point in time; it can
be used to mark a time at which a change in a physiological data item (e.g. weight)
occurs (as well as give the new value of the data item).Dose-related dataitems
must be 0. The contents of the DV data item are ignored.
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3 Reset event. Thisrecord is used to reset the kinetic system at some point in time,
without actually starting a new individual record: time is set towhatever time
appears in the event record, the amounts in each compartment are set to zero, prior
doses are cancelled, and the on/off status of each compartment is set to its initial
status. Itis in all other respects identical to an other event type record. It is typi-
cally used within an individual record, when the individual had a course of drug
treatment, followed by a wash-out period, followed by another course of drug treat-
ment. Itshould appear prior to the start of the second course.

4 Reset-dose event. This record combines EVID types 3 (reset) and 1 (dose).First
the system is reset, and then a dose is introduced.It is in all other respects identical
to an ordinary dose event type record.

If only dose and observation event records are present in the NM-TRAN data set, and if
EVID is not already present in the data set (i.e. EVID does not appear in the INPUT
record), then EVID will be supplied automatically by the Data Preprocessor. This is what
was done in the examples of Chapter 2. If other or reset type event records are present in
the data set, then the $INPUT record must include the EVID data item, and the data set
must include the appropriate values for EVID onall the data records.

7.4. CMT and PCMT Data Items

The Compartmentdataitem (CMT) and PredictionCompartmentdataitem (PCMT) are
similar. Both contain the number of a compartment in the model. (Compartments and
compartment numbers are discussed in Chapter 7 and Appendix 1, as are default com-
partments. Itmay help to look at Chapter 7 and Appendix 1 at this time.) If CMT or
PCMT is not defined in the data set (i.e., not listed in the $INPUT record), or has the val-
ue 0 on a given event record, the appropriate default compartment is used, except as noted
below. This is what was done in the examples of Chapter 2.The meaning of the two data
items depends on the particular kind of event record.

• Observation event: CMT specifies the compartment from which the predicted value
of the observation is obtained. PCMT is ignored. When CMT specifies the output
compartment, it is allowed to have a neg ative sign (e.g., with the One-compartment
model, CMT may be -2). This signals thatafter the prediction is computed the out-
put compartment is to be turned off, i.e. the amount in the compartment is to be set
to zero. The amount remains zero until the compartment is subsequently turned on.
This is quite useful with urine observations; see Section 9 below.†

• Dose event: CMT specifies the compartment into which the dose is introduced.The
compartment is turned on if it was previously off. PCMT specifies the compartment
for which a predicted observation is computed.This predicted value is not associ-
ated with an observation, but it can be useful because it will appear in tables or scat-
terplots.

• Other event: A positive value of CMT specifies that the compartment is to be turned
on if it is off. A negative value of CMT specifies that the compartment is to be
turned off if i t is on. (If CMT is 0, no compartment is turned on or off.) PCMT is
the same as for dose events.

• Reset event: CMT is ignored. PCMT is the same as for dose events.

• Reset-dose event: CMT and PCMT are the same as for dose events.

† This is also permitted with output-type compartments; see Chapter 12, Section 2.8.

-57-



Chapter 6 - Data Sets, $DAT A and $INPUT Records, and the Data Preprocessor

7.5. CALL Data Item

The Calldataitem (CALL) is used to force a call to either or both of the PK and ERROR
subroutines with the event record when such a call would not normally occur. A call to
the PK or ERROR subroutine causes the code specified by the $PK or $ERROR records,
respectively, to be executed with the event record. This is discussed in Chapters 7 ($PK)
and 8 ($ERROR).) Whennot defined in the data set, CALL is assumed to be 0 always.
The values are:

0 No forced call; PREDPP takes its normal action.

1 Force a call to ERROR.

2 Force a call to PK.

3 Force a call to both PK and ERROR.

10 Force a call to ADVAN9. May be combined with other values. E.g.,the value 12
means "Force a call to PK and to ADVAN9".

8. DescribingDoses to PREDPP

Doses are described using one or more of the data items discussed below. A detailed dis-
cussion of the actual kinds of doses that PREDPP recognizes follows in Section 8.2,
including a precise definition of what is meant by the term "steady-state dose" (Section
8.2.3). Adata item that is not needed to describe the kinds of doses used in the study
need not be defined in the data set; it will in effect always have the value 0. Only AMT
(Dose amount) was used in the examples of Chapter 2, for example. Thevalues of dose-
related data items should be 0 for non-dose events and for those dose events to which
they are not relevant.

8.1. Dose-related Data Items

AMT data item

The Amountdataitem (AMT) gives the amount of a bolus dose or of an infusion of finite
duration. Thisamount should be a positive number.

RATE data item

The Ratedataitem (RATE) gives the rate of an infusion.This rate should be a positive
number. (Negative values are discussed in Chapter 12, Section 2.3.)

SS data item

The Steady-statedataitem(SS) can take four values.

0 This record does not describe a steady-state dose.

1 This record describes a steady-state dose.If this is not the first event record for the
individual, then the system is first reset as if by a reset event record (except that the
on/off status of the compartments is unchanged from what it was prior to the event
record and the time on the event record must not be less than the time on the previ-
ous event record). The compartment amounts are then computed using steady-state
kinetic formulas.

2 This record describes a steady-state dose.No reset of the kinetic system occurs.
Compartment amounts are computed using steady-state kinetic formulas and are
then added to the amounts already present at the event time. The use of SS=2 will
be discussed further in Section 8.2.7, below.

3 This record describes a steady-state dose. It is exactly like a steady-state dose with
SS data item = 1, except that existing compartment amounts and derivatives are
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retained and used as initial estimates.The computed steady-state levels replace
these compartment amounts and derivatives. This value of SS may be specified
only with SS6 and SS9 (the General Nonlinear Models).

II data item

The InterdoseIntervaldataitem labeled II gives the time between implied doses (see Sec-
tion 8.2.3 and Chapter 12, Section 2.4).For a steady-state infusion, it should be 0.For
other steady-state doses, it should be a positive number whose units are the same as the
TIME data item.

8.2. Different Kinds of Doses

Any of the doses described here may be introduced into any compartment of the model
except the output compartment. Examples are given below that are fragments of data
records, identifying the data items of interest and showing their contents on the dose
record. Theunits of various data items are presumed to be appropriate for some actual
data.

8.2.1. InstantaneousBolus Doses

All the examples in Chapter 2 involve instantaneous bolus doses, which we shall refer to
simply as bolus doses. (There is also such a thing as a "zero-order bolus dose", see Chap-
ter 12, Section 2.3.)These are dose records having AMT>0, RATE=0 andSS=0.
(Recall that if RATE and SS are not defined on the $INPUT record, they are effectively
0.) If the $PK record computes a bioavailability fraction parameter for the compartment
into which the dose is introduced, then the contents of the AMT data item is multiplied
by the current value of this parameter before the amount is added to the compartment.A
bolus dose enters the dose compartment immediately; the predicted (scaled) amount in
the dose compartment, if displayed in a table or scatterplot, will include the dose.
Example:
TIME AMT
4. 10.

This is a dose of 10 to be added to the default dose compartment at time 4.

A bolus dose to the central compartment might be interpreted as an IV bolus dose; to the
depot it might be an oral tablet; to a peripheral compartment it might be an intra-muscular
injection.

8.2.2. Infusions

Infusions are doses having AMT>0 and RATE>0. Theduration of the infusion is com-
puted by PREDPP by dividing the AMT by the RATE. Aswith bolus doses, AMT is first
multiplied by the bioavailability parameter for the dose compartment, if any. There is no
explicit "end of infusion" record.Drug amounts in the system cannot be affected in a
detectable way at the time an infusion begins by any drug introduced by the infusion; the
predicted (scaled) amount in the dose compartment, if displayed in a table or scatterplot,
will not include the dose. Infusions may overlap. Thatis, subsequent dose records may
start new infusions before old ones have finished. Itis not an error if an infusion’s dura-
tion is so large as to extend beyond the time of the last event record for the individual; the
remainder of the drug is ignored.A reset or reset-dose event, or a steady-state dose event
with SS=1, will also terminate any infusions in progress.
Example:
TIME AMT RATE
4. 10. 2.
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The duration of the infusion will be computed as 10./2., and so the infusion, which begins
at time 4, will terminate at time 9. (=4.+5.).

An infusion to the central compartment might be interpreted as an IV infusion; to the
depot it might be a sustained release tablet; to a peripheral compartment it might be an
implant or skin patch which releases drug at a known constant rate. It is possible for
NONMEM-PREDPP to estimate the input rate of a constant-rate drug delivery system
(see Chapter 12, Section 2.3).

8.2.3. Steady-StateDoses

A steady-state dose can be regarded as the last one of a series of doses just like the one
specified in the dose event record, which have been given at a regular interdose interval
since time−∞, and such that they hav e led to a steady-state periodic pattern of drug
amounts in the system by the time this last dose has been administered.The doses of
similar kind that precede it are called implieddoses,because their existence is not de-
scribed by separate dose records in the data set, but rather is implied by the description of
the single steady-state dose.By stipulating that a dose is a steady-state dose, the user in-
structs PREDPP to update the drug amounts in the system at the time the dose is given by
using steady-state kinetic formulas. This can take less computational time than using
separate dose records to describe the implied doses and using transient kinetic formulas
to advance the system from one dose time to the next (as well as requiring fewer dose
records). Theformulas used to compute the steady-state amounts at the time the steady-
state dose is introduced use the values of the basic and additional pharmacokinetic param-
eters in effect at this time; any values in effect at earlier times are ignored.Moreover,
when using a steady-state dose, the user is assuming that under reasonable values of the
pharmacokinetic parameters, steady-state is in fact effectively reached by the time the
dose is introduced; PREDPP does not check this assumption. The output compartment
must be off when a steady state dose record is encountered in the data set.

(The Model Event Time (MTIME) feature described in Chapter 12 does not apply during
steady-state computations. The Absorption lag (ALAG) feature described in Chapter 12
does apply. See Guide VI, Chapter V, Notes 3 and 4.)

8.2.4. Steady-Statewith Multiple Bolus Doses

These are dose events having AMT>0, RATE=0, SS=1, and II>0. The II data item (inter-
dose interval) tells how many time units apart the doses were given. Aswith non-steady-
state bolus doses, AMT is first multiplied by the bioavailability parameter for the dose
compartment, if any.
Figure 6.3 shows how drug levels vary with time. The concentration-time profiles over
each interdose interval look the same since, in principle, there is aninfinite number of
implied doses.

-60-



Chapter 6 - Data Sets, $DAT A and $INPUT Records, and the Data Preprocessor
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Figure 6.3. Steady-state with multiple bolus doses. The dose is given at time t. The interdose interval is I.

Steady-state levels can be predicted between times t and t+I.

Example:
TIME AMT SS II

8 10. 1 12
Here, an infinite number of bolus doses, 10 units each, are assumed to have been given 12
hours apart, with the last of these given at time 8AM, at which time steady-state is
reached. Thefact that TIME is 8 has no effect on the computed amounts, but is important
in relation to the records that follow. Steady-state levels can be predicted at any time
between the time on the dose record (8) and the end of the succeeding interdose interval
(12) (provided there are no further doses introducedduring this interval). If another
(steady-state ornon-steady-state) dose just like the steady-state one is introduced at time
20, then predictions in the interdose interval following this time will also be steady-state
levels.

8.2.5. Steady-Statewith Multiple Infusions

These are dose events having AMT>0, RATE>0, SS=1, and II>0. Each such event
describes the last of a series of regularly spaced infusions, all of the same amount and
rate. As with a non-steady-state infusion, the duration of each infusion is given by
AMT/RATE. Thebioavailability fraction applies to each infusion of the series.
Figure 6.4 shows how drug levels vary with time. The concentration-time profiles over
each interdose interval look the same since, in principle, there is aninfinite number of
implied doses.
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Figure 6.4. Steady-state with multiple infusions.The dose is given at time t. The interdose interval is I.

Steady-state levels can be predicted between times t and t+I.

Example:
TIME AMT RATE SS II
16 10. 5. 1 6

Here, infusions, each10 units and of duration 2 (=10/5), are assumed to have been given
6 hours apart, with the last of these started at time 4PM, at which time steady-state is
reached. Thedaily dose times were 4 AM, 10 AM, 4 PM, and 10 PM.Again, the value
of TIME has no effect on the computed amounts but is important in relation to the
records that follow. Steady-state levels can be predicted between times 16 (4 PM) and 22
(10 PM) (provided there are no further doses introducedduring this interval).

8.2.6. Steady-Statewith Constant Infusion

These are dose events having AMT=0, RATE>0, SS=1, and II=0. Such an event consists
of infusion with the stated rate, starting at time−∞, and endingat the time on the dose
ev ent record. Bioavailability fractions do not apply to these doses.
Figure 6.5 shows how drug levels vary with time.
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Figure 6.5. Steady-state with constant infusion. Steady-state level can be predicted only at time t.

Example:
TIME RATE SS
16 2. 1

Here, a steady-state infusion at rate 2 is specified as ending at 4 PM.A steady-state level
can be predicted only at this time.
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8.2.7. Multiple Steady-State Doses

Doses with SS=2 are exactly like doses with SS=1.Doses with SS=2 are similar to non-
steady-state doses in that compartment amounts are computed in two steps. First,com-
partment amounts are computed at the time on the dose event record based on the prior
dosing history of the system. Second, steady-state amounts are computed from the dos-
ing information on the record and added to the existing compartment amounts. Thus, if
the kinetics are linear, this results in an application of the superposition principle wherein
the amounts in the system resulting from doses described by dose event records preceding
the time of the steady-state dose are superposed on the (steady-state) amounts in the sys-
tem resulting from the steady-state dose and the implied doses.

As with any steady-state dose, the steady-state amounts are obtained using the values of
the pharmacokinetic parameters computed from the information on the steady-state dose
record. Inthe case that SS=2, though, if these values differ from those computed from
the information on the previous dose record(s), then the compartment amounts at the time
in the steady-state dose record are not truly steady-state amounts, and the computed
steady-state levels are not valid predictions.PREDPP will not detect this error. We
emphasize that superposition is only valid with linear kinetic systems; all the kinetic sys-
tems (ADVANs) discussed in this text are linear.

SS=2 records can be used to achieve the specification of complicated dosing regimens.
For example, Figure 6.6 shows how drug levels vary with time when two different doses
are alternated.In this illustration, two steady-state doses are specified, each with inter-
dose interval I and with time between the two steady-state doses equal to I/2.Even more
complex patterns are possible.
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Figure 6.6. Multiple steady-state doses.Tw o separate steady-state doses are given. As pictured, they are

each bolus doses, but they do not have to be. Thefirst dose event record is at time t.The second dose event

record is at time t+I/2.They each have interdose interval I. Steady-state levels can be predicted between

times t+I/2 and and t+I.

Example:
TIME AMT SS II
8 10. 1 24
20 15. 2 24

This describes the following dosing regimen: a dose of 10 units every morning at 8 AM
and a dose of 15 units every evening at 8 PM (20 hours is 12 hours past 8). Note that
steady-state is not truly established untilafter the second dose record; any observation
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ev ents interposed between the two dose records will reflect only the first steady-state
dosage (i.e., 10 units every 8 AM). Another way to achieve the same steady-state is by
the following:
Example:
TIME AMT SS II
20 10. 1 12
20 5. 2 24

This describes doses of 10 units every 12 hours, the last of which is given at 8 PM (i.e. at
8 AM and 8 PM daily), plus additional doses of 5 units at 8 PM daily. In both examples,
the steady-state levels can be predicted from time 20 hours to time 32 hours.

8.2.8. CombiningNon-Steady-State Doses with Steady-State Doses

Non-steady-state dose records may appear before, among, or after steady-state dose
records. Sucha dose record may occurbeforea steady-state dose record to reflect a tran-
sient dose given among a series of regular doses leading to steady-state, but which is not
a part of this series.E.g., a patient who has been maintained at steady-state takes an extra
dose by mistake shortly before his appointment.A non-steady-state dose record may
occurafter a steady-state dose record in order to continue the pattern of doses beyond the
steady-state dose.Ordinarily, steady-state levels can only be predicted betweent1, the
time on the steady-state dose record, andt2, the sum oft1 and the interdose interval. If it
is not only necessary to compute a steady-state prediction betweent1 andt2, but also after
t2, then there must also occur one or more non-steady-state dose records att2, t2 + I , etc.
with doses just like the steady-state dose. (The "additional doses" data item, labeled
ADDL, is especially useful for this purpose; see Chapter 12, Section 2.4.)
Example:
TIME AMT SS II

8 10. 1 24
20 15. 2 24
32 10. 0 0
44 15. 0 0

Here, the last two records continue the steady-state pattern of the first two. Steady-state
levels may be predicted between times 20 and 56.

Similarly, a steady-state constant infusion may be extended with a non-steady-state infu-
sion. Inthe example below, steady-state levels can be predicted from time 0 to time 100.

TIME RATE AMT SS
0 30 0. 1
0 30 3000. 0

9. TheOutput Compartment: Urine Collections and Observations

In this section we show how urine collections and observations of urine concentration,
Cu, can be described. The first-time reader may prefer to return to this section after read-
ing Section 4.3.3 of Chapter 7. As an example, consider the one-compartment model
with first-order absorption (ADVAN2). Thesequence of events is:
6:00 AM A bolus dose of 100 is given.
8:00 AM A urine collection is started.
9:30 AM Cu and urine volume (UVOL) are measured and a new collection is started.
11:45 AM Cp, Cu, and urine volume are measured.

The $INPUT record is:
$INPUT ID TIME EVID UVOL DV CMT AMT
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The data records appear as follows:
ID TIME EVID UVOL DV CMT AMT
1 6.00 1 0 0  1 100
1 8.00 2 0 0  3 0
1 9.50 0 75 .058 -3 0
1 9.50 2 0 0  3 0
1 11.75 0 100 .067 -3 0
1 11.75 0 100 5.80 2 0

Notice that urine collections start with an other type event record (EVID=2) whose CMT
contains the number of the output compartment, the effect of which is to turn this com-
partment on at 8AM, i.e. to begin accounting for the amount of drug appearing in this
compartment from 8AM. Because other type event records are included, the EVID data
item mustbe present in the data. The CMT data item must be present in all event records
since it is needed to refer to the output compartment in at least one record.Care must be
taken to use correct values for the CMT data item; default values used when this data
item is not present are not relevant in this case. The DV value on the observation record
at 9:30 is the measuredCu. Because the value of CMT is negative, the output compart-
ment is also turned off at 9:30. Sincethe collection is to continue, the compartment must
be explicitly turned on again (the fourth record). Note that UVOL is recorded on both
observation records at time 11:45. Strictly speaking, it need only be recorded on the sec-
ond (Cu observation). Thispoint is discussed further in Chapter 7, Section 4.3.3.See
also Chapter 12, Section 7, for a modification to this data file for output-type compart-
ments.

10. TheData Preprocessor

This section discusses in more detail the ways in which the Data Preprocessor can modify
data, and discusses when a format specification should be included in the $DAT A record.

10.1. Day-timeTr anslation

10.1.1. TIME Data Item

Sometimes the data contains clock times hh:mm (e.g., the time 1:30 PM is recorded as
13:30). With NONMEM 7.3, clock times may also include the seconds hh:mm:ss.These
times must be converted to decimal-valued times (e.g., 13.5). The Data Preprocessor can
perform this task when it is processing unformatted data.Within an individual record, the
Data Preprocessor replaces the TIME value in the first data record with 0, and then
replaces subsequent records’ TIME values with the relative time (i.e., the number of
hours elapsed since the first record).(The TIME value is also reset to 0 on a reset
(EVID=3) or reset-dose (EVID=4) record.) Here is an example of relative time calcula-
tion:
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Contents of original file: Contents of new file:
ID TIME ID TIME
1 9:15 1 0.00
1 9:30 1 0.25
1 10 1 0.75
1 14:40 1 5.42
1 32.5 1 23.25
2 8  2 0.00
2 8.0 2 0.00
2 44:50 2 36.83
2 58 2 50.00

The presence of the colon ":" in the TIME data item of at least one record of the data
causes the Data Preprocessor to convert all the TIME values to elapsed values. Elapsed
times are also called relative times.Note that recorded data (lines 5, 8, and 9 of the origi-
nal file) spanned more than one day. The user had to add 24 to the TIME values on each
day subsequent to the first to communicate the correct times to the Data Preprocessor.

10.1.2. DATE Data Item

Here is another way the above data could have been recorded, using a data item called
DATE whose value is 1 for the first day, 2 for the second day, and so on. This allows
TIME values to be recorded more naturally using values in the range 0-24.
Contents of original file: Contents of new file:
ID DATE TIME ID DATE TIME
1 1 9:15 1 1 0.00
1 1 9:30 1 1 0.25
1 1 10 1 1 0.75
1 1 14:40 1 1 5.42
1 2 8.5 1 2 23.25
2 1 8 2 1 0.00
2 1 8.0 2 1 0.00
2 2 20:50 2 2 36.83
2 3 10 2 3 50.00

The DATE data item is of significance only to the Data Preprocessor; NONMEM-
PREDPP will not make use of it. Even if there are no ":" characters among the TIME
values, the existence of a DATE data item will cause the Data Preprocessor to replace
TIME values by relative times.

10.1.3. CalendarDates

The Datedataitem (DATE) can also be used to record calendar dates in month-day-year
format. Any alphabetic character (e.g., / or -) can be used to separate the components.
Here is a third way the same example could be recorded:
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Contents of original file: Contents of new file:
ID DATE=DROP TIME ID TIME
1 10-1-86 9:15 1 0.00
1 10-1-86 9:30 1 0.25
1 10-1-86 10 1 0.75
1 10-1-86 14:40 1 5.42
1 10-2-86 8.5 1 23.25
2 10-12 8 2 0.00
2 10-12 8.0 2 0.00
2 10-13 20:50 2 36.83
2 10-14 10 2 50.00

This example illustrates two features. First,when calendar dates are used, the DATE item
should be specified as "DATE=DROP", so that the data item is omitted from the new data
file (see Section 5.3). Otherwise, the alphabetic characters which separate the compo-
nents will cause read errors when NONMEM reads the data. Second, the year value is
optional; only month and date were actually needed.(Within a single individual record,
however, either all dates should specify a year, or none should.)

Data labels DAT1, DAT2, and DAT3 are also recognized by the Data Preprocessor and
can be used instead of DATE. Thelabel given to the Date data item describes its format:
DATE monthday year
DAT1 daymonth year
DAT2 yearmonth day
DAT3 yearday month

If only one of the three components is present, it is assumed to be the day†. If only two
components are present, they are assumed to be month and day (with DATE and DAT2)
or day and month (with DAT1 and DAT3). Theyear may be omitted or given as 1, 2, 3,
or 4 digits.

10.1.4. Converting Hours to Days and More General Conversions

The units of the relative TIME values resulting from the Data Preprocessor’s day-time
translation are hours. If the correct units for relative time should be days, then the
TRANSLATE option of the $DAT A record may be used to request that hours to be con-
verted to days.For example,

$DATA filename TRANSLATE(TIME/24)

or
$DATA filename TRANSLATE(TIME/24.000)

With the former, values of TIME have two significant digits, e.g., xxxx.xx.With the lat-
ter, they hav ethree significant digits, e.g., xxxx.xxx.

With NONMEM 7.3, more general conversions are possible.Any value may be given for
dividing time and II values, and any precision may be requested. Examples are:

$DATA filename TRANSLATE(TIME/1.0000)

or

$DATA filename TRANSLATE(TIME/1/4)

for formatting times in FDAT A with 4 digits to the right of the decimal. Another example
is

† In this caseonly, the Date data item may be zero or negative. Day -1 means one day prior to day 0.
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$DATA filename TRANSLATE(II/0.01/6)

which divides II values by 0.01, and writes 6 digits to the right of the decimal for the II
data item. See Guide VIII for more information.

10.1.5. TheYear 2000 - LAST20

The user may supply 4 digit years starting (e.g.) "19" and "20", and such dates are pro-
cessed correctly. (Three digit years "000"-"999" are permitted, but would represent
exactly those years, and should not normally be used.) If the year is omitted, it is
assumed to be a non-leap year. A problem arises when the year supplied, but has only 1
or 2 digits. Such years are assumed by default to be in the 1900’s. If this is not a correct
assumption, two errors may be made by the Data Preprocessor when computing relative
times. First,1900 was not a leap year, but 2000 is a leap year. Hence, if consecutive
dates in a data file are 02-28-00 and 03-01-00 (signifying February 28 and March 1,
2000), an elapsed time of 24 hours, rather than 48 hours, is computed. Second, if consec-
utive dates have years 99 and 00, the computed elapsed time is negative and an error mes-
sage is generated.

With NONMEM V and later versions there is a constant LAST20. The value of LAST20
is a 2 digit number nn that specifies the highest 2-digit year that is assumed to be in the
21st. century, i.e., to represent 20nn rather than 19nn.For example, withLAST20=50,
then 1 and 2 digit years are interpreted as follows:

00-50 represents 2000-2050
51-99 represents 1951-1999

The elapsed time between 02-28-00 and 03-01-00 is calculated to be 48 hours, and the
elapsed time calculated between the years 99 (1999) and 00 (2000) is positive.

There are two ways that a value for LAST20 can be specified.

First, when NM-TRAN is installed, a value is given to constant LAST20 in TrGlobal.f90
(in the resource directory): DATA LAST20
The default value of this constant in the distribution medium is 50. Please ask your sys-
tem support department if they modified the LAST20 constant when NM-TRAN was
installed.

Regardless of what value was assigned to the LAST20 constant in TrGlobal.f90, there is
an option LAST20 of the $DAT A record that may be used to specify the value of the con-
stant for the current run.For example:

$DATA filename LAST20=50

This insures that all 1 and 2 digit years are interpreted as above (2000-2050; 1951-1999).

10.1.6. LeapYear Warning - LYWARN

There may be two circumstances such that 1 or 2 digit years are recorded as 00, 01, ...
(equivalently, 0, 1, ...). First,these may represent the years 2000, 2001, etc.Or, they may
represent years 0, 1, etc., of a study. Suppose the latter is the case, and that none of the
years of the study was a leap year. Then if LAST20 is set to a value greater than -1, the
year 0 is assumed incorrectly to be the leap year 2000, and elapsed times may be com-
puted incorrectly. The Data Preprocessor issues a warning message under the following
circumstances:

1) Theyear is recorded as "00" or "0",

2) Thevalue of LAST20 is greater than -1 by default (so that the year is understood to
be 2000), and
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3) TheLAST20 option of the $DAT A record was not used to modify LAST20 for this
run.

The warning message is as follows:

(DATA WARNING 3) RECORD 3, DATA ITEM 3: 01-01-00

THE YEAR IS ASSUMED TO BE 2000 (A LEAP YEAR). IF THIS IS INCORRECT, USE

$DATA’S LAST20 OPTION TO OVERRIDE THE DEFAULT VALUE OF LAST20 IN NMTRAN’S

ABLOCK, OR CHANGE THE DEFAULT: 50

Suppose these warning messages are appropriate, that is, year "00" (or "0") should not be
a leap year. The LAST20 option of the $DAT A record may be used to specify that such
years are in the 1900’s for the current data set:

$DATA filename LAST20=-1

A constant LYWARN is defined in NM-TRAN’s ABLOCK module. The default value of
LYWARN is 1 ("data warning message 3 enabled"). If the value of LYWARN is set to 0
("data warning message 3 disabled") and NM-TRAN is recompiled, then the warning
message is suppressed for all runs.

10.2. InterdoseInter val (II) Conversion

When the input data is unformatted and PREDPP is being used, the Interdose Interval (II)
data item is checked for values containing a colon (:).Any such value is assumed to sig-
nal a clock time hh:mm.The minutes portion is converted to a decimal number contain-
ing as many decimal places as digits in the original.E.g., the value ":30" is replaced by
".50". This conversion is performed whether or not day-time translation is also being
done.

10.3. DataItems Generated by the Data Preprocessor

When the data is from a single individual, the Data Preprocessor will almost always gen-
erate an ID data item‡.It does this whether or not PREDPP is used. This is done
because, when the data is from a single individual, the ID data item must take on very
special non-constant values for NONMEM.The generated ID data item is given the label
".ID." (i.e., ID surrounded by dots).If this data item is to be shown in any NONMEM
output (e.g., in a table), it must be referred to on subsequent NM-TRAN records by this
label.

When PREDPP is used, the Data Preprocessor will always generate the required EVID
data item if it is not already listed on the $INPUT record.(This was discussed in Section
7.3 above.)

When PREDPP is used, the Data Preprocessor will always generate the MDV (Missing
Dependent Variable) data item if it is not already listed on the $INPUT record.

These data items are generated by the Data Preprocessor whether or not a format specifi-
cation was coded on the $INPUT record.They are appended to the end of each data
record.

10.4. WhenMust a Format Specification be Included or Omitted?

When coding the $DAT A record, you will need to decide whether to include a FORTRAN
format specification describing the data file or to omit it and let the Data Preprocessor
construct it. Here are some guidelines in making this decision.

‡ Section 4.2 of Chapter 12 discusses the L1 data item, which is used to prevent NM-TRAN from generating an
Identification data item for individual data.
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A format specification isrequiredwhen:

Some data values are left blank on some data records, without having the value 0 or
. (or a pair of commas) to hold the place of the missing value.

Some data values are adjacent on some data records; they are not separated by a
space or a comma.

The data records span multiple physical records; that is, the character / is needed in
the format specification.(The Data Preprocessor may generate such a format speci-
fication for the NONMEM data set; we are speaking here of the NM-TRAN data
set.) TheNOOPEN option of $DAT A is used.

A format specification shouldnotbe present when:

The $INPUT record includes DROP as a data item label or synonym.

Day-time translation is desired.

II conversion is desired.

Commas are used to separate the data items.

The data values are not lined up into columns with uniform width, so that no format
specification can be written to describe the file.

The IGNORE/ACCEPT option of $DAT A is used to drop records from the data set.

Many data files do not fall in either category. A format specification is optional for such
files.

NM-TRAN performs more checks on the data file when there is no format specification.
Some features of NM-TRAN are the same with or without a format specification.

Comment records may be used.
NM-TRAN appends EVID, MDV, .ID., as needed.
NM-TRAN checks for blank records, and the BLANKOK option of $DAT A may be used.
NM-TRAN gives a warning for unusual characters in the data file.
NM-TRAN counts records and supplies the count in FCON.

10.5. SkippingData Items

It is always possible to omit (skip) data items that are not of interest for a given NON-
MEM run. When a format specification is coded, two things must be done: first, replace
the data item’s specification by an "X" specification (e.g., replace F8.0 by 8X) and sec-
ond, delete the data item’s label from the $INPUT record.When no format specification
is coded, all that need be done is to replace the data item’s label in the $INPUT record by
DROP (or include DROP as a synonym).
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1. What This Chapter is About

This chapter tells how to write a $SUBROUTINE record and how to write a simple $PK
record for both individual and population data.This chapter is meant to be read in paral-
lel with Chapters 3 and 4.

2. The$SUBROUTINE Record

The $SUBROUTINE record describes which pharmacokinetic model is to be used.
Recall that NONMEM calls a subroutine named PRED to compute the predicted value.
The user must choose to use his own PRED subroutine or to use the PREDPP package.
In this text it is assumed that the PREDPP package is chosen.

2.1. Choosingan ADVAN Subroutine: Standard Pharmacokinetic Models

The PREDPP Library includes subroutines which are pre-preprogrammed, each for a spe-
cific pharmacokinetic model. They are:
ADVAN1 (One Compartment Linear Model)
ADVAN2 (One Compartment Linear Model with First Order Absorption)
ADVAN3 (Two Compartment Linear Model)
ADVAN4 (Two Compartment Linear Model with First Order Absorption)
ADVAN10 (One Compartment Model with Michaelis-Menten Elimination)
ADVAN11 (Three Compartment Linear Model)
ADVAN12 (Three Compartment Linear Model with First Order Absorption)
PREDPP calls only one subroutine, ADVAN; the different names above are external
names distinguishing different instances of the ADVAN routine in the PREDPP Library.
The name ’ADVAN’ is used because the routine advances (i.e. updates the state of) the
kinetic system from one point in time to the next. Thereare additional ADVAN routines
in the Library which implement more general types of pharmacokinetic models; see
Chapter 12, Section 2.2. Each of the ADVAN’s can be used for either individual or popu-
lation data.The (external) name of the ADVAN to be used is coded on the $SUBROU-
TINE record; this also implies that PREDPP is to be used.As an example, the following
record specifies the One Compartment Linear Model:
$SUBROUTINE ADVAN1

The ADVAN’s are described in Appendix 1. They share certain features.

1. Thecompartments are numbered.These numbers are used in two places. First,
they are used in the CMT and PCMT data items to describe specific compartments.
Second, the compartment number n is part of the name of PK parameters such as
compartment scale (Sn), as discussed below.

2. Eachmodel has a default observationcompartment,which for each of the above
ADVAN’s happens to be the central compartment. If an event record contains an
observation (i.e. is an observation event record), the prediction associated with that
record will be the scaled drug amount in this compartment, unless the CMT data
item on the record specifies differently. The prediction associated with a non-obser-
vational event record will again be the scaled drug amount in this compartment, un-
less the PCMT data item on the record specifies differently.

3. Eachmodel has a default dosecompartment.Unless specified differently by the
CMT data item, it is understood that a dose is input into this compartment.With
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ADVAN1, ADVAN3, and ADVAN10, this is the central compartment.With AD-
VAN2 and ADVAN4, a drug depot compartment is part of the model and is the de-
fault dose compartment.In these cases, if a dose is to go directly into the central
compartment, its compartment number (2) must be present in the CMT data item of
the dose record.Note that it is never required that there be doses into the depot
compartment. Ina study involving mixed oral and IV doses, for example, some pa-
tients may receive only IV doses. All dose event records for such patients will have
the value 2 in the CMT data item.

4. Eachmodel has an output compartment.The amount of drug in this compartment
is the accumulated amount of drug eliminated from the system and typically repre-
sents the amount of drug which accumulates in the urine.This compartment is spe-
cial. It may not receive a dose. It is initially off, and it remains off (so that the
amount therein remains zero) until it is explicitly turned on by an other type event
record which has the output compartment’s number in the CMT data item.It is
computed by "mass balance", as follows. Betweenany two points in time, it
increases by an amount equal to the amount of drug in the other compartments at
the first point in time, plus the amount added via doses between the two time points,
less the amount remaining in the other compartments at the second point in time.
(This difference is multiplied by an output fraction (F0) parameter, if F0 is com-
puted by the PK routine.) The output compartment can be turned off (i.e. its
amount reset to zero).If the compartment is interpreted as a urine compartment,
this is equivalent to "emptying" the compartment. This is done by putting thenega-
tive of its number in the CMT data item of an other type or observation event
record.†

On event records, the output compartment is referred to by the compartment num-
ber given in Appendix 1. A PK parameter which refers to the output compartment
may use either this number or 0 (zero).Thus, F0 and F2 both denote the output
fraction for ADVAN1; similarly, S0 and S4 both denote the scale for ADVAN4’s
output compartment. SC denotes the scale for any ADVAN’s central compartment.

5. Eachmodel has a set of basic (required) pharmacokinetic (PK) parameters, which
are the microconstants used to compute the amounts of drug via the kinetic equa-
tions for the model.Each one also has a set of additional (optional) PK parameters,
including compartment scales (Sn), bioavailability fractions (Fn), and output frac-
tion (F0). Compartment scales are typically used to convert amounts to concentra-
tions, but they also can be used for other purposes.Bioavailability fractions multi-
ply dose amounts. The output fraction is described above.

6. Eachmodel’s basic and additional pharmacokinetic parameters must be computed
for it by a subroutine named PK. The error model must be described by a subrou-
tine named ERROR. $PKand $ERROR abbreviated code provide an easy way to
specify the essential computations that must occur in these subroutines.

2.2. Choosinga TRANS Subroutine: Alternative Parameterizations

As discussed in Chapter 3, we may prefer to use pharmacokinetic parameters in our PK
routine other than the microconstants used by PREDPP. Appendix 2 shows several com-
monly-used parameterizations. The PREDPP package includes a family of subroutines
called TRANS routines which are pre-programmed to translate (reparameterize) from
these commonly used parameterizations to the ones expected by PREDPP. Appendix 2

† This is also permitted with output-type compartments; see Chapter 12, Section 2.8.
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also gives the TRANS routine for each alternative parameterization. Aswith ADVAN,
TRANS is the name of the routine. The names given in Appendix 2 are instances of
external subroutine names used in the PREDPP Library. The first member of the family,
TRANS1, simply translates a set of microconstants into these same microconstants and
must be included in the NONMEM load module in lieu of the others when the $PK
abbreviated code computes the microconstants.

The user must describe on the $SUBROUTINE record which TRANS routine is to be
used. For example, the following record requests the One Compartment Linear Model
parameterized (in the PK routine) in terms of clearance and volume.
$SUBROUTINE ADVAN1,TRANS2

When a TRANS other than TRANS1 is used, only the alternative parameters listed in col-
umn 1 need be assigned values in the $PK abbreviated code. In this example, these are
CL, V, and KA.

Note that TRANS1 is the default. Thatis, if no TRANS routine is listed on the $SUB-
ROUTINE record, it is assumed that TRANS1 is intended.This is the case in the exam-
ples of Chapter 2.Alternative parameterizations using TRANS1 are discussed later in
this chapter in Section 4.2.

3. $PKAbbr eviated Code

$PK abbreviated code consists of a block of $PKstatements,one per line, which look
much like FORTRAN statements. In fact, they are a subset of FORTRAN: simple assign-
ment statements, certain kinds of conditional (IF) statements, and certain kinds of CALL,
WRITE, PRINT, RETURN, OPEN, CLOSE, REWIND statements.The $PK abbreviated
code must be preceded by a record containing the characters "$PK". This record and the
abbreviated code constitute the $PKrecord.

$PK statements must include assignment statements giving a value to every basic PK
parameter for the given ADVAN and TRANS combination, as listed in Appendix 1 (when
TRANS1 is used) or column 1 of Appendix 2 (when a different TRANS is used).They
may also include assignment statements giving values to one or more of the additional
PK parameters.

3.1. Syntax

We assume the readers of this document are familiar with writing FORTRAN assignment
and conditional statements. If not, the examples in this and the following chapter should
give adequate guidance.FORTRAN statement numbers are not used, and the statements
may start in any column. Aswith all NM-TRAN records, blank lines are permitted, and
all text following a semi-colon (;) is ignored and may be used for comments.FORTRAN
95 continuation lines are permitted.An ampersand (&) is used at the end of a line to be
continued.

The statements are built using the following: elements of the THETA array (e.g.,
THETA(1)); constants; names of input data items appearing on the $INPUT record;
names of previously-assigned variables; FORTRAN library functions SQRT, LOG,
LOG10, EXP, SIN, COS, ABS, TAN, ASIN, ACOS, ATAN, INT, MIN, MAX, and
MOD; NONMEM functions GAMLN and PHI†; arithmetic operators +, -, *, /, **; and
arithmetical and logical expressions using all of the above. In addition, statements may
include representations for random variables such as ETA(1) and EPS(3). Input data

† PHI gives the value of the cumulative distribution function. GAMLN gives an accurate evaluation of the loga-
rithm of the gamma function.
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items have the values appearing on the current event record, and thus these values may
change from one event record to the next. A user-defined variable name follows the usual
FORTRAN rules (1-6 letters and digits, starting with a letter) and may not be subscripted.
It is defined ("declared") by being assigned a value (i.e., by appearing to the left of = in
an assignment statement).

Nested parentheses and nested IF statements are allowed. A pair of parentheses enclos-
ing a subscript may be nested within another pair of parentheses.All subscripts must be
constants (e.g. THETA(1)). The statements are evaluated sequentially, in the order in
which they appear.

All variables, constants, and expressions are evaluated using floating-point (not integer)
arithmetic. Singleor double precision function names and constants may be used inter-
changeably.

3.2. Whenare $PK Statements Evaluated?

$PK statements are normally evaluated with every event record for both population and
individual data. This enables the amounts in the compartments to be updated from event
time to event time using current values of the data items. This may be more frequent than
is necessary. In the theophylline example of Chapter 2, no data item is used in the $PK
statements. Inthe phenobarbital example, the data item used, WT, is constant within any
individual’s data. Inthese cases, it is sufficient, and it can save noticeable amounts of run
time, to evaluate the $PK statements once per individual record. PREDPP can be
instructed that the set of event records with which the $PK statements are evaluated are to
be limited in some way (see Chapter 12, Section 2.7). The CALL data item can be used
to force the statements to be evaluated with any event records.

Certain advanced forms of dosing (additional and lagged doses; see Chapter 12, Sections
2.4 and 2.5) introduce doses at times which do not necessarily coincide with any event
record. PREDPPdoes not normally evaluate the $PK statements at such times, but can
be instructed to do so (See Chapter 12, Section 2.6).Model event time parameters can be
used to instruct PREDPP to evaluate the $PK statements at specified times (See Chapter
12, Section 2.7).

3.3. Time Varying PK parameters

The state of the kinetic system at a given event time is obtained using PK parameter val-
ues computed with the data items on the event record. Using these parameter values the
system is advanced to the event time from the last event time. Population models some-
times use data items which change value within individual records and thus give rise to
PK parameters whose values change within individual records. In Chapter 4, Section
3.1.6, it is pointed out that it is desirable for the value of such a data item on the event
record to be that value holding at the midpoint of the interval between the current event
time and the last previous event time, since the system is advanced over this interval
using the PK parameters determined with this value.

If the data item changes too rapidly for this value to fairly represent the data item over the
entire time period, it is possible to subdivide the interval into smaller intervals. Event
records with EVID=2 (other type event records) can be introduced for this purpose.For
example, between two consecutive event recordsr j andr j+1, with event timest j andt j+1,
one might introduce two new other type event recordsR1 andR2, with event timesT1 and
T2, into the data set.The value of the data item inR1 will be used to compute the PK
parameters used to advance the system over the interval t j to T1 and should be the value
of the data item holding at the midpoint of this interval. Similarly, the value of the data
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item in R2 will be used to compute the PK parameters used to advance the system over
the interval T1 to T2 and should be the value of the data item holding at the midpoint of
this interval, and so on.

4. $PKStatements for Individual Data

4.1. Basicand Additional Parameters

With individual data, the parameters to be estimated are (usually) the individual’s PK
parameters, and therefore, elements ofθ should be associated with these PK parameters.
(NONMEM estimates the elements of theθ vector.) By an individual’s PK parameters,
we mean here the basic PK parameters and, possibly, some additional PK parameters
(e.g. a bioavailability fraction, or volume of distribution when the latter is not a basic PK
parameter). To illustrate, in the theophylline example of Chapter 1 there occur these $PK
statements
$PK

KA=THETA(1)

K=THETA(2)

The parameters KA and K are the basic PK parameters for ADVAN2 and TRANS1 (the
default TRANS routine).They are used to compute the amounts in the compartments.
Typically, howev er, the observations are concentrations.A scale parameter is used to
convert the amount into a concentration.Thus, in the theophylline example we see two
additional $PK statements:
V=THETA(3)

S2=V

Here, V is a user-defined variable standing for the volume of distribution of the central
compartment. Itis neither a basic nor additional parameter. The parameter S2 is the
scale parameter for the central compartment; upon dividing the amount in that compart-
ment by S2, the concentration results.(An observation is usually predicted by an amount
for a compartment divided by that compartment’s scale parameter). In fact, these two
statements could be replaced by the single statement
S2=THETA(3)

However, it may be helpful to the user to distinguish in his code between the calculation
of the central volume itself and the calculation of the scale parameter.

There is no particular need for certain elements ofθ to be associated with certain PK
parameters. Inthe above example, the roles ofθ1 and θ2 could have been reversed.
NONMEM’s θ vector may contain more or fewer elements than there are PK parameters,
depending on how these parameters are modeled.

PK parameters must be explicitly modeled, usually in terms of parameters to be esti-
mated and user-defined data items; the user communicates this model with the $PK state-
ments. Ifa certain parameter’s value is known apriori (say, S2 has the known value 500),
there are several ways the value can be incorporated into the $PK statements.The fol-
lowing examples show how it can be done via a constant, via a fixed element ofθ , and via
a (differently-named) data item:

1. S2=500

2. $THETA .6 9. (500 FIXED)

$PK

S2=THETA(3)

Here, rather than be estimated,θ3 is constrained to the value 500. This is discussed
in Chapter 9.
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3. $INPUT ... VOL ..

$PK

S2=VOL

Here, VOL is assumed to have the value 500 on the data records. When the data is
from a population, this third technique allows a unique value of VOL to be supplied
for each individual.

4.2. Alternative Parameterizations using $PK Statements

It is possible to use an alternative parameterization while still using TRANS1. The repa-
rameterization is performed within the $PK statements by explicitly computing the
microconstants from the alternative parameters. Such"reparameterization" statements
are given in column 2 of Appendix 2.They must follow the assignment statements that
give the alternative parameters their values, as in the phenobarbital example of Chapter 2.

The advantage of using $PK statements to reparameterize, rather than using a TRANS
subroutine, is that the NONMEM-PREDPP load module will then always consist of the
same set of subroutines for a given choice of ADVAN, which simplifies the job of creat-
ing and running it. It will also run slightly faster. We assume in this document that this
approach is taken.

Other parameterizations are possible besides the ones in Appendix 2.For example, with
ADVAN1 and TRANS1, one might code:
CL=THETA(1)

K=THETA(2)

V=CL/K

S1=V

The ability to express a large variety of modeling possibilities with NONMEM-PREDPP
provides great freedom and flexibility , but as always with flexible modeling capability,
certain pitfalls arise. Suppose, for example, that with a one compartment system the
compartment amount, rather than the concentration is observed. With ADVAN1 and
TRANS1 the statements
CL=THETA(1)

V=THETA(2)

K=CL/V

will lead to difficulty because only the ratio ofθ1 to θ2 affects the amount in the compart-
ment, and therefore, the data do not allow θ1 and θ2 to be separately estimated.The
statements should read:
K=THETA(1)

It is important to remember that only those elements ofθ which affect the predictions of
observations will be estimated by NONMEM. Here is some problematic code using
ADVAN1 with TRANS1:
K=THETA(1)

V=THETA(2)

CL=THETA(3)

S1=V

Once again, NONMEM will be unable to produce separate estimates of all elements ofθ .
The kinetics of a simple one compartment system cannot be determined by three indepen-
dent parameters.With TRANS1, PREDPP itself does not "know" about the relationship
K=CL/V which defines a dependency among the parameters. Indeed, the parameters CL
and V are both regarded as user-defined variables. Thevalue of θ3 has no effect on the
prediction. Were it not for the fact that S1 is set equal to V, the value ofθ2 would have no
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effect on the prediction either. With TRANS2 this code is also incorrect for essentially
the same reason. Here, K is regarded as a user-defined variable, and the relationship
CL=K*V is not "known" to PREDPP. (PREDPP does know that CL/V is the rate con-
stant of elimination, but it does not recognize the variable K as denoting this rate con-
stant, andθ1 has no effect on the prediction.)

4.3. ScaleParameters

Scale parameters are mentioned in Section 2.1.Predicted compartment amounts are
divided by them and are thus converted to predicted concentrations.They are only
needed for those compartments whose concentrations are directly observed. With
ADVAN3, for example, the peripheral compartment’s scale S2 does not need to be com-
puted explicitly if there are no observation events giving measured values of concentra-
tions in the peripheral compartment.Predicted values for this compartment may still be
plotted against time, for example, but these values need not be scaled drug amounts; the
(unscaled) amount alone is sufficient to show the shape of the curve. (Thevarious vol-
ume parameters shown in Appendix 2 must be modeled when they are used as basic
parameters, but they need not be assigned as values to compartment scale parameters.)
Any scale parameter which is not modeled by $PK statements is assumed to be 1 (i.e.,
predicted values are always amounts).

4.3.1. Scalingby a Known Constant

In Chapter 3, Section 2.2.1, the units of V were changed from kiloliters to liters using the
model:

S = V/1000

This can be coded in a $PK statement similar to the way it appears here, except that the
compartment number must be specified:
S1=V/1000

Basic PK parameters may also be rescaled in this manner.

4.3.2. Scalingby a Parameter: Conditional Statements and Indicator Variables

In Chapter 3, Section 2.2.2, the following model appeared:

S =




V,

hV,

if assay is1

if assay is2

There are two ways this can be coded in $PK statements.The assaydata item can be
tested directly, or an indicator variable can be used.An indicator variable is a variable
whose value is 0 or 1.It may be identified with an input data item, or it may be a user-
defined variable in the $PK statements.For example, suppose variable ASY is to be used
as an indicator variable. Ifsome input data item is given value 1 when assay 1 was used
and value 0 when assay 2 was used, then this data item could simply be named ASY on
the $INPUT record. Suppose, however, that the assay number itself (1 or 2) was recorded
in the data and that we have named the data item ANUM on the $INPUT record.We
must compute the user-defined variable ASY for use as an indicator variable. Thereare
two ways this can be done: using a logical IF and using a block IF.

1. ASY=1

IF (ANUM.EQ.2) ASY=0

Here, ASY is "provisionally" given the value 1. The value is changed to 0 if the
data indicates assay 2.
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2. IF (ANUM.EQ.1) THEN

ASY=1

ELSE

ASY=0

ENDIF

The choice between these forms of IF is purely a matter of style.Now let us assume that
the compartment to be scaled is compartment 2, and thath is to be identified withθ5.
The parameter S2 can now be coded unconditionally:
S2=ASY*V+(1-ASY)*THETA(5)*V

Alternatively, ANUM can be tested and ASY avoided altogether:

1. S2=V

IF (ANUM.EQ.2) S2=THETA(5)*V

2. IF (ANUM.EQ.1) THEN

S2=V

ELSE

S2=THETA(5)*V

ENDIF

4.3.3. Scalingby a Data Item

If observations of urine concentrationCu are included in the data (see e.g. Chapter 6, Sec-
tion 9), it is necessary to provide urine volume as a scale for the output compartment.
Presumably, this volume varies between urine observations and is recorded in the data
records. Supposethis data item is called UVOL in the $INPUT record. (The name given
to the data item has no special significance; any name could be chosen.)An additional
$PK statement is necessary:
S0=UVOL

UVOL need be recorded on only those observation events to which it applies, although it
does no harm to record it on other event records.For example, it may well happen that
both plasma and urine responses are measured at the same time, so that there are two
observation event records with the same value of TIME, one for each compartment
observed at that time.As described in Section 3.2 above, $PK statements are normally
evaluated with every event record. Consider, for example, the sample data below.
Assume that the Central compartment is compartment 2 and the output compartment is
compartment 3. (Note the use of -3 to signify that compartment 3 is to be turned off after
the observation time.The compartment will remain off until the time another urine col-
lection begins, as indicated with an other type record; see Chapter 6, Section 7.4).Either
1. or 2. will produce the correct value of S0:

1. RecordUVOL on the event record to which it applies.The order of the records
does not matter.
TIME UVOL DV CMT
10. 0 5.80 2
10. 100 .067 -3

2. RecordUVOL on all event records having the same value of TIME. The order of
the records does not matter.
TIME UVOL DV CMT
10. 100 5.80 2
10. 100 .067 -3
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The following will not produce the correct value of S0 unless PREDPP is instructed to
evaluate the $PK statements only once for each distinct value of TIME:

TIME UVOL DV CMT
10. 100 5.80 2
10. 0 .067 -3

4.4. Bioavailability Fraction Parameters

PK parameters of the form Fn, where n is the number of a compartment into which a dose
may be introduced, are bioavailability fractions. If a dose record specifies a dose for
compartment n, the dose amount given on the event record is multiplied by the value of
Fn computed from the $PK statements evaluated with this record, and this product is the
dose amount introduced into the system.For example, F1 multiplies the amount of dose
which is to be added to compartment 1.Any Fn which is not computed by $PK state-
ments is assumed to be 1 (i.e., the dose is 100% available).

As an example, suppose two different preparations of the same drug are administered,
and it is assumed that they differ only in their bioavailability. The indicator variable (or
data item) PREP has value 1 for the first preparation and 0 for the second.The ratio of
the bioavailability of the second preparation to that of the first preparation is identified
with θ6. Usually, the method of drug administration permits this ratio to be estimated, but
not the separate bioavailabilities. Without loss of generality, the bioavailability of the first
preparation can be taken to be 1. Assuming the drug enters compartment 1 of the model,
there are three ways this can be coded:

1. F1=PREP+(1-PREP)*THETA(6)

2. F1=1

IF (PREP.EQ.0) F1=THETA(6)

3. IF (PREP.EQ.0) THEN

F1=THETA(6)

ELSE

F1=1

ENDIF

Again, the choice is a matter of style.

Once a dose is introduced into the dose compartment, it begins to distribute into the other
compartments. Whetheror not the original dose was 100% available, it is assumed that
none of the dose appearing in the dose compartment, and in other compartments after the
dose is introduced, is further reduced due to bioavailability effects. PREDPPcannot
model "bioavailability effects" between compartments.

4.5. Output Fraction

The Output Fraction parameter, F0, is an optional additional PK parameter of every
model. Asdiscussed in Section 2 above, every model contains an output compartment.
If this compartment has been turned on prior to the advance from timet j−1 to time t j ,
then the amount of drug lost from the system during this interval via elimination is multi-
plied by F0 and added to the prior contents of the output compartment. If the $PK state-
ments do not include an assignment statement giving a value to F0, it is taken to be 1 (i.e.,
100% of the drug excreted goes to the output compartment). In model (4.7), an example
of the use of F0 is given. Assumingthat the variables CLREN (renal clearance) and CL
(total clearance) have been calculated with earlier $PK statements, the statement
F0=CLREN/CL
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can be used to compute F0.

5. $PKStatements for Population Data

With population data, the structural models for the PK parameters tend to be more com-
plicated than with individual data. In addition, the influence of interindividual random
effects needs to be described. These will involve differences in the $PK statements, but
the same $SUBROUTINE record and the same ADVAN and TRANS subroutines are
used, and the same general requirements and examples of the earlier sections of this
chapter still mostly apply. In this section, the models of Chapter 4 are implemented via
$PK statements.Many of these models could be implemented in a variety of ways; an
experienced programmer may prefer to code them differently.

With population data, we must distinguish between the typical value of a PK parameter in
the population and the value of that parameter for a given individual, the individual’s
value. Thetypical value is computed by a structural model involving only fixed effects.
We hav echosen to denote it with the use of a tilde: e.g.C̃l. The individual’s value is
computed by a model including random interindividual effects (represented by random
variables) and is denoted without a tilde: e.g.,Cl. There is no tilde character in the FOR-
TRAN character set, and with NM-TRAN we do not need to distinguish typical and indi-
vidual values. However, for purposes of clarity, in all the examples which follow we will
include the letters TV (Typical Value) at the start of those variable names which we think
of as having a tilde (e.g., TVCL). This is a matter of style.

5.1. Structural Part of Parameter Models

In models such as (4.3), the subscripti indicates that the model applies to thei th individ-
ual. Asnoted in Chapter 4, the subscript is not needed and, indeed, is not used in $PK
statements.

5.1.1. LinearModels

Models (4.4), (4.5a), (4.5b) and (4.6) can be coded as they appear. Assuming that WT,
AGE, and SECR are input data items or have been calculated with earlier $PK state-
ments, the code is:
TVCLM=THETA(1)*WT

RF=WT*(1.66-.011*AGE)/SECR

TVCLR=THETA(4)*RF

TVCL=TVCLM+TVCLR

5.1.2. Multiplicative Models

Model (4.4.1) can be coded as follows:
TVLCLM=THETA(1)+THETA(2)*LOG(WT)

TVCLM=EXP(TVLCLM)

Model (4.4.2) can also be coded as it appears:
TVCLM=THETA(1)*WT**THETA(2)

5.1.3. SaturationModels

Model (4.4.3) presents a problem.Subscripted variables that can appear in $PK state-
ments are few; naturally, they include THETA and (as seen below) ETA. The variable
CPSS cannot be subscripted, and a variable name such as CPSS2 (rather than CPSS(2))
must be used forCpss2. The model can be coded exactly as it appears:
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TVCLM=WT*(THETA(1)-THETA(2)*CPSS2/(THETA(3)+CPSS2))

5.1.4. Modelswith Indicator Variables

When dealing with typical values, indicator variables (0/1 variables) can be used inter-
changeably with conditional (IF) statements, as we have already seen. Model (4.4.4) can
be coded in a variety of ways, two of which are:

1. TVCLM=(THETA(1)-THETA(2)*HF)*WT

2. IF (HF.EQ.0) THEN

TVCLM=THETA(1)*WT

ELSE

TVCLM=(THETA(1)-THETA(2))*WT

ENDIF

5.2. Population Random Effect Models

Random variablesη are used in the models for interindividual errors. (With population
models, random variablesε are used in the models for intraindividual errors; see Chapter
4, Section 2.) In $PK statements they are denoted by ETA(1), ETA(2), etc.Even if there
is only once such variable it must still be subscripted. It is the presence of one or more
such variables that indicates to NM-TRAN that the data is from a population. Just as
there is no particular need for certainθ elements to be identified with certain PK parame-
ters, there is no particular need for certainθ elements to be associated with certainη vari-
ables, and any association need not be one-to-one. The following models are both valid:

1. CL=THETA(1)+ETA(1)

V=THETA(2)+ETA(2)

2. CL=THETA(1)+ETA(2)

V=THETA(2)+ETA(1)

However, it will be easier to keep things straight if the first model is used.

Here are three different ways of coding a model for an individual’s value of clearance:

1. TVCL=THETA(1)

CL=TVCL+ETA(1)

2. CL=THETA(1)

CL=CL+ETA(1)

3. CL=THETA(1)+ETA(1)

We prefer the first way because it clearly distinguishes the model for the typical value
from the model for the individual’s value. With any of the three ways for coding the
model the typical value of the parameter can be computed as follows: Theη variables are
set to 0, and the parameter is computed.Any variable whose value depends onη vari-
ables is called a randomvariable.

Random variables are called true-value variables in the first edition of this guide. This is
because, in principle, a random variable can assume an individual’s true value under the
model. Sucha variable is in contrast to a variable which assumes only a typical value for
the population.

An individual’s true value is never actually known, although an estimate of it can be
obtained. SeeChapter 12, Sections 4.11-4.13.
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5.3. Modelsfor I nterindividual Errors

Here we show how to express the most commonly used models for interindividual errors
with $PK statements. In addition, all the error models described in Chapter 8 may also be
used in $PK statements.

5.3.1. Additive/Multiplicati ve Models

This is the error model of (4.9):
K=TVK+ETA(1)

This is the error model of (4.10):
K=TVK*(1+ETA(1))

This model can also be coded as:
K=TVK+TVK*ETA(1)

Here, the variable TVK has been "multiplied through". The choice is a matter of style.

5.3.2. OtherModels

The model (4.11) may be coded as written.
CLM=TVCLM+(1-ICU)*ETA(1)+ICU*ETA(2)

It may also be coded with an IF statement.
IF (ICU.EQ.0) THEN

CLM=TVCLM+ETA(1)

ELSE

CLM=TVCLM+ETA(2)

ENDIF

The choice is a matter of style.

Note that, under the parameterizations given in Appendices 1 and 2, CLM is neither a
basic nor an additional PK parameter, yet its model involves anη variable. Thisis legiti-
mate: any variable can be defined in terms of anη variable. However, just as withθ ’s, the
values assigned to theη variables must somehow affect the predictions of observations.
Otherwise, the variance of someη variable cannot be estimated, and consequently, none
of the variances of these variables can be estimated.Presumably, within the $PK state-
ments, CLM is used to compute CL, and (either within the $PK statements or within the
TRANS routine) CL is used to compute K.

5.4. Restrictionson Random Variables

This section discusses the use of random variables in some depth and may be skipped by
the casual reader. The remarks here apply to all random variables: both the ETA vari-
ables of this chapter and the ERR/EPS variables of Chapter 8.

In general, ETA variables can be used like any other variables.

Any variable whose value is affected by an ETA variable is a random variable, whether
the ETA variable occurs explicitly in the defining expression for the random variable or
whether another random variable occurs in this expression. For example, consider the
following:
TVCLM=THETA(2)*WT

CLM=TVCLM+ETA(2)

RF=WT*(1.66-.011*AGE)/SECR

TVCLR=THETA(4)*RF

CLR=TVCLR+ETA(1)

CL=CLM+CLR
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CL is a random variable, because it is computed from random variables. Itdepends on
bothη1 andη2.

Random variables may be changed and may be assigned conditionally, subject to the fol-
lowing restrictions.

A random variable may not appear anywhere within a nested if structure.

A random variable defined in the $PK block may not be redefined in the $ERROR
block.

As an example of the first restriction, suppose in the model (4.11) it is also believed that,
for ICU patients, age affects CLM.The following code expresses the model, but is not
permitted:
IF (ICU.EQ.1) THEN

IF (AGE.GE.50) THEN

TVCLM=THETA(1)

ELSE

TVCLM=THETA(2)

ENDIF

CLM=TVCLM+ETA(1)

ELSE

TVCLM=THETA(3)

CLM=TVCLM+ETA(2)

ENDIF

An alternate code follows, in which the calculation of TVCLM (which involves a nested
IF) precedes the calculation of CLM (which does not require a nested IF).This code is
permitted.

IF (ICU.EQ.1) THEN

IF (AGE.GT.50) THEN

TVCL=THETA(1)

ELSE

TVCL=THETA(2)

ENDIF

ELSE

TVCL=THETA(3)

ENDIF

IF (ICU.EQ.1) THEN

CL=TVCL+ETA(1)

ELSE

CL=TVCL+ETA(2)

ENDIF

Indentations are used in the above code for clarity, but have no affect on NM-TRAN’s
processing of the abbreviated code.
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1. What This Chapter is About

This chapter tells how to write a simple $ERROR record for PREDPP. This chapter is
meant to be read in parallel with Chapters 3 and 4.

2. $ERROR Abbreviated Code

$ERROR abbreviated code consists of a block of $ERROR statements,one per line.The
$ERROR abbreviated code must be preceded by a record containing the characters "$ER-
ROR". Thisrecord and the abbreviated code constitute the $ERRORrecord.

$ERROR statements describe the error model for PREDPP. These statements are very
similar for individual data and for population data.In fact, by making use of variables
called ERR variables, the $ERROR statements are identical for both kinds of data.

2.1. Syntax

The syntax of a $ERROR record is very similar to that of a $PK record.Certain differ-
ences will be mentioned here.

There must be an assignment statement giving a value to a special (reserved) variable Y.
Y is a random variable representing the random variable y (the modeled observation). Y
is usually defined in terms of a special (reserved) variable F, which represents the predic-
tion for Y. When the data are from a population, F is a random variable. With individual
data, ETA variables may be used in the definition of Y. With population data, EPS vari-
ables may be used in the definition of Y. There are also special random variables called
ERR variables. Thevariable ERR(I) is the same as ETA(I) or EPS(I), depending on
whether the data are individual or population, respectively. For the purpose of giving a
general discussion, applying equally to both individual and population data, ERR will be
used in all the examples in this chapter. (It is also useful to use ERR in $ERROR state-
ments as a practical matter. Sometimes the same data is analyzed from both the popula-
tion and the individual point of view. By using ERR variables, changes to the NM-TRAN
input file are minimized.) An ERR variable (as with ETA and EPS variables) must
always include a subscript (e.g., ERR(1)), even when there is only one such variable in
the model.

Variables computed within $PK statements may be used in $ERROR statements,but not
vice versa.

2.2. Whenare $ERROR Statements Evaluated?

$ERROR statements are normally evaluated with every event record. This may be more
frequent than is necessary. PREDPP can be instructed that the set of event records with
which the $ERROR statements are evaluated is to be limited to only observation events,
once per individual record, or once per problem. Such limitation does not apply to the
Simulation Step (Chapter 12, Section 4.8).With the additive (3.4) and constant coeffi-
cient of variation (3.5) error models, and with the exponential error model, NM-TRAN
instructs PREDPP to evaluate the $ERROR statements only once per problem.Again,
the CALL data item can be used to force evaluation of the $ERROR statements with any
ev ent records.
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3. Error Models

The following sections show how the error models of Chapter 3 are expressed using
$ERROR statements.

3.1. TheAdditi ve Error Model

This is the error model (3.4):
Y=F+ERR(1)

Both examples in Chapter 2 use this error model.

3.2. TheConstant Coefficient of Variation and Exponential Models

This is the CCV error model (3.5):
Y=F*(1+ERR(1))

This error model can also be coded as:
Y=F+F*ERR(1)

Here, the variable F has been "multiplied through". The choice is a matter of style.

This is theexponential error model (3.5a):
Y=F*EXP(ERR(1))

When the $ERROR statements consist solely of one of these statements (in any of the
forms), the output from PREDPP will include the message:
ERROR IN LOG Y IS MODELED

This is done because during data analysis NONMEM cannot distinguish between the
CCV error modely = f̃ + f̃ ε and the exponential error modely = f̃ exp(ε ), for which
log(y) = log( f̃ ) + ε †. By using the latter model and modelling the error in log(y) rather
than iny, NM-TRAN enables PREDPP to achieve an improvement in run time.

3.3. CombinedAdditi ve and CCV Error Model

This is the error model (3.6):
Y=F+F*ERR(1)+ERR(2)

3.4. ThePo wer Model

This is the error model (3.7):
Y=F+F**P*ERR(1)

The variable P must be assigned a value before its use above. P is typically identified
with an element ofθ so that it can be estimated in the fitting process. Let us assume that
θ4 is chosen for this purpose. Then an alternative coding is:
Y=F+F**THETA(4)*ERR(1)

3.5. Two Different Types of Measurements

We hav ealready seen how an indicator variable, e.g., ASY, can be used in $PK state-
ments for a variety of purposes. The same technique is used in $ERROR statements.
Consider model (3.8) where the variable ASY has the value 1 or 0, corresponding to
assay 1 or assay 2. ASY is a data record item. Then the error model (3.8) is coded:
Y=F+ASY*ERR(1)+(1-ASY)*ERR(2)

This model can also be coded in several ways, the choice of which is a matter of style.

1) IF (ASY.EQ.1) THEN

Y=F+ERR(1)

† During Simulation, NONMEM does distinguish between the CCV and exponential error models.
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ELSE

Y=F+ERR(2)

ENDIF

2) IF (ASY.EQ.1) Y=F+ERR(1)

IF (ASY.NE.1) Y=F+ERR(2)

3) Y=F+ERR(2)

IF (ASY.EQ.1) Y=F+ERR(1)

3.6. Two Different Types of Observations

In Chapter 3, Section 3.6, an example is given in which there are two kinds of observa-
tions, plasma (C) and urine (Cu). With PREDPP, measurements from different compart-
ments of the model are recorded in the DV data item of different observation event
records. TheCMT data item identifies the compartment from which the prediction asso-
ciated with the event record is to be obtained. When the $ERROR statements are evalu-
ated for a given event record, the variable F contains the prediction from the compartment
specified for that event record. All that need be done is to select the correct error model,
depending on the compartment. Suppose, for example, that ADVAN2 is used, so that the
central compartment is compartment 2 and the output (urine) compartment is compart-
ment 3. Then the error model (3.10) can be coded:
TYP=0

IF (CMT.EQ.2) TYP=1

Y=F+TYP*ERR(1)+(1-TYP)*ERR(2)

This model can also be coded in several ways, one of which is shown here:
IF (CMT.EQ.2) THEN

Y=F+ERR(1)

ELSE

Y=F+ERR(2)

ENDIF

3.7. More than One Indicator Variable

In Chapter 3, Section 3.7, an example is given in which there are three kinds of observa-
tions. Supposethat there are two data items, ASY1 and ASY2. ASY1 is 1 if assay 1 is
used and 0 otherwise. ASY2 is 1 if assay 2 is used and 0 otherwise. This is the error
model (3.11):
Y=F+ASY1*ERR(1)+ASY2*ERR(2)+(1-ASY1)*(1-ASY2)*ERR(3)

This model can also be coded in several ways, one of which is shown here:
Y=F+ERR(3)

IF (ASY1.EQ.1) Y=F+ERR(1)

IF (ASY2.EQ.1) Y=F+ERR(2)
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1. What This Chapter is About

This chapter tells how to giv e initial estimates to NONMEM’s parameters ($THETA,
$OMEGA, $SIGMA records); how to tell NONMEM what tasks to perform ($ESTIMA-
TION, $COVARIANCE records); and how to tell NONMEM what additional output to
produce ($TABLE, $SCATTERPLOT records).

2. Providing Initial Estimates For θ : The $THETA Record

This record provides an initial estimate (and, optionally, provides lower and upper
bounds) for every element of NONMEM’sθ vector.

2.1. Providing Initial Estimates For Elements Ofθ
The $THETA record contains a list of values, separated by spaces or commas, which are
the initial estimates for theθ ’s used in the $PK and $ERROR statements. The position of
a value in the list corresponds to its position (subscript) in theθ vector. For example,
consider the following statement:
$THETA 1.7 .102 29.

This says that the initial estimate forθ1 is 1.7, the initial estimate forθ2 is .102, and the
initial estimate forθ3 is 29. Some users of NONMEM prefer to code each value on a
separate line so that they can include comments to themselves describing the significance
of theθ ’s. The above record could have been coded as follows:
$THETA 1.7 ; RATE CONSTANT OF ABSORPTION

.102 ; RATE CONSTANT OF ELIMINATION

19. ; VOLUME OF DISTRIBUTION

This is a matter of style.

2.2. Providing Constraints for Elements ofθ
When NONMEM is told to estimate the parameters (Section 4.1, the Estimation Step,
below), it varies the elements ofθ to find values which cause the model to fit the observa-
tions best. The values on the $THETA record are the initial estimates ofθ for this search.
When only an initial estimate is provided, NONMEM is free to chose any positive or neg-
ative value for that element ofθ . We then say that theθ element isunconstrained, which
means that its lower bound (lower limit) is−∞ and its upper bound (upper limit) is+∞.
When finite bounds are desired, the initial estimate and its bounds must be enclosed in
parentheses and specified in the order (lower, initial, upper). When the upper bound
needn’t be finite, the initial estimate and its lower bound are enclosed in parentheses and
specified in the order (lower, initial). Notethat when no estimation is performed, upper
and lower bounds have no effect.

In the theophylline example of Chapter 2, for example, negative θ values are physiologi-
cally impossible.Eachθ element was given a lower bound of 0, which constrained it to
be non-negative:
$THETA (0, 1.7) (0, .102) (0, 29.)

It is possible to mix constrained and unconstrainedθ s; this was done in Chapter 2, figure
2.12:
$THETA (0,.0027) (0,.70) .0018 .5
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An upper bound of+∞ may be stated explicitly using the value1000000 or the word
INFINITY. Similarly, a lower bound of−∞ may be stated explicitly as-1000000 or
-INFINITY.

2.3. FixingElements ofθ
When estimation is performed, it is sometimes desirable to hold one or more elements of
θ to a constant value. Oneexample is when a full model is reduced to a simpler model,
as discussed in Chapter 5, Section 2.1; usually this is done by holding someθ element to
0. In fact, the value 0 may not be used as an initial estimate for an element ofθ unless
this element is fixed to this value. Aθ element is held constant by inserting the word
FIXED after the initial estimate.For example, the following statement allows θ1 andθ3

to vary, but holdsθ2 to the value .102:
$THETA 1.7 .102 FIXED 29.

Parentheses may be used to make the statement easier to read:
$THETA 1.7 (.102 FIXED) 29.

If the lower, initial, and upper values for an element ofθ are identical, the element ofθ is
understood to be fixed, even if the word FIXED does not appear.

2.4. How to Obtain Initial Estimates for θ
When estimating parameters, good initial estimates forθ are sometimes important.Poor
initial estimates may occasionally cause the NONMEM run to take excessive amounts of
computer time, to produce parameter estimates that are not physiologically reasonable, or
to fail to produce any parameter estimates at all.For some drugs and models, initial esti-
mates forθ can be obtained from published literature describing prior studies with the
drug. For some studies, very accurate values may have been obtained by prior runs with
NONMEM or other regression programs. Highly accurate values should be perturbed
(modified) by about 10% before being used as initial estimates in a NONMEM run.(Ini-
tial estimates that are too close to what may be the actual final estimates will cause prob-
lems in a NONMEM run; see Chapter 13.) Sometimes, however, there is little guidance
in choosing initial estimates for some elements ofθ .

One approach with population data, where there is a reasonable amount of data for each
individual, is as follows. It is often easier to guess at appropriate parameter values for
individual data than for population data. So, first estimate each individual’s parameter
values using only the data from the individual. Themean values of the individuals’
parameter estimates can then be used as the initial parameter estimates in the population
analysis. Resultsfrom individual runs can also be used to obtain initial estimates for ele-
ments ofΩ andΣ; see below.

Another approach is simply to let NONMEM find an initial estimate.NONMEM has an
automatic strategy for so doing; see Chapter 12, Section 4.4.

3. Providing Initial Estimates for Ω and Σ: the $OMEGA and $SIGMA Records

Recall thatΩ andΣ are variance/covariance matrices for the following random variables:

Individual Model
Ω (OMEGA) forη (Random Intraindividual Variability)

Population Model
Ω (OMEGA) forη (Random Interindividual Variability)
Σ (SIGMA) for ε (Random Intraindividual Variability)
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In all the examples in this document,Ω andΣ arediagonalmatrices, in which covariance
elements such asω12 (which is cov(η1,η2)) are assumed to be zero. NONMEM also
allows full variance/covariance matrices; this is beyond the scope of this text, but see
Chapter 12, Section 4.1.

Initial estimates for the variances must be provided to NONMEM via the $OMEGA and
$SIGMA records. Initial estimates ofall model parameters(θ , Ω, and Σ) must be pro-
vided even if estimation is not requested. $OMEGA and $SIGMA records each contain a
list of values, separated by spaces or commas, which are the estimates for the correspond-
ing variances. Asin the $THETA record, the position of a value in the list corresponds to
the position (subscript) of the corresponding variance (along the diagonal) in the matrix.

3.1. $OMEGA Record With Individual Data

With individual data,η variables are used in $ERROR records, where they are called
either ERR or ETA. For example, in the theophylline problem of Chapter 2 (figure 2.1)
there appear the records:
$ERROR

Y=F+ERR(1)

$OMEGA 1.2

Here, ERR(1) corresponds toη1, and the initial estimate for its variance is 1.2: i.e.,
Ω11 = ω 2

1 = var(η1) = 1. 2.

3.2. $OMEGA Record With Population Data

With population data,η variables are used in $PK statements.For example, in the pheno-
barbital problem of Chapter 2 (figure 2.6) there appear the lines:
CL=TVCL+ETA(1)

V=TVVD+ETA(2)

$OMEGA .0000055, .04

The $OMEGA record says that the initial estimate for the variance ofη1 is 5.5x10−6, and
of η2 is .04: i.e.,Ω11 = ω 2

1 = var(η1) = 5. 5x10−6 and Ω22 = ω 2
2 = var(η2) = . 04. Some

users of NONMEM prefer to code each value on a separate line so that they can include
comments:
$OMEGA .0000005 ; VARIANCE IN CL

.04 ; VARIANCE IN V

3.3. The$SIGMA Record

This record is used only with population data, and is similar to the $OMEGA record.It
gives the initial estimates of the variances of theε variables used in the $ERROR state-
ments, where they are called either ERR or EPS.For example, in Figure 2.6, there also
appears the records:
$ERROR

Y=F+ERR(1)

$SIGMA 25

Here, ERR(1) corresponds toε1, and the initial estimate for its variance is 25: i.e.,
Σ11 = σ 2

1 = var(ε1) = 25.

3.4. FixingElements ofΩ or Σ
It is sometimes desirable to hold one or more elements ofΩ or Σ to constant value(s). In
the population example of Chapter 2 it is possible to ignore interindividual variability in
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CL by fixingη1 to 0†. The variance of anη or ε variable is held constant by inserting the
word FIXED after the initial estimate:
$OMEGA 0 FIXED .0225

Parentheses may be used to make the statement easier to read:
$OMEGA (0 FIXED) .0225

As with θ , the value 0 may not be used as an initial estimate for any element ofΩ or Σ
unless the element is fixed to this value.

3.5. How to Obtain Initial Estimates for Ω and Σ
The initial estimates for the variances will depend on the particular (interindividual and/or
intraindividual) error models chosen. The estimates do not have to be particularly accu-
rate, although values which are much too small can cause difficulties for NONMEM. In
general, it is better to over-estimate the variances rather than to under-estimate them.As
with initial estimates forθ , initial estimates can sometimes be obtained from published
literature or from prior runs with NONMEM or other regression programs.

Initial estimates can also be obtained by an approach which we illustrate with examples
for both intraindividual and interindividual error models. The standard deviation of a
physiological quantity is generally some fractionr of its typical valuet: σ y = rt .

For the additive model:

y = f + ε

σ y = σ ε = rt

varε = σ 2
ε = (rt )2 = r 2t2

Some ambiguity exists about what we mean by "the typical value" of y. For the purpose
of obtaining an initial estimate of the variance, we need not be too particular about this.
For the theophylline example (Figure 2.1), we may choose the mean of the observed val-
ues as the typical value. Thisvalue is approximately 5.4.Assuming 20% error, i.e.
r = . 2, thenσ 2

ε = (. 2x5. 4)2 = 1. 2. Similarly, in the first phenobarbital example (Figure
2.6), the mean of the observations is approximately 25.Again assuming 20% error, then
r = . 2, andσ 2

ε = (. 2x25)2 = 25. For that same example, the typical value of CL was esti-
mated according to the model for the parameter:TVCL=THETA(1). We used the initial
estimate of θ1, .0047, as the typical value of CL, and assumed 50% error:
Ω11 = (. 5x. 0047)2 = 5. 5x10−6. The model for V isTVVD=THETA(2). Again, we used
the initial estimate ofθ2, .99, as the typical value of V, but assumed 20% error:
Ω22 = (. 2x. 99)2 = . 04. Notefinally that in the second phenobarbital example (Figure
2.12), we used as initial estimates of variance the final estimates obtained from the first
example (understanding that these estimates could be somewhat large due to some of the
variability being explained in this example by a systematic influence of weight).

For the constant coefficient of variation model:

y = f + f ε

σ y = f σ ε = rt

† One could also re-write the $PK statements to eliminate ETA(1) in the model for CL, which also requires that
ETA(2) in the model for V be re-numbered as ETA(1). It is easier to modify only $OMEGA.
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varε = σ 2
ε =

r 2t2

f 2

If we identify t with the value of f (whatever it may be), we have:

varε = r 2

In other words, using the CCV model, we do not need to estimate the typical value of the
variable. For example, assuming 20% error,varε = . 22 = . 04.

As with θ , it is possible for NONMEM itself to obtain initial estimates ofΩ andΣ auto-
matically; see Chapter 12, Section 4.4.

4. SpecifyingOptional Tasks

Tw o main tasks of NONMEM, the Estimation Step and the Covariance Step, are optional
and must be specifically requested by including the $ESTIMATION and $COVARI-
ANCE records.To skip the Estimation Step, simply omit the $ESTIMATION record. To
skip the Covariance Step, simply omit the $COVARIANCE record.

In every run NONMEM computes and prints the value of the objective function and the
final parameter estimates. The values printed are based on the final parameter estimates if
the Estimation Step is requested, and are based on the initial estimates if it is not.

4.1. Requestingthe Estimation Step: the $ESTIMATION Record

In the Estimation Step, NONMEM performs a search to obtain those values ofθ , Ω, and
(for population studies)Σ which give the lowest value of the objective function. Theout-
put of this step is the pages whose titles are "MONITORING OF SEARCH:", "MINIMUM

VALUE OF OBJECTIVE FUNCTION", and "FINAL PARAMETER ESTIMATE". This step is
requested by the presence of the following statement:
$ESTIMATION

There are several options, which are described in the NONMEM Users Guide, Part IV.
The most frequently used ones are as follows.

METHOD=0

NONMEM always sets etas to 0 during the computation of the objective function.
Also calledthe "first order (FO) method." This is the default. It may also be coded
asMETHOD=ZERO.

METHOD=1

NONMEM uses conditional estimates for the etas duringthe computation of the
objective function. METHOD=1is also calledthe "first order conditionalesti-
mation (FOCE) method."It may also be coded asMETHOD=CONDITIONAL. When
the option INTERACTION is also present, the method is called the "FOCE with
INTERACTION method". It is recommended for continuous variables unless the
data are very sparse.These methods are discussed in Guide VII, Conditional Esti-
mation Methods.

SIGDIGITS=n

By default, the search continues until the estimates of all elements ofθ , Ω, and Σ
have been determined to at least 3 significant figures. Because only 3 significant
digits are used to print parameter estimates in the output, and for other reasons as
well, this amount of accuracy is often sufficient. However, the SIGDIGITS option
can be used to request a different number (n) of significant digits.
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MAXEVAL=n

The Estimation Step always runs with a specific limit on the number of objective
function evaluations allowed during the search, as a protection against infinite loops
and excessively long runs. The default maximum is computed according to the
number of parameters being estimated.The MAXEVALS option can be used to
request a different number (n) for the maximum number of function evaluations.

PRINT=n

As the Estimation Step progresses, by default it prints intermediate output summa-
rizing the progress of the search. The search proceeds in stages, called iterations.
At the end of certain iterations a summarization is printed which consists of the val-
ues of the objective function, its gradient vector with respect to the parameters, and
the parameter values themselves. Bydefault, this summarization is only printed for
the first and last iterations.The PRINT option can be used to request a number (n)
such that starting from the first iteration, only n-1 iterations are skipped before
another summarization is printed†.

An example of the use of these options is:
$EST SIG=6,MAX=900,PRI=5

In addition to the first and last iterations, summarizations are printed every 5th iteration.
Notice that abbreviations of the record and option names were used; this is a matter of
style.

4.2. Requestingthe Covariance Step: the $COVARIANCE Record

In the Covariance Step, NONMEM obtains information on the precision of the parameter
estimates obtained in the Estimation Step.The output of this step are pages with titles
"STANDARD ERROR OF ESTIMATE", "COVARIANCE MATRIX OF ESTIMATE", "CORRELATION

MATRIX OF ESTIMATE", and "INVERSE COVARIANCE MATRIX OF ESTIMATE". This step is
requested by the presence of the following record:
$COVARIANCE

There are several options, which are discussed in NONMEM Users Guide, Part IV. The
Covariance Step cannot be requested by itself; the Estimation Step must precede it‡.

5. SpecifyingOptional Output

$TABLE and $SCATTERPLOT records are used to request NONMEM steps which gen-
erate additional output. If one of these records is omitted, NONMEM does not produce
the corresponding additional output.Tables and scatterplots are generatedafter all other
tasks have been performed. This affects the values displayed for PRED, RES, and
WRES. If the Estimation Step isnot run, then theinitial estimates of the parameters are
used to compute these quantities. If the Estimation Stepis run, then thefinal parameter
estimates are used. Residuals (RES) and weighted residuals (WRES) are defined in
Chapter 11, Section 4.4.2.

The UNCONDITIONAL option of the $TABLE and $SCATTERPLOT records requests
that output of this type be generated even if the Estimation Step terminates unsuccess-
fully, and is the default. TheCONDITIONAL option of these records requests that out-
put of this type be generated only if the Estimation Step terminates successfully.

† The PRINT option can also be used to suppress intermediate printout altogether, but this should usually not be
done because the information is often of value. SeeChapter 10, Section 4.

‡ The Estimation Step may be omitted when the run is continued from a prior run using a Model Specification
input file; see Chapter 12, Section 4.3, and Chapter 13, Section 3.2.
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5.1. Requestingthe Table Step: the $TABLE Record

The values of DV, PRED, RES, and WRES are always printed in every table. Other data
items to be printed should be listed on the record. The data items are printed in the order
in which they are listed. This does not have to be the same order as in the data file, nor
does every data item have to be listed. For example, the following record appears in
Chapter 2, figure 2.12:
$TABLE ID TIME AMT WT APGR

Figure 10.10 in Chapter 10 shows a portion of the resulting output.

It is possible for the lines of a table to be sorted into a different order than that of the orig-
inal input file; this is discussed in the NONMEM Users Guide, Part IV.

More than one table can be printed.A separate $TABLE record is used to request each
one.

5.2. RequestingScatterplots: the $SCATTERPLOT Record

Chapter 2 contained many examples of $SCATTERPLOT records and the resulting out-
put. Here,for example, are the records from figure 2.6:
$SCATTERPLOT PRED VS DV UNIT

$SCATTERPLOT RES VS WT

The word UNIT requests a unit-slope line, which is the line PRED=DV. Figures 2.10 and
2.11 show the resulting output.

Similarly, the word ORD0 can be used to request a zero line on the ordinate axis.

It is possible to generate several scatterplots with a single record, by using a list of data
item names:
$SCATTERPLOT (PRED,RES,WRES) VS WT

This produces three scatterplots, and has the same effect as the three records:
$SCATTERPLOT PRED VS WT

$SCATTERPLOT RES VS WT

$SCATTERPLOT WRES VS WT

Sometimes it is desirable to partition a scatterplot into a number of separate scatterplots.
For example, if the data contain both plasma and urine observations, it would be better to
separate the scatterplot of PRED vs. DV into one scatterplot where the DV values are the
plasma observations, and another one where the DV values are the urine observations. To
do this, it is necessary to specify a partitioning data item, in this case, the CMT data item,
which gives the compartment number of the observation. Thefollowing record could be
used.
$SCATTERPLOT PRED VS DV BY CMT UNIT

This will produce separate scatterplots: one with plasma observations (CMT=1 if
ADVAN1 is used), and one with urine observations (CMT=2 if ADVAN1 is used).

Tw o partitioning items can also be specified:
$SCATTERPLOT PRED VS DV BY CMT SEX UNIT

One scatterplot is produced for each uniquecombinationof values of the two partitioning
data items.

6. Placementand Order of Records

Tw o main rules control the placement and order of records within a NM-TRAN control
file:

The $INPUT record must appearbeforeany records which contain data item names
($PK, $ERROR, $TABLE, $SCATTERPLOT)
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The $SUBROUTINE, $PK, and $ERROR records should appear in the indicated
order, but do not have to be consecutive.

The records $DAT A, $THETA, $OMEGA, $SIGMA, $ESTIMATION, $COVARIANCE,
$TABLE, and $SCATTERPLOT can be placed anywhere among the control records, in
any order. Howev er, NONMEM always performs its tasks in a fixed order:

Estimation Step
Covariance Step
Table Step
Scatterplot Step

Thus, even if the $TABLE record precedes the $ESTIMATION record, the values of
PRED, RES, and WRES in the table will be based on the final parameter estimates.

7. INCLUDE records

One or more records of the form

INCLUDE filename n

may appear anywhere among the NM-TRAN control records. The characters INCLUDE
may be upper- or lower-case. "n"is an optional integer, and gives the number of copies
(default is 1).

NM-TRAN opens the named file and reads it to end-of-file.The contents of the named
file may be any portion of an NM-TRAN control stream, e.g., NM-TRAN control records
and/or abbreviated code. After reaching end-of-file, ifthe number ofcopies is greater
than 1, NM-TRAN rewinds the file and re-reads it the specified number of times.After
reaching end-of-file on the final (or only) copy, NM-TRAN resumes reading the original
control stream after the include record.

There may be more than one INCLUDE record, but they may not be nested. That is, an
included file may not contain INCLUDE records.

For example,

$PROBLEM Model "a" with data set 27, proportional error

INCLUDE data27.def

INCLUDE modela.def

$ERROR Y=F+F*ERR(1)

$THETA 1.3 4

$OMEGA .04

$SIGMA 1

$ESTIMATION

The file data27.def contains the $INPUT and $DAT A records.
The file modela.def contains the $SUBROUTINE record and $PK block.

-94-



Chapter 10 - Reading the Output

1. What This Chapter is About

This chapter describes NONMEM’s output in detail. Each page of a NONMEM-
PREDPP output file is shown and discussed.

The input file to NM-TRAN is that of figure 2.12, which is reproduced here as figure 10.1
for convenience.

1 $PROBLEM PHENOBARB WITH WEIGHT IN MODELS FOR CL AND V
2 $INPUT ID TIME AMT WT APGR DV
3 $DATA INDATA
4 $SUBROUTINE ADVAN1
5 $PK
6 TVCL=THETA(1)+THETA(3)*WT
7 CL=TVCL+ETA(1)
8 TVVD=THETA(2)+THETA(4)*WT
9 V=TVVD+ETA(2)
10 ; THE FOLLOWING ARE REQUIRED BY PREDPP
11 K=CL/V
12 S1=V
13 $ERROR
14 Y=F+ERR(1)
15 $THETA (0,.0027) (0,.70) .0018 .5
16 $OMEGA .000007, .3
17 $SIGMA 8
18 $ESTIMATION PRINT=5
19 $COVARIANCE
20 $TABLE ID TIME AMT WT APGR DV
21 $SCATTER PRED VS DV UNIT
22 $SCATTER RES VS WT

Figure 10.1. The NM-TRAN input file (same as figure 2.12). The line numbers on the left are not actually
part of the file.

2. NONMEM Describes its Inputs

The first page of NONMEM’s output is shown in figure 10.2.In this page, NONMEM
repeats ("echos") the instructions it was given in the control file and describes the data
file. Thefirst page of the output should be checked carefully. Problems in a NONMEM
run can often be traced to errors in the problem specification.For example, always check
that the initial parameter estimates were entered correctly.

-95-



Chapter 10 - Reading the Output

1 NONLINEAR MIXED EFFECTS MODEL PROGRAM (NONMEM) DOUBLE PRECISION NONMEM VERSION IV LEVEL 1.0
2 DEVELOPED AND PROGRAMMED BY STUART BEAL AND LEWIS SHEINER
3
4 PROBLEM NO. 1
5 PHENOBARB WITH WEIGHT IN MODELS FOR CL AND V
6
7 DATA CHECKOUT RUN: NO
8 DATA SET LOCATED ON UNIT NO.: 2
9 THIS UNIT TO BE REWOUND: NO
10 NO. OF DATA RECS IN DATA SET: 744
11 NO. OF DATA ITEMS IN DATA SET: 8
12 ID DATA ITEM IS DATA ITEM NO.: 1
13 DEP VARIABLE IS DATA ITEM NO.: 6
14 MDV DATA ITEM IS DATA ITEM NO.: 8
15
16 INDICES PASSED TO SUBROUTINE PRED ARE:
17 7 2 3 0 0 0 0 0 0
18 0 0
19
20 LABELS FOR DATA ITEMS ARE:
21 ID TIME AMT WT APGR DV EVID MDV
22
23 FORMAT FOR DATA IS:
24 (6E6.0,2F2.0)
25
26 TOT. NO. OF OBS RECS: 155
27 TOT. NO. OF INDIVIDUALS: 59
28
29 LENGTH OF THETA: 4
30
31 OMEGA HAS SIMPLE DIAGONAL FORM WITH DIMENSION: 2
32
33 SIGMA HAS SIMPLE DIAGONAL FORM WITH DIMENSION: 1
34
35 INITIAL ESTIMATE OF THETA:
36 LOWER BOUND INITIAL EST UPPER BOUND
37 0.0000E+00 0.2700E-02 0.1000E+07
38 0.0000E+00 0.7000E+00 0.1000E+07
39 -0.1000E+07 0.1800E-02 0.1000E+07
40 -0.1000E+07 0.5000E+00 0.1000E+07
41
42 INITIAL ESTIMATE OF OMEGA:
43 0.7000E-05
44 0.0000E+00 0.3000E+00
45
46 INITIAL ESTIMATE OF SIGMA:
47 0.8000E+01
48
49 ESTIMATION STEP OMITTED: NO
50 NO. OF FUNCT. EVALS. ALLOWED: 360
51 NO. OF SIG. FIGURES REQUIRED: 3
52 INTERMEDIATE PRINTOUT: YES
53 MSF OUTPUT: NO
54
55 COVARIANCE STEP OMITTED: NO
56 EIGENVLS. PRINTED: NO
57 SPECIAL COMPUTATION: NO
58
59 TABLES STEP OMITTED: NO
60 NO. OF TABLES: 1
61 TABLES PRINTED: YES
62
63 USER-CHOSEN DATA ITEMS FOR TABLE 1,
64 IN THE ORDER THEY WILL APPEAR IN THE TABLE, ARE:
65 ID TIME AMT WT APGR
66
67 SCATTERPLOT STEP OMITTED: NO
68 NO. OF PAIRS OF ITEMS GENERATING
69 FAMILIES OF SCATTERPLOTS: 2
70
71 ITEMS TO BE SCATTERED ARE: DV PRED
72 UNIT SLOPE LINE INCLUDED
73 ITEMS TO BE SCATTERED ARE: WT RES

Figure 10.2. The first page of the output report.The line numbers on the left are not actually part of the
report.

Line 5 is an identification line for the output report. The contents of the $PROBLEM
record are shown here.

Line 7 indicates that this is not a data checkout run. (Data checkout mode is discussed in
Chapter 12 Section 4.10.)Lines 8 through 27 describe the input data file. Lines 10 and
11 describe the numbers of rows and columns in the input file, as shown in figure 6.1.
Specifically, line 10 shows how many data records were read according to the FORTRAN
format specification given in line 24. Line 11 describes the number of data items per
record, which is the number of data items listed in the $INPUT record, less any that were
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dropped by the Data Preprocessor, plus any that it added (see Chapter 6).Lines 12, 13,
and 14 describe the locations of those data items of interest to NONMEM itself (i.e.
NONMEM data items).Lines 16 through 18 are discussed in Section 3. Line 21 gives
the labels for all the data items.The first six labels are those of the data items specified in
the $INPUT record and the next two (EVID, MDV) are those of two data items added to
the data set by the Data Preprocessor. (NONMEM itself supplies labels PRED, RES, and
WRES for the prediction, residual, and weighted residual data items.) In the terminology
of Chapter 4 (e.g. (4.15a)), ID, TIME, AMT, WT, and APGR are the elements ofx; DV is
y; PRED is f (evaluated for the typical individual in the population). Line 24 shows the
format used to read each data record. In this example, the format was generated by the
Data Preprocessor and describes the data file after processing by the Data Preprocessor.†
Line 26 gives the number of observation records.Line 27 gives the number of individual
records; that is, one less than the number of times that the ID data item changed value.

Lines 29 through 47 describe the contents of the $THETA, $OMEGA and $SIGMA
records. First,the number of elements ofθ , Ω andΣ are given (lines 29, 31 and 33), then
their initial estimates are displayed.In lines 38-41, notice the values 0.1000e+07 and
-0.1000e+07. Theseare NONMEM’s way of expressing the values+∞ and−∞; i.e., of
describingθ s which are unbounded on one or both sides. Another FORTRAN system
may display these numbers differently (e.g., 1.0000e+06), but the absolute value will
always be 1,000,000. In lines 43 and 44, notice that the variances from the $OMEGA
record appear along the diagonal of theΩ matrix, and that the off-diagonal element
cov(η1,η2) is zero. Line31 states that NONMEM understandsΩ to be diagonal; the off-
diagonal element(s) are automatically fixed at zero.

The remaining lines of figure 10.2 describe the tasks that NONMEM will perform.Lines
49 through 53 describe the $ESTIMATION record. Lines 50 through 53 show the
defaults (set by NM-TRAN) for various options, all of which could have been specified
explicitly on the $ESTIMATION record. In line 50 for example, NONMEM displays the
maximum number of times it will evaluate the objective function during the Estimation
Step (this number can be slightly exceeded). Thevalue 360 was supplied by NM-TRAN.
It is a function of the sizes ofθ , Ω, and Σ. Line 51 displays the desired number of signifi-
cant digits in the final parameter estimate; the value 3 is the default number requested by
NM-TRAN.

Lines 55 through 59 describe the $COVARIANCE record, giving the default options cho-
sen by NM-TRAN.

Lines 59 through 61 describe the $TABLE record. Lines 67 through 73 describe the
$SCATTERPLOT records.

3. PREDPPDescribes Its Inputs

The next two pages are produced by PREDPP and will not appear if $PRED statements
(or a user-written PRED subroutine) are used.PREDPP uses these pages to repeat
("echo") the instructions it was given in the control file, and to identify the ADVAN and
TRANS routines chosen by the user. The first page of PREDPP’s output is shown in fig-
ure 10.3.

In its first page of output, PREDPP describes the features of the pharmacokinetic model
and its parameterization encoded into the ADVAN and TRANS routines specified on the
$SUBROUTINE record. The information displayed here includes the kind of informa-
tion summarized in Appendices 1 and 2.In the particular output of Figure 10.3 no

† When a format specification is supplied on the $DAT A record, and no data items are dropped or added by the
Data Preprocessor, the original format specification is used unchanged and appears here.

-97-



Chapter 10 - Reading the Output

1 DOUBLE PRECISION PRED VERSION III LEVEL 1.0
2
3 ONE COMPARTMENT MODEL (ADVAN1)
4
5 MAXIMUM NO. OF BASIC PK PARAMETERS: 2
6
7 BASIC PK PARAMETERS (AFTER TRANSLATION):
8 ELIMINATION RATE (K) IS BASIC PK PARAMETER NO.: 1
9
10
11 COMPARTMENT ATTRIBUTES
12 COMPT. NO. FUNCTION INITIAL ON/OFF DOSE DEFAULT DEFAULT
13 STATUS ALLOWED ALLOWED FOR DOSE FOR OBS.
14 1 CENTRAL ON NO YES YES YES
15 2 OUTPUT OFF YES NO NO NO

Figure 10.3. The first page of PREDPP’s output. Theline numbers on the left are not actually part of the
report.

information concerning an alternate parameterization appears because TRANS1 was
specified. Theinformation concerning basic parameters and compartments is displayed
in a format similar to that used in NONMEM Users Guide, Part VI, which is the complete
reference for PREDPP.

Lines 5 and 8 describe the basic PK parameters, which in this example is the single
microconstant K. If a translator other than TRANS1 had been requested, an additional
line would appear describing the translation. E.g., with TRANS2, this line would read:
TRANSLATOR WILL CONVERT PARAMETERS CLEARANCE (CL) AND VOLUME (V) to K

Lines 10 through 14 describe the compartment attributes. Even though the output com-
partment is never turned on by the data of this example, its attributes are described here
because it is part of the model.

The information presented so far describes the model for computing drug amounts.For a
given choice of ADVAN and TRANS, the contents of this page are completely fixed.
PREDPP’s second page of output describes user choices related to the given ADVAN
routine, including choices for the scale parameters (and thus, to the model for computing
concentrations). Thispage is shown in figure 10.4.

1 ADDITIONAL PK PARAMETERS - ASSIGNMENT OF ROWS IN GG
2 COMPT. NO. INDICES
3 SCALE BIOAVAIL. ZERO-ORDER ZERO-ORDER ABSORB
4 FRACTION RATE DURATION LAG
5 1  3  *  *  *  *
6 2  *  -  -  -  -
7 - PARAMETER IS NOT ALLOWED FOR THIS MODEL
8 * PARAMETER IS NOT SUPPLIED BY PK SUBROUTINE;
9 WILL DEFAULT TO ONE IF APPLICABLE
10
11 DATA ITEM INDICES USED BY PRED ARE:
12 EVENT ID DATA ITEM IS DATA ITEM NO.: 7
13 TIME DATA ITEM IS DATA ITEM NO.: 2
14 DOSE AMOUNT DATA ITEM IS DATA ITEM NO.: 3
15
16
17 PK SUBROUTINE CALLED WITH EVERY EVENT RECORD.
18 PK SUBROUTINE NOT CALLED AT ADDITIONAL DOSE OR LAGGED DOSE TIMES.
19
20 DURING SIMULATION, ERROR SUBROUTINE CALLED WITH EVERY EVENT RECORD.
21 OTHERWISE, ERROR SUBROUTINE CALLED ONCE IN THIS PROBLEM.

Figure 10.4. The second page of PREDPP’s output. Theline numbers on the left are not actually part of the
report.

Lines 2 through 9 describe the additional PK parameters that are computed by the $PK
statements (or PK subroutine). In line 5, the position marked with "3" corresponds to the
scale parameter for compartment number 1. Thus, we know that the $PK statements con-
tained an assignment statement for S1. From the prior page we can see that compartment
number 1 is the central compartment. The value "3" is a row number within GG, an array
used for communication between PREDPP and the PK subroutine.With the use of NM-
TRAN and $PK statements, row numbers are of no interest to the user. With a user-writ-
ten PK subroutine, it is important to check their correctness. Positions marked with "*"
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correspond to additional PK parameters that are allowed by the model but that are not
assigned a value by $PK statements; an example is F1, the bioavailability fraction for
compartment 1. Positions marked with "-" correspond to additional parameters that may
not be computed; for instance, dose-related parameters are not allowed for the output
compartment, because (as shown on the preceding page) this compartment cannot receive
doses.

Lines 11 through 14 describe the locations in the input data record of those data items of
interest to PREDPP (PREDPP data items). (NM-TRAN causes the locations of these
data items in the data set to be passed by NONMEM to PREDPP, as indicated in lines 15
through 17 of figure 10.2. NONMEM is not concerned with the significance of these data
items.) Notethat data item 7, Event ID, was appended by the Data Preprocessor.

Line 17 reflects the fact that, by default, $PK statements are evaluated with every event
record†. Laggedand additional doses are discussed in Chapter 12, Sections 2.4 and 2.5.
They are not used in this example.

Line 21 reflects the fact that the $ERROR statements describe the simple error model
(3.4). Thismodel uses no data items and no elements ofθ whatsoever (directly or indi-
rectly). NM-TRAN has instructed PREDPP that the $ERROR statements need be evalu-
ated only once at the beginning of the problem. Line 20 indicates that, should the Simu-
lation Step be implemented, PREDPP will disregard this limitation and evaluate the
$ERROR statements with every event record, so that randomly-generated values of intra-
individual error can be applied at every observation event. (This example does not
involve simulation, but the PK and ERROR routines which implement the $PK and
$ERROR statements are capable of supporting all NONMEM tasks, including simula-
tion.)

Finally, note that the $PK and $ERROR models (figure 10.1, lines 5-14) are not docu-
mented in the NONMEM-PREDPP output.It is a good idea to attach a printed copy of
the NM-TRAN input records to the corresponding NONMEM output. MS/DOS batch
file nmfe73.bat and Unix C-shell script nmfe73 (supplied with NONMEM) do this auto-
matically.

4. DiagnosticOutput from the Estimation Step

The next page of output, figure 10.5, is produced during the running of the Estimation
Step.

4.1. IntermediateOutput from the Estimation Step

Lines 1 through 42 are referred to as the intermediate output. Lines 4 through 7 give
numbers summarizing the 0-th iteration, which are based on the initial parameter esti-
mates. Line4 shows the initial value of the objective function. Thevalue following
"NO. OF FUNC. EVALS." is the number of objective function evaluations which were
needed during the iteration. Line 5 gives the cumulative number of function evaluations
including this and all prior iteration summaries.
Line 6 gives the unconstrainedparameter(UCP)estimates. Thesearch is carried out in a
different parameter space. Theparameters are transformed to unconstrained parameters
(UCP). Inthe transformation process a scaling occurs so thatthe initialestimate of each
of the UCP is 0.1. Thus, in line 6, all parameters are .1 at the 0-th iteration.Parameters

† In this example, the $PK statements (lines 5 through 12 of the input file, figure 10.1) involve only WT, which
is constant for each individual. It is possible to limit the event records with which the $PK statements are evalu-
ated to the first event record of each individual, in order to reduce run time. This decision is left to the user.
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1 MONITORING OF SEARCH:
2
3
4 ITERATION NO.: 0 OBJECTIVE VALUE: 0.6757E+03 NO. OF FUNC. EVALS.: 8
5 CUMULATIVE NO. OF FUNC. EVALS.: 8
6 PARAMETER: 0.1000E+00 0.1000E+00 0.1000E+00 0.1000E+00 0.1000E+00 0.1000E+00 0.1000E+00
7 GRADIENT: -0.7986E+03 -0.1594E+04 -0.4294E+03 -0.1000E+04 0.1542E+03 0.5269E+03 0.9128E+02
8
9 ITERATION NO.: 5 OBJECTIVE VALUE: 0.6502E+03 NO. OF FUNC. EVALS.:10
10 CUMULATIVE NO. OF FUNC. EVALS.: 58
11 PARAMETER: 0.8878E-01 0.1003E+00 0.2055E+00 0.1296E+00 0.6695E-01 0.7822E-01 0.1071E+00
12 GRADIENT: 0.1060E+04 0.2567E+04 0.3675E+03 0.8472E+03 -0.1807E+03 -0.5093E+03 0.9841E+02
13
14 ITERATION NO.: 10 OBJECTIVE VALUE: 0.6153E+03 NO. OF FUNC. EVALS.: 9
15 CUMULATIVE NO. OF FUNC. EVALS.: 107
16 PARAMETER: 0.5008E-01 0.6626E-01 0.2425E+00 0.1663E+00 -0.6718E-01 0.6382E-01 0.1004E+00
17 GRADIENT: 0.9732E+02 0.3034E+03 0.3185E+02 0.1228E+03 -0.1162E+03 0.1252E+03 0.6450E+02
18
19 ITERATION NO.: 15 OBJECTIVE VALUE: 0.6108E+03 NO. OF FUNC. EVALS.: 9
20 CUMULATIVE NO. OF FUNC. EVALS.: 152
21 PARAMETER: 0.4235E-01 0.4508E-01 0.2462E+00 0.1831E+00 -0.5721E-01 0.5237E-01 0.1008E+00
22 GRADIENT: 0.3989E+02 0.7394E+02 -0.1782E+01 0.8527E+02 -0.9309E+02 0.1867E+02 -0.1773E+02
23
24 ITERATION NO.: 20 OBJECTIVE VALUE: 0.6095E+03 NO. OF FUNC. EVALS.: 9
25 CUMULATIVE NO. OF FUNC. EVALS.: 197
26 PARAMETER: 0.1927E-01 0.3153E-01 0.2615E+00 0.1898E+00 -0.4458E-01 0.4904E-01 0.1047E+00
27 GRADIENT: 0.1609E+02 -0.3621E+02 0.5228E+01 0.9614E+00 -0.1740E+02 0.1329E+02 0.3111E+01
28
29 ITERATION NO.: 25 OBJECTIVE VALUE: 0.6091E+03 NO. OF FUNC. EVALS.: 9
30 CUMULATIVE NO. OF FUNC. EVALS.: 242
31 PARAMETER: 0.2389E-02 0.4171E-01 0.2652E+00 0.1833E+00 -0.4413E-01 0.4998E-01 0.1043E+00
32 GRADIENT: 0.2273E+01 -0.5333E+01 0.3914E+01 -0.5397E+01 0.1271E+01 0.2610E+01 0.3584E+00
33
34 ITERATION NO.: 30 OBJECTIVE VALUE: 0.6091E+03 NO. OF FUNC. EVALS.:16
35 CUMULATIVE NO. OF FUNC. EVALS.: 299
36 PARAMETER: -0.1278E-03 0.4166E-01 0.2650E+00 0.1835E+00 -0.4414E-01 0.5003E-01 0.1043E+00
37 GRADIENT: -0.1120E+00 -0.9411E+00 -0.3719E+00 -0.2540E+01 -0.5135E-01 0.1420E+00 -0.9524E-01
38
39 ITERATION NO.: 32 OBJECTIVE VALUE: 0.6091E+03 NO. OF FUNC. EVALS.: 0
40 CUMULATIVE NO. OF FUNC. EVALS.: 315
41 PARAMETER: -0.7284E-05 0.4150E-01 0.2650E+00 0.1836E+00 -0.4411E-01 0.5003E-01 0.1043E+00
42 GRADIENT: -0.6416E-02 0.9336E-01 0.4548E-01 0.4826E-01 0.1263E-02 0.9652E-01 0.4629E-01
43
44 MINIMIZATION SUCCESSFUL
45 NO. OF FUNCTION EVALUATIONS USED: 315
46 NO. OF SIG. DIGITS IN FINAL EST.: 3.9

Figure 10.5. The output from the Estimation Step.The line numbers on the left are not actually part of the
report.

are printed in the following order: elements ofθ , elements ofΩ, elements ofΣ. In this
example, reading from left to right, the parameters areθ1, θ2, θ3, θ4, Ω11, Ω22, and Σ11.

Tw o points should be noted. First, fixed parameters do not appear in the list.Therefore,
the off-diagonal elementΩ12, which is effectively fixed to 0, does not appear. Second,
when off-diagonal elements ofΩ are being estimated, then as many additional UCP’s
appear as there are off-diagonal elements ofΩ being estimated.However, a 1-1 corre-
spondence between each of the elements ofΩ and an UCP does not exist. Thesame is
true for elements ofΣ and the UCP’s for Σ when off-diagonal elements ofΣ are esti-
mated.

With NONMEM 7, the parameter estimatesare also displayed in their natural
(unscaled) space. Theselines are identified asNPARAMETR and precede the
PARAMETER lines, which display the UCP values.

Line 7 shows the gradient for each parameter, which may be thought of as the partial de-
rivative of the objective function with respect to that parameter.

The Estimation Step proceeds in a series of stages called iterations. In this example,
intermediate printout is produced for each of every 5 iterations, as well as for the 0-th and
final iterations, for which intermediate printout is always printed by default. Thisprintout
consists of the same four lines as for the 0-th iteration, but using the parameters estimates
obtained at the end of the iteration.

In lines 4, 9, 14, 19, 24, 29, 34, and 39, observe that the objective function drops quickly
at first, and then more slowly. After iteration number 25, there is no change above the
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fourth significant digit.

In lines 6, 11, 16, 21, 26, 31, 36, and 41, observe that each parameter also changes
rapidly at first and then more slowly as it converges to its final value. (Thefirst parame-
ter, θ1, is an exception. It is clearly approaching a very small value close to its lower
bound, 0. In Chapter 12, we shall see that bothθ1 andθ2 are best fixed at 0.)

Finally, in lines 7, 12, 17, 22, 27, 32, 37, and 42, observe that the gradients also approach
0, another sign that a minimum of the objective function has been located.

The values computed for the gradients are very sensitive to differences in computer arith-
metic and precision.If a given NONMEM run is repeated on a different computer, or on
the same computer with different machine precision or a different FORTRAN compiler, it
is likely that the gradients will be different. Thiswill cause the search to follow a differ-
ent path to the minimum, so that lines 4 through 42 may be quite different. However,
each final estimate of a UCP should always be the same to the number of requested sig-
nificant digits. (Minor differences may also be observed in the output of the Covariance
Step, below; this output is also sensitive to computational differences.)

4.2. SummaryOutput from the Estimation Step

Lines 44, 45 and 46 are always printed, even when intermediate printout is suppressed.
Line 44, "MINIMIZATION SUCCESSFUL", signifies that the search appears to have
located a minimum of the objective function. Beforeone can be certain that a minimum
has been located, or one which corresponds to a reasonable parameter estimate (there can
be a number of "local minima"), the final parameter estimates must be examined in their
(untransformed) state; see Section 5 below. The Estimation Step is not always successful.
Chapter 13 discusses two other messages that sometimes appear instead of line 44.

In line 45, note that the number of function evaluations used, 315, is a total value and
includes all iterations (not just those for which intermediate printout was displayed).This
is under the limit of 360 supplied by NM-TRAN (figure 10.2, line 57).

The number of significant digits in the final estimate is given in line 34 as 3.9. This can
be interpreted as meaning that no (transformed)parameter estimateis actually deter-
mined to less than 3.9 significant digits.More specifically, when the UCP estimates were
compared between the last two iterations, none differed in the first (almost) 4 significant
figuresincluding leading zeros after the decimal point. Note that the finalθ1 UCP esti-
mate is -0.7284E-05, and so the 7284 are not significant digits at all!Because NON-
MEM displays only 3 significant digits in the printed parameter estimates, and for other
reasons as well, by default NM-TRAN requests only 3 significant digits.However, more
significance can be requested, as was discussed in Chapter 9, Section 4.1.

5. Minimum Value of the Objective Function and Final Parameter Estimates

The next two pages in the NONMEM output are produced whether or not the Estimation
Step was implemented and, if it was, whether or not the search terminated successfully.
They giv e the values of the objective function and the parameter estimates, using the final
parameter estimates if the Estimation Step was implemented (whether or not the search
terminated successfully), and using the initial parameter estimates otherwise.These
pages have already been shown in Chapter 2, figure 2.13.Even when the minimization
routine is successful in locating a minimum of the objective function, the final (untrans-
formed) parameter estimates must be carefully checked. Isany parameter’s final estimate
physiologically unreasonable? Is any parameter’s final estimate near its upper or lower
constraint? Ifeither answer is yes, the model, the constraints onθ ’s, or the data may be
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incorrect; see Chapter 11.

Sometimes the final estimates do not match anticipated values, e.g., values obtained by
some other system of analysis. Additional refinement of the model may be needed, as
discussed in Chapter 11.However, the discrepancy may well be traceable to an error in
model specification, such as an error in specifying a compartment’s scale. Alongwith the
Estimation Step, it is important to obtain a scatterplot of PRED vs DV and make sure the
unit slope line is visible. See Chapter 13, Section 4.4.

6. Output from the Covariance Step

Figures 10.6 through 10.7 show the output of the Covariance Step, which was requested
via the $COVARIANCE record. Figure 10.6 has already been displayed as figure 2.14,
but is included here for completeness. This page displays the standard errors of the
parameter estimates. Standard errors are discussed extensively in Chapters 5 and 11.A
detailed discussion of the remaining three pages, containing the covariance, correlation,
and inverse covariance matrices, is beyond the scope of this text. Note,however, the use
of the notation "........".Each sequence of dots denotes a value (such as the standard error
in the estimate ofΩ12) that is 0 by definition, rather than due to a computation.

1 ************************************************************************************************************************
2 ******************** ********************
3 ******************** STANDARD ERROR OF ESTIMATE ********************
4 ******************** ********************
5 ************************************************************************************************************************
6
7
8
9 THETA - VECTOR OF FIXED EFFECTS *********************
10
11
12 TH 1 TH 2  TH 3  TH 4
13
14 9.49E-11 1.46E-01 2.24E-04 1.13E-01
15
16
17
18 OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********
19
20
21 ETA1 ETA2
22
23 ETA1 7.24E-07
24
25 ETA2 ......... 3.63E-02
26
27
28
29 SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS ****
30
31
32 EPS1
33
34 EPS1 1.71E+00

Figure 10.6. Standard error of the estimate. The line numbers on the left are not actually part of the report.
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1 ************************************************************************************************************************
2 ******************** ********************
3 ******************** COVARIANCE MATRIX OF ESTIMATE ********************
4 ******************** ********************
5 ************************************************************************************************************************
6
7
8 TH 1  TH 2  TH 3  TH 4  OM11 OM12 OM22 SG11
9
10 TH 1 9.02E-21
11
12 TH 2 3.93E-12 2.14E-02
13
14 TH 3 -5.23E-15 -1.45E-05 5.00E-08
15
16 TH 4 -3.69E-12 -1.57E-02 1.04E-05 1.27E-02
17
18 OM11 -1.11E-17 2.13E-08 -6.39E-12 -1.52E-08 5.24E-13
19
20 OM12 ......... ......... ......... ......... ......... .........
21
22 OM22 -1.79E-14 4.40E-04 -5.30E-07 5.58E-04 6.27E-10 ......... 1.32E-03
23
24 SG11 1.04E-11 -5.69E-02 1.12E-04 4.45E-02 -3.74E-07 ......... -1.03E-02 2.92E+00

Figure 10.7. Covariance matrix of the estimate.The line numbers on the left are not actually part of the
report.

1 ************************************************************************************************************************
2 ******************** ********************
3 ******************** CORRELATION MATRIX OF ESTIMATE ********************
4 ******************** ********************
5 ************************************************************************************************************************
6
7
8 TH 1  TH 2  TH 3  TH 4  OM11 OM12 OM22 SG11
9
10 TH 1 1.00E+00
11
12 TH 2 2.83E-01 1.00E+00
13
14 TH 3 -2.46E-01 -4.44E-01 1.00E+00
15
16 TH 4 -3.45E-01 -9.53E-01 4.13E-01 1.00E+00
17
18 OM11 -1.61E-01 2.01E-01 -3.95E-02 -1.86E-01 1.00E+00
19
20 OM12 ......... ......... ......... ......... ......... .........
21
22 OM22 -5.21E-03 8.29E-02 -6.53E-02 1.37E-01 2.39E-02 ......... 1.00E+00
23
24 SG11 6.44E-02 -2.28E-01 2.94E-01 2.31E-01 -3.02E-01 ......... -1.66E-01 1.00E+00

Figure 10.8. Correlation matrix of the estimate. The line numbers on the left are not actually part of the
report.

1 ************************************************************************************************************************
2 ******************** ********************
3 ******************** INVERSE COVARIANCE MATRIX OF ESTIMATE ********************
4 ******************** ********************
5 ************************************************************************************************************************
6
7
8 TH 1  TH 2  TH 3  TH 4  OM11 OM12 OM22 SG11
9
10 TH 1 1.56E+20
11
12 TH 2 1.46E+11 1.25E+03
13
14 TH 3 1.35E+13 4.42E+04 2.80E+07
15
16 TH 4 2.32E+11 1.63E+03 3.98E+04 2.23E+03
17
18 OM11 3.04E+15 -3.96E+06 -7.46E+08 -1.76E+06 2.26E+12
19
20 OM12 ......... ......... ......... ......... ......... .........
21
22 OM22 -1.56E+11 -1.14E+03 -2.82E+04 -1.55E+03 2.82E+06 ......... 1.86E+03
23
24 SG11 -1.93E+09 -7.14E+00 -1.06E+03 -1.03E+01 2.67E+05 ......... 9.91E+00 4.78E-01

Figure 10.9.Inverse covariance matrix of the estimate. The line numbers on the left are not actually part of
the report.

7. Additional Output: Tables and Scatterplots

The use of $TABLE and $SCATTERPLOT records to request tables and scatterplots is
discussed in Chapter 9.
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7.1. Output from the Table Step

The first 12 lines of the table produced by the $TABLE record are shown in figure 10.10.
This is the data for the first individual.

1 TABLE NO. 1
2
3
4
5 LINE NO. ID TIME AMT WT APGR DV PRED RES WRES
6
7 1  1.00E+00 0.00E+00 2.50E+01 1.40E+00 7.00E+00 0.00E+00 1.78E+01 0.00E+00 0.00E+00
8
9 2  1.00E+00 2.00E+00 0.00E+00 1.40E+00 7.00E+00 1.73E+01 1.76E+01 -3.14E-01 -2.92E-01
10
11 3 1.00E+00 1.25E+01 3.50E+00 1.40E+00 7.00E+00 0.00E+00 1.92E+01 0.00E+00 0.00E+00
12
13 4 1.00E+00 2.45E+01 3.50E+00 1.40E+00 7.00E+00 0.00E+00 2.07E+01 0.00E+00 0.00E+00
14
15 5 1.00E+00 3.70E+01 3.50E+00 1.40E+00 7.00E+00 0.00E+00 2.20E+01 0.00E+00 0.00E+00
16
17 6 1.00E+00 4.80E+01 3.50E+00 1.40E+00 7.00E+00 0.00E+00 2.33E+01 0.00E+00 0.00E+00
18
19 7 1.00E+00 6.05E+01 3.50E+00 1.40E+00 7.00E+00 0.00E+00 2.45E+01 0.00E+00 0.00E+00
20
21 8 1.00E+00 7.25E+01 3.50E+00 1.40E+00 7.00E+00 0.00E+00 2.56E+01 0.00E+00 0.00E+00
22
23 9 1.00E+00 8.53E+01 3.50E+00 1.40E+00 7.00E+00 0.00E+00 2.66E+01 0.00E+00 0.00E+00
24
25 10 1.00E+00 9.65E+01 3.50E+00 1.40E+00 7.00E+00 0.00E+00 2.77E+01 0.00E+00 0.00E+00
26
27 11 1.00E+00 1.08E+02 3.50E+00 1.40E+00 7.00E+00 0.00E+00 2.87E+01 0.00E+00 0.00E+00
28
29 12 1.00E+00 1.12E+02 0.00E+00 1.40E+00 7.00E+00 3.10E+01 2.81E+01 2.88E+00 6.88E-01

Figure 10.10.A portion of a NONMEM table. The line numbers on the left are not actually part of the
report.

Each row in the table corresponds to a record of the input file, and the rows appear in the
same order as do the corresponding records of the input data file. Note that the values of
RES and WRES are always shown as zero for non-observation records†, whereas a (pos-
sibly) nonzero value of PRED is printed for every record.

If there are more than 900 data records, separate tables are produced for groups of 900
records. Thelast table contains the remaining records. If the rows of the table are sorted,
each group of records is sorted separately. When the input data file is large, the table will
require many pages to print. Therefore, the $TABLE record should be omitted unless
needed for diagnostic purposes (such as when initially checking a new data set or model).

7.2. Output from the Scatterplot Step

Many examples of scatterplots are present in Chapters 2 and 11.They are not reproduced
here. Whereasall the records in the input data file correspond to rows of a table, this is
not true of a scatterplot that includes one or more of the items RES, WRES, and DV.
When one of these three is being plotted, then only observation records contribute points
to the scatterplot†.In figure 2.5, there are exactly 10 points "*", corresponding to the 10
observation records in figure 2.2; the dose record does not contribute a point.

NONMEM displays only the first 900 records of the appropriate type in a scatterplot.
This limit applies before any partitioning. For example, in a plot of DV VS ID, the first
900 observation records are displayed; in a plot of WT vs ID, the first 900 records of the
data file are displayed. Additional scatterplots can be requested, showing additional
points, using options "FROM=" and "TO=" of the $SCATTERPLOT record. SeeNON-
MEM Users Guide, Part IV.

† Strictly speaking, RES and WRES are always zero for records having MDV=1. With PREDPP, this is the
same thing.

† Strictly speaking, it is only the records having MDV=0 that contribute points.With PREDPP, this is the same
thing.
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1. What This Chapter is About

In this chapter, the simple phenobarbital example begun in Chapter 2 will be continued to
illustrate how NONMEM is used to build a model for population data. The topic of
model building, diagnosis and verification is a large one. This chapter can only give a
very abbreviated example.

2. TheStages of Model Building

To analyze a population data set and build a model for it, one must proceed in logical
stages. Thereare five stages, and their relationship to one another is presented diagram-
matically in figure 11.1. One begins by checking the data.One then tries to find an ade-
quate model incorporating the fixed effects; then an adequate model incorporating the
random effects and describing random inter- and intra-individual variability. After a rea-
sonably complete model is found, attempts are made to refine it, and finally, if desired,
the various parts of the models (which often, in effect, simply assert the existence of cer-
tain relationships between independent variables and the dependent variable) can be sub-
ject to formal hypothesis tests, as described in Chapter 5.(However, it is well known by
statisticians that formal hypothesis testing undertaken after model building is just an
approximation for the type of hypothesis testing described in textbooks, which assumes
that the model is the correct model).
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Figure 11.1. Stages in model building.

3. Check-out— Index Plots

The goal of this stage is to assure that the data are correct.There is no point to trying to
model the data when gross errors are present. Most gross errors are encoding errors that
cause certain values to be different from the intended value by a considerable amount (for
example, a misplaced decimal point changes a value by a factor of 10), so that graphical
display of the data is usually adequate to detect these. No numerical or statistical
approaches are needed. Indeed, they are not usually useful, even for more subtle errors,
as such errors cannot easily be detected by any means (how is a 10% error to be distin-
guished from inter- or intra-individual variability?).

To detect gross errors, then, one makes scatterplots of different data item types vs individ-
uals’ identification numbers (i.e. the ID data item, or, if the values of this data item are
arbitrary, another data item that identifies patients using sequential integer values; call
this the sequence data item: SEQ). Such plots (of one data item versus ID or SEQ) are
called here index plots,and are quite useful for revealing the structure of the data, as will
be noted below, as well as for finding gross errors.

If NONMEM is used to make index plots, it will also be useful to implement the Tables
Step, so that if a problem is noted in a scatterplot, one can refer to the table to try to find
the datum that might account for the problem.To run NONMEM some model must be
specified, even if all that is desired is an index plot. In such case, it makes little differ-
ence what model is used. It is easiest and useful to (i) start with a simple ADVAN that is
likely to provide at least a roughly satisfactory fit, (ii) set each PK parameter to a (differ-
ent) element ofθ , (iii) use only oneη variable, modifying the scale parameter only, and
oneε variable, and (iv) use roughly reasonable fixed initial estimates.

For the phenobarbital example, one might use ADVAN1 with K = θ1, V = θ2 + θ2η1, and
y = f + f ε1. Initial estimates might be:K = .0057 hr−1 (half-life = 5 days, a typical
value for adults);V= 1.44 L. (the first patient has a concentration of 17.3 mg/L some few
hours after an initial loading dose of 25 mg; 1.44 times 17.3 = 25);ω = .25 (50% variabil-
ity); σ 2 = .04 (20% variability).

Figures 11.2 and 11.3 show index plots that might be seen in a check-out run (gross
errors have been added). In figure 11.2, DV is plotted vs ID (here ID and SEQ are the
same), and a gross error occurring at about patient #13 is seen (an observation of about 24
mcg/ml was erroneously recorded as 240 mcg/ml).In figure 11.3, AMT is plotted vs ID,
and patient #3 appears to have a grossly erroneous value (again, a decimal point error; a
dose of 18 was misrecorded as 180).
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Figure 11.2.A scatterplot of the dependent variable, DV, vs the patient’s ID number (a type of index plot).

Note the outlier at about ID = 13.

Actually, figure 11.3 reveals a considerable amount about the data structure (this will be
seen better in figure 11.4, below, when the outlier has been removed). Many points lie
along the line AMT = 0, where one sees integers 5, 3, 3, 6, etc, as one proceeds along the
ID axis, each integer indicating the corresponding number of points over-plotted at that
location. They correspond to the observation records, since the doses on these records
are all zero. Thus one can see how many observations each individual contributes (other
type records would also plot at AMT=0, however). Proceedingto the next highest "line"
of doses (where many points over-plot for each patient), one "sees" the event records giv-
ing the maintenance dose amount since this amount stays constant within a individual
(many maintenance doses were given per individual), and this amount is approximately
the same across individuals. Last,at the highest doses (except for the outlier), one has
mostly single points.These are the loading doses. There is occasional over-plotting of
loading-dose points. These points represent overlapping patient ID numbers (at the reso-
lution of the NONMEM plot ), not multiple loading doses to the same patient.
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Figure 11.3. An index plot of the independent variable, dose amount (AMT). Note the outlier at about ID =

3.

Figure 11.4 replots the same data as figure 11.3 but with the misrecorded values of the
data items corrected. Figures 11.5 and 11.6 show the index plots for the other two data
items of interest to this data analysis: weight (WT) and Apgar score (APGR).
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Figure 11.4. See figure 11.3; the outlier has been corrected.
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Figure 11.5. Index plot for weight (WT)
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Figure 11.6. Index plot for Apgar score (APGR)

These plots will be useful in the next stage of model building.

4. Building the Structural Part of the Model

One must first consider the choice of the structural kinetic model.For the phenobarbital
data, a monoexponential kinetic model has been chosen.Presumably, the basic structural
kinetics are already known well enough for this well studied drug, and it is not necessary
to explore the fits of other possible structural kinetic models to the data at hand.Rather,
in this section we focus on the newer task to most users of NONMEM, the task of build-
ing the structural part of the model for the PK parameters.

4.1. AGeneral Approach

It is generally advisable to start from the simplest reasonable model, and proceed toward
greater complexity, stopping whenever further additions fail to improve the model fit.
Thus, one needs several types of tools: (i) those to choose a "minimal" model, (ii) those to
indicate what part of a current model needs to be altered or elaborated (called model
diagnosis or model criticism), and (iii)those to judge whether an alteration or elabora-
tion has led to an improved model.

With such tools, one proceeds step by step from the minimal model, running NONMEM
and using the diagnostic tools at each step to suggest a single addition for the next step.
The process will terminate when the judgement tools indicate no improvement by any of
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the additionssuggested by the diagnostic tools, or when the diagnostic tools fail to sug-
gest any more additions.

The NONMEM runs at this stage, since there will be many of them, should be made as
short as possible.To do so, only the estimation, table and scatterplot features need be
used; the Covariance Step need not, in general, be run.

4.2. TheMinimal Model

As suggested above, the minimal model involves the simplest pharmacokinetic model
(ADVAN) likely to fit the data, and the simplest possible structural PK parameter model:
each parameter is simply identified with a separate element ofθ .

At this stage, the statistical model should also be very simple. Only one, or at most two η
variables should be defined. These will usually affect (first) the scale parameter (which
itself, is often a volume of distribution parameter) and (second) some other parameter
influencing the overall kinetics. Since the overall kinetics exhibited in the data will usu-
ally be dominated by elimination, the secondη should usually modify the rate constant of
elimination or clearance.However, some (kinetic) data sets are dominated by absorption
or distribution, and in such cases, the secondη should probably modify the parameter
most affecting these processes.A single ε should usually suffice. Bothinter- and intra-
individual errors can conveniently be modeled as proportional, so that the determination
of initial estimates of variances is made easier, and all such estimates are on the same
scale, but this is a matter of taste. The model for the phenobarbital data defined in Chap-
ter 2 (figure 2.6) almost fulfills the spirit of these restrictions.However, the inter- and
intra-individual error models there are additive, rather than proportional. The minimal
model used on the phenobarbital data in this chapter is therefore a modified version of
that used in Chapter 2. It is:

CL = θ1(1 + η1) (11.1a)

V = θ2(1 + η2) (11.1b)

y = F(1 + ε1) (11.1c)

In (11.1), it is understood thatS = V, and thatF is the prediction ofy from ADVAN1
using CL and V. A control file to NM-TRAN that specifies this model, and instructs
NONMEM to produce the desired output is:
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$PROBLEM PHENOBARB SIMPLE MODEL (#1)

$INPUT ID TIME AMT WT APGR DV

$DATA PHENO

$SUBROUTINE ADVAN1

$PK

TVCL=THETA(1)

CL=TVCL*(1+ETA(1))

TVVD=THETA(2)

V=TVVD*(1+ETA(2))

K=CL/V

S1=V

$ERROR

Y=F*(1+ERR(1))

$THETAS (0,.0105) (0,1.05)

$OMEGAS .25 .25

$SIGMAS .04

$ESTIMATION

$TABLE ID TIME AMT WT APGR

$SCATTERPLOT PRED VS DV UNIT

$SCATTERPLOT RES VS (PRED,WT,APGR)

$SCATTERPLOT WRES VS (PRED,WT,APGR)

4.3. Useof Constraints

It is important to realize that constraints on elements ofθ or Ω may be part of a model.

For example, constraining clearance to be positive is a modelling choice. One might
implement this constraint in NONMEM using a lower bound on the $THETA record, and
this would assure that the estimate of clearance will be positive. It may not be necessary
to do this; even without the lower bound, the data might clearly force the estimate to be
positive.

Often, however, analysts will constrain the range of a parameter in the belief that doing so
will shorten computing time or stabilize the search for the minimum of the objective
function. Whilethis benefit may be gained, the data may force the parameter estimate to
the constraint boundary even though this boundary may not, in fact, represent a true mod-
eling choice. In this case the proper action is to relax the constraint and rerun the prob-
lem. To do otherwise, and leave the parameter estimate to be the boundary value, implies
that at the outset the user assumes that the parameter must be within the boundary and
elevates the constraint to the status of a modeling choice. If an estimate lies on a bound-
ary, NONMEM will print a warning message (along with the standard message regarding
the status of the termination of the Estimation Step). The reader is cautioned to look for
such a message, and in general, it is a good idea to check the values of the final estimates
against the boundary values. Alternatively, the implementation of constraints that are not
intended to represent modeling choices might be used cautiously and only if they really
seem necessary to stabilize a search.

4.4. DiagnosticTools
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4.4.1. Plotof DV vs PRED

Most useful diagnostic tools are graphical.For an overall sense of the fit, a useful diag-
nostic plot is DV vs PRED. Whenthere are substantial and systematic deviations from
the line of identity, this plot suggests that there are problems with the fit, but it does not
suggest what exactly these problems might be or what to do about them.This plot for the
fit of the phenobarbital data to model (11.1) is seen in figure 11.7.
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Figure 11.7.Predictions from fit of model (11.1) to phenobarbital data vs observations themselves. Theline

of identity (...) shows where the points should, ideally, fall.

Figure 11.7 reveals that there is a group of points where the observation is much lower
than the prediction.To begin to determine why this is so, it will be useful to look at
residual plots. Such plots are the basis of the most important of the diagnostic tools.

4.4.2. ResidualPlots

As mentioned in Chapter 2, a residual is the difference between an observation and its
prediction. Theprediction in this case (the same prediction as denoted by PRED) is the
population prediction, i.e. the prediction for the typical individual having the given values
for all the concomitant variables.

With population data, weighted residuals are often more informative than (plain) residu-
als. Theweighted residuals for an individual are formed by transforming the individual’s
residuals so that under the population model, and assuming the true values of the popula-
tion parameters are given by the estimates of those parameters, all weighted residuals
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have unit variance and are uncorrelated.Weighted residuals are more informative for
several reasons. First, since they hav eunit variance, or what is the same, unit standard
deviation, "large" weighted residuals are those with absolute values greater than 3 or so.
Second, loosely speaking, although plain residuals remove the structural model from the
data, allowing one to see what part of the data is not (yet) modeled, they do not remove
the statistical model (formally, they are still correlated). Weighted residuals have both
models ’removed’ so any pattern in these is definitely not accounted for by the current
model. This provides a more secure basis for future model building choices.

4.4.2.1. IndexPlots of Residuals

Figure 11.8 is an index plot of residuals, which is a useful plot when combined with
index plots of other data items.One can look for an association between unusual residu-
als and values of another data item. E.g. Are the largest discrepancies between model
and data associated with certain (possibly extreme) values of the data item?
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Figure 11.8. Index plot of residuals from fit of model (11.1) to phenobarbital data.

In the phenobarbital example, this is clearly so: The large negative residuals (i.e., predic-
tions greater than observations), first noted in figure 11.7, are here seen to be associated
with patients 22 to 32 or thereabouts.In figures 11.4 and 11.5 it is clear that these same
patients are those who received the highest doses and who weigh the most.An obvious
explanation, then, of the over-predictions is that they are in the patients who weigh the
most, and because weight is not in the model, neither volume nor clearance is adjusted to
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be larger in such individuals, so that predictions are strictly proportional to dose alone
and may be too large for these heavier patients.

4.4.2.2. Plotof WRES vs Independent Variable

Another way to see the association between weight (or dose) and the large residuals is to
plot the residual against weight, say. Figure 11.9 is this plot, but where, for reasons
already discussed, weighted residuals, rather than plain residuals, are used.
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Figure 11.9. Plot of weighted residuals vs weight for fit of minimal model to phenobarbital data.

It is clear from figure 11.9, in a way that is particularly compelling, that it is precisely
those individuals with the largest weight whose residuals are large and negative. This
type of residual plot, where (weighted) residuals are plotted against some independent
variable, is the single most useful diagnostic tool.

Systematic patterns of weighted residuals, then, suggest possible model improvements.
For an independent variable that already appears in the model, such a pattern may suggest
that the way in which it enters the model is incorrect; e.g., it might appear as having a lin-
ear influence on a PK parameter, and a curvilinear influence might be better, or it might
affect additional PK parameters, beyond those it affects in the current model. An exam-
ple of this will be seen shortly. For a variable that does not yet appear in the model, as in
figure 11.9, such a pattern suggests that the element should appear.

Before examining what happens if patient weight is added to the model, a caution about
residual plots is in order. Neither residuals, nor weighted residuals, should ever be
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plotted against the observations themselves. Sucha plot will always show a correlation,
spuriously suggesting a problem with the model.This is most easily appreciated by con-
sidering the simple model that gives rise to the constant-valued prediction given by the
the mean of the observations. Allpositive residuals (observations greater than prediction)
must then be associated with observations greater than the mean, while all negative resid-
uals must be associated with observations less than the mean.Clearly, then, the residuals
plotted against the observations must show a line with positive slope. Thissame type of
association, although to a lesser degree, holds true, even in less extreme cases. The phe-
nomenon is illustrated in figure 11.10.

ResY
(lnCp)
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pred y
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2

3

4
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0

5
2

6 4 1 3

Figure 11.10. Residuals always correlate with the observations themselves; the more so, the less the model

explains the data!

4.5. Judging Goodness of Fit

A more complex model is acceptable only if the complexity can be justified by some sig-
nificant improvement in the fit.To evaluate whether this has been accomplished, several
measures should be examined; no single measure suffices.

In the phenobarbital example, based on the finding in figure 11.9, a modified model is
suggested. Thismodel, (11.2), has (11.2b)=(11.1b), and (11.2c)=(11.1c), but

Cl = (θ1 + θ3WT)(1 + η1) (11.2a)

which is a full model relative to the reduced model (11.1a), whence (11.2) is a full model
relative to the reduced model (11.1).

The model-defining statements to NM-TRAN ($PK and $ERROR) now become:
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$PK

TVCL=THETA(1)+THETA(3)*WT

CL=TVCL*(1+ETA(1))

TVVD=THETA(2)

V=TVVD*(1+ETA(2))

K=CL/V

S1=V

$ERROR

Y=F*(1+ERR(1))

We now examine some measures of goodness of fit, and see how (11.2) fares relative to
(11.1).

4.5.1. AGlobal Measure — Change in the Objective Function

A global measure of goodness of fit is, of course, the objective function value based on
the final parameter estimates, which, in the case of NONMEM, is minus twice the log
likelihood of the data (see Chapter 5, Section 5.2.3). As noted in Chapter 5, if the new
model differs from the previous model only by the addition of some new variable(s) (so
that the two models form a full/reduced model pair), then the difference in objective func-
tion values has a known (approximate) statistical distribution. Moreinformally, during
model-building, a fall in objective function value of 4 when a single new parameter is
introduced (and no old ones are eliminated) indicates that the new model has substantially
improved the overall goodness of fit. Model (11.2) shows a decrease in objective func-
tion of 35.2 relative to (11.1), indicating considerable improvement.

4.5.2. Decrease in Unexplained Variability

The purpose of adding independent variables to the model is usually to explain kinetic
differences among individuals. Thismeans that prior to adding a variable, such differ-
ences were not "explained" by the model, and hence were part of random interindividual
variability, although these differences could also have been reflected as a part of random
intraindividual variability. Accordingly, elaboration of the model should be accompanied
by a decrease in the estimates of the variances inΩ and/orΣ.

The estimates ofω 2
CL, ω 2

V , and σ 2 from the fit to Model (11.2) are .057, .12, and .0196,
corresponding to coefficients of variation of 24%, 35%, and 14%, respectively. The cor-
responding values from the fit to (11.1) are .25 (CV=50%), .14 (CV=37%), and .016
(CV=13%), so that a considerable reduction in the variance of clearance is seen.

4.5.3. Improvement in Plots

The last, and most useful, evidence confirming the value of elaborating a model is to find
that the pattern(s) in the PRED vs DV and weighted residual plot(s) that suggested the
need for the addition have now disappeared. Indeed,when a model is relatively com-
plete, all weighted residual plots should show no pattern: the "unexplained" part of the
data should have become featureless random noise.

Figures 11.11 and 11.12 correspond to 11.7 and 11.9, but are from the fit to model (11.2).
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Figure 11.11. Predictions from fit of model (11.2) to phenobarbital data vs observations.

Compared to figures 11.7 and 11.9, figures 11.11 and 11.12 indicate an improvement in
that thenumberof large negative residuals is clearly reduced in both plots.
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Figure 11.12. Plot of weighted residuals vs weight for fit of model (11.2) to phenobarbital data.

4.6. Usingthe Tools: Further Impr ovement

4.6.1. AnAdditional Effect of WT

While all of the above suggests that model (11.2) is superior to model (11.1), figure 11.12
shows a persistent linear relationship between weight and residuals.Thus, the addition of
weight to the model for clearance does not fully exploit the information in the variable,
weight. An obvious modification to model (11.2) that might deal with this is to have
weight affect V as well as CL. Accordingly, define model (11.3) such that
(11.3a)=(11.2a), (11.3c)=(11.2c), but

V = (θ2 + θ4WT)(1 + η2) (11.3b)

The model-defining portion of the control stream now becomes:
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$PK

TVCL=THETA(1)+THETA(3)*WT

CL=TVCL*(1+ETA(1))

TVVD=THETA(2)+THETA(4)*WT

V=TVVD*(1+ETA(2))

K=CL/V

S1=V

$ERROR

Y=F*(1+ERR(1))

When model (11.3) is fit to the data, the objective function decreases fully 126 relative to
model (11.2).Moreover, the estimates ofω 2

CL, ω 2
V , andσ 2 are now .050 (CV=22%), .028

(CV=17%), and .011 (CV=10%), indicating a further substantial decrease in unexplained
variation. Theplots corresponding to 11.7/11.11 and 11.9/11.12 are shown as figures
11.13 and 11.14.
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Figure 11.13. Predictions from fit of model (11.3) to phenobarbital data vs observations.

Now there are no obvious discrepancies, and the plot of weighted residuals vsWT shows
no pattern, so that it is likely that no further use of weight in the model is required.
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Figure 11.14. Plot of weighted residuals vs weight for fit of model (11.3) to phenobarbital data.

4.6.2. TheEffect of APGR

The structural model building stage is not over until all available independent variables
have been examined for influence, and there is one additional variable, the Apgar score,
that has not yet been seriously considered.A plot of the weighted residuals from the fit to
model (11.3) vsAPGRis shown in figure 11.15.

-123-



Chapter 11 - Model Building

WRES VS. APGR
-3.00E+00 -1.88E+00 -7.60E-01 WRES 3.60E-01 1.48E+00 2.60E+00

. . . . . .

. . . . . . . . . . .
8.00E-01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. *  * * * ** * * * * .

. . .

. . .

. . .

. . .

. * * ** *  * .

. . .

. . .

. . .
2.68E+00. . ..

. . .

. * 2 . * *  .

. . .

. . .

. . .

. . .

. *  * . * * .

. . .

. . .
4.56E+00. . ..

. . .

. * * * * * 2 ** . * 2  * 2 ** 2  * .

. . .

. . .
APGR . . .

. . .

. . .

. * * * 2* **2* 2 2 2 *** ** * .

. . .
6.44E+00. . ..

. . .

. . .

. * 2* * * **** *** ***2*22 ** * ** * * *  .

. . .

. . .

. . .

. . .

. *  * * * * ** * * *2 * 2*** 2*223 * * *  * * .

. . .
8.32E+00. . ..

. . .

. . .

. . .

. *  * ** * * * * ** * .* *** * * *  * * .

. . .

. . .

. . .

. . .

. * * .  * .
1.02E+01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . .

Figure 11.15. Plot of weighted residuals vs Apgar score for fit of model (11.3) to phenobarbital data.

There is a weak suggestion from figure 11.15 that forAPGR less than 3, the weighted
residuals tend to be negative. Accordingly, a new model (11.4) can be proposed, which is
identical to (11.3) except that

V =




θ2 + θ4WT,

(θ2 + θ4WT)θ5,

if APGR > 2

if APGR ≤ 2




(1 + η2) (11.4b)

The relevant statements for NM-TRAN now become:

$PK

TVCL=THETA(1)+THETA(3)*WT

CL=TVCL*(1+ETA(1))

TVVD=THETA(2)+THETA(4)*WT

IF (APGR.LE.2) TVVD=TVVD*THETA(5)

V=TVVD*(1+ETA(2))

K=CL/V

S1=V

$ERROR

Y=F*(1+ERR(1))
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When this model is fit to the data,θ5 is estimated to be 1.18, implying that indeed, the
volumes of distribution for infants with Apgar scores less than 3 are typically 18% higher
than those of infants (of the same weight) with higher Apgar scores. The measures of
improvement are now marginal, however: theobjective function decreases only 3.7, and
the decreases in the variances are all less than 10% of their previous values, with the vari-
ance ofε actually increasing a few percent. Inspectionof figure 11.6 suggests a reason
for this: note that only 5 distinct individuals (separate symbols) have Apgar scores less
than 3. There is simply not very much information about babies with low Apgar scores in
this data set.

For completeness, figure 11.16 corresponds to figure 11.5, but using model (11.4), and
now shows no distinct pattern.

WRES VS. APGR
-3.00E+00 -1.88E+00 -7.60E-01 WRES 3.60E-01 1.48E+00 2.60E+00

. . . . . .

. . . . . . . . . . .
8.00E-01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. *  2 * 2  . * * * *  .

. . .

. . .

. . .

. . .

. * * * * . *  * .

. . .

. . .

. . .
2.68E+00. . ..

. . .

. 3 . *  * .

. . .

. . .

. . .

. . .

. *  * . * *  .

. . .

. . .
4.56E+00. . ..

. . .

. * * * * * ** * * . 3 * 2 ** * * *.

. . .

. . .
APGR . . .

. . .

. . .

. * * * * 2**2* 22 *2 ** 2 *  .

. . .
6.44E+00. . ..

. . .

. . .

. * *2 * * * 2* * * 2 3.*23 2 *  * * * * * .

. . .

. . .

. . .

. . .

. *  * * * * ** * **2. ***2* 2*2*3* * ** * * .

. . .
8.32E+00. . ..

. . .

. . .

. . .

. *  * ** * * * *  ** * .* * *** * * * * .

. . .

. . .

. . .

. . .

. * * .  * .
1.02E+01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . .

Figure 11.16. Plot of weighted residuals vs Apgar score for fit of model (11.4) to phenobarbital data.

The stage of building the structural model is now complete.

5. Building the Statistical Model

5.1. Judging Among Alternatives

NONMEM can provide estimates of theη variables for each individual (seeChapter 12,
Sections 4.11-4.13). Plots of the estimated interindividual differences, which can be
regarded as interindividual residuals, can be obtained. Plots of these residuals (associated
with a particular PK parameter) versus the values of an independent variable provide
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further help in building the structural part of the parameter model.Moreover, a plot of
these residuals versus the typical values of the parameter (whose values depend on
covariates) also provides help in building the model for interindividual differences them-
selves. For example, if interindividual differences are modeled with the additive model,
but the plot shows a linear trend (in the boundaries enveloping the residuals), this sug-
gests that a proportional model be tried.

Lastly, help can be provided in the selection of a model for intraindividual error. Predic-
tions of concentrations, and hence residuals, based on estimates of individuals’ηs, can be
computed, and the residuals can be plotted versus the predictions. (This requires
advanced techniques.)Again, if intraindividual errors are modeled with the additive
model, but the plot shows a linear trend in the envelope, this suggests that a proportional
model be tried.

The statistical model is usually of less interest than the structural model, so that fre-
quently all that is sought is an adequate model, not necessarily the correct one, nor does
one care whether the estimates of the random effects parameters (the elements ofΩ and
Σ) are particularly precise. Sometimes, however, the variability in the random effects is
of genuine primary interest.In such cases more attention must be paid to building the
random effects model. This, however, may not be easy because it is an unfortunate, but
unavoidable fact, that a great deal more data is needed to estimate random effects parame-
ters with a given precision than is needed to estimate fixed effect parameters with compa-
rable precision.

The tools used to elaborate the statistical model are similar to those used for elaborating
the structural model: alternative models are assessed using (available) residual plots,
especially ones like those just discussed, and relative changes in the objective function.

5.1.1. UnexplainedVariability

When the statistical model is developed, a new η variable may be added, or an oldη vari-
able used differently. Then differences in theω s between models cannot really be used to
judge the benefit of the addition, and this evaluation tool becomes less useful. On the
other hand, an addition of anη might be confirmed by a reduction in the estimates of the
variances inΣ, the variances of the random components in the model for residual error.
However, there is one sure sign that too many η ’s are in the model:NONMEM may esti-
mate one or more of theω s to be zero, or very nearly zero.This can be disconcerting,
particularly if theη variable is the only such variable affecting Volume, for instance, as
then this estimate seems to suggest that with respect to Volume, there is no interindividual
variability in the population whatsoever! The result should not be interpreted this way,
however. Rather, assuming theη affecting Volume is the one most recently added, it indi-
cates that given the previous statistical model, noadditional variability needsto be
ascribed to volume to explain all the variability seen.The data cannot support such an
elaborate statistical model, and a simpler model, such as the previous one, must be used.

5.1.2. ResidualPlots

The most important residual plot is now a plot of the weighted residuals against predic-
tions, where a pattern in the shape of the outer envelope of points can indicate deficien-
cies in the statistical model (recall that a distinct pattern in the local "average" residual vs
the predictions would indicate a defect in the structural model). This can be illustrated
using the phenobarbital data. Figure 11.17 shows the plot of weighted residuals vs pre-
dictions for model (11.4), and figure 11.18 shows the same plot for a modified model,
(11.5), identical to (11.4) except for
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y = F + ε1 (11.5c)

Only the $ERROR statements of the control stream change:

$ERROR

Y=F+ERR(1)
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Figure 11.17. Plot of weighted residuals vs predictions for fit of model (11.4) to phenobarbital data (propor-

tional intraindividual error).

Although the plots do not differ greatly, there is a small suggestion in figure 11.18 that
the envelope of weighted residuals is somewhat V-shaped with the apex of the V at
PRED=0 (but which does not show on the plot), while in figure 11.17 the weighted resid-
uals seem more homogeneous, and their magnitude seems less dependent on that of the
predictions. Thatthis impression is valid is suggested also by the increase in objective
function of 7.6 in going from model (11.4) to (11.5).
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Figure 11.18. Plot of weighted residuals vs predictions for fit of model (11.5) to phenobarbital data (additive

intraindividual error).

6. RefineModel

The goal of this stage is to check whether the model is as parsimonious as reasonable,
since if it is not, certain important parameters may not be estimated with as good preci-
sion as can be achieved. Althoughup to this stage, one tries to avoid adding parts to the
model which are not well supported by the data, it is nonetheless possible that a part
added at one stage may seem unnecessary after adding another part at a later stage.Per-
haps, for example, weight affects V, and V and CL are correlated in the population (inde-
pendent of weight), but first the influence of weight on CL is examined, and later its influ-
ence on V is examined (this was the order illustrated above). Theninitially, weight might
appear to influence CL, although this influence might only derive from the correlation
between the two PK parameters. Later, after the influence of weight on V is a part of the
model, the influence of weight on CL might disappear. One wants to check this possibil-
ity and, if indicated, eliminate the influence of weight on CL from the model at the stage
now being described. The basic technique at this stage, is to run the Covariance Step
with the best model thus far, and look for parameters with confidence intervals that
include the parameter’s null value, i.e., the value that causes the parameter to be effec-
tively deleted from the model.A null value is usually zero (for a parameter quantifying
an additive portion of the model), and sometimes unity (for a parameter quantifying a
multiplicative part of the model).If such parameters are found, then one at a time, each
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can be set to its null value and the consequences examined as discussed above for the ear-
lier model building stages.

Figures 11.19 and 11.20 show two pages of NONMEM output from a run fitting model
(11.4) to the phenobarbital data, and implementing the Covariance Step. Figure 11.19
shows the final parameter estimates, and 11.20, their standard errors.

************************************************************************************************************************
******************** ********************
******************** FINAL PARAMETER ESTIMATE ********************
******************** ********************
************************************************************************************************************************

THETA - VECTOR OF FIXED EFFECTS *********************

TH 1 TH 2 TH 3 TH 4 TH 5

7.50E-05 2.66E-02 4.62E-03 9.53E-01 1.18E+00

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

ETA1 ETA2

ETA1 4.59E-02

ETA2 0.00E+00 2.63E-02

SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS ****

EPS1

EPS1 1.10E-02

Figure 11.19.Parameter estimates from fit of model (11.4) to phenobarbital data.

************************************************************************************************************************
******************** ********************
******************** STANDARD ERROR OF ESTIMATE ********************
******************** ********************
************************************************************************************************************************

THETA - VECTOR OF FIXED EFFECTS *********************

TH 1 TH 2 TH 3 TH 4 TH 5

9.59E-04 9.24E-02 7.33E-04 7.48E-02 8.36E-02

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ********

ETA1 ETA2

ETA1 2.25E-02

ETA2 ......... 7.08E-03

SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS ****

EPS1

EPS1 2.01E-03

Figure 11.20. Standard errors of parameter estimates from fit of model (11.4) to phenobarbital data.

6.1. Useof Standard Errors and Confidence Intervals

The null values ofθ1 throughθ4 are zero, while the null value ofθ5 is unity. Using the
numbers from the figures, it is easily seen that forθ1 and θ2, the parameter estimate
minus the null value is a fraction of one standard error, and henceθ1 andθ2 may not be
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different from their null values.

As indicated in Chapter 5 (Section 4.2.2), an approximate (two-sided) 95% confidence
interval for a parameter estimate is

θ̂ ± Z.975SE

whereZ.975 is the 97.5 percentile of the normal distribution (≈ 2) andSE is the standard
error of the parameter estimate. Therefore, forθ5, a 95% confidence interval is given by
1. 18± (2)(. 0836),which is 1.01 - 1.35. This range only barely misses including the null
value, unity, indicating, as did the marginal change in the objective function associated
with going from (11.3) to (11.4), that one cannot be very sure of the influence of Apgar
score on volume.

Finally, note the magnitudes of the standard errors of the other parameters’ estimates.
For θ3 it is 16% of the estimate (i.e., the CV of the estimation error is 16%), forθ4 it is
7.8%, while for the 2 elements ofΩ it is 49% and 27%.This pattern is typical: the preci-
sion of the fixed effect parameter estimates is considerably greater than that of the ran-
dom effects parameter estimates, except when the number of individuals sampled is enor-
mous.

6.2. AModel Refinement

Based on the observation thatθ1 andθ2 may be equal to their null values, these parame-
ters are next set to their null values, defining a new (and final) model,

Cl = θ3WT(1 + η1) (11.6a)

V =




θ4WT,

(θ4WT)θ5,

if APGR > 2

if APGR ≤ 2




(1 + η2) (11.6b)

y = F(1 + ε1) (11.6c)

which is communicated to NM-TRAN without changing the $PK or $ERROR state-
ments, but simply by fixing the values ofθ1 andθ2 to 0, using the FIXED option in the
$THETA record:
$PK

TVCL=THETA(1)+THETA(3)*WT

CL=TVCL*(1+ETA(1))

TVVD=THETA(2)+THETA(4)*WT

IF (APGR.LE.2) TVVD=TVVD*THETA(5)

V=TVVD*(1+ETA(2))

K=CL/V

S1=V

$ERROR

Y=F*(1+ERR(1))

$THETAS (0 FIXED) (0 FIXED) (0,.0018) (0,.43) 1.0

When this model is fit to the data, the objective function increases only .12 (a trivial
change). However, now the CV’s of the estimation errors inθ3 andθ4 are 4.4% and 2.5%
respectively.
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This is the main point of this section on model refinement; deletion of imprecisely esti-
mated parameters can improve the precision of other parameter estimates.This is related
to the correlation between parameter estimation errors, mentioned in Chapter 5.With lit-
tle data from patients who weigh virtually nothing,θ1 andθ2, the values of CL and V for
such patients, are not well estimated (regardless of the fact that one might rationally
model the values of these parameters to be 0), and so their parameter estimates are largely
dependent on the estimates of the slope parametersθ3, θ4, and θ5. The correlation
between the estimates ofθ1 andθ3 is -.96, and that betweenθ2 andθ4 is -.95. Of course,
since slope itself can only be well determined when the intercept is well determined, the
parameter estimates ofθ3, θ4, and θ5 themselves largely depend on the estimates ofθ1

andθ2; correlations are symmetric. In other words, neither type of parameter (intercept
or slope) is very precisely estimated since the estimate of each depends on the value
assigned to the other. But if one of the parameters can be eliminated from the model (i.e.,
rationally assigned a fixed value), then the other can be more precisely determined.

7. Testing the Model

This step is undertaken when it is desirable to assign p-values to the hypothesis test of
one or more parameter values against null values. Theprocedure is as follows: Begin-
ning with the final model resulting from all previous steps, each parameter to be tested is
set, in turn, to its null value, and the reduced model is fit to the data (only the Estimation
Step need be run; no tables, graphs or covariance output are necessary).A l ikelihood
ratio test is done using the difference in minimum objective function values obtained with
both the full (original) and reduced models.In doing this one must be careful that in the
Estimation Step with a reduced model, no parameter other than the one under test (and
those which are already constrained to fixed values under the full model) be constrained
to a fixed value.
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1. What This Chapter is About

This chapter briefly describes a variety of features of PREDPP and NONMEM that are
somewhat advanced for this text but are of interest to most users of NONMEM.Refer-
ences are given to other documents where additional information can be found. Section 2
is concerned with PREDPP, Section 3 is concerned with user-written PREDs, and Section
4 describes general NONMEM features. Section 5 contains an example that includes
several of the advanced features. Descriptions of NM-TRAN control records in Section 4
have been augmented with sections headed "More about ...". These contain additional
details, plus new options for NONMEM 7.3. Section 6 is new for NONMEM 7.3. It
contains a supplemental list of features through NONMEM 7.4, including features from
previous releases that are not otherwise discussed in this guide.

Note that wherever $PK, $ERROR, $DES, $AES, $MODEL, $MIX, $INFN, $TOL and
$PRED statements are referred to below, user-written subroutines PK, ERROR, DES,
AES, MODEL, MIX, INFN, TOL and PRED can be used instead.

2. Advanced Features of PREDPP

2.1. PharmacodynamicModeling Using the $ERROR Record

$ERROR statements may modify the value of F, the scaled drug concentration.They
may also introduce new θ andη variables. Thisallows pharmacodynamic modeling to be
performed using PREDPP. Such models occur when a study involves measurement of a
drug effect, such as blood pressure.A proposed model might relate the predicted effect
to a pharmacokinetic quantity such as plasma level. PREDPPcan be used to modelCp as
is usual, and the predicted effect can be computed in the $ERROR statements.

For example, suppose that a modified version of the phenobarbital data of Chapter 2
includes observations of some drug effect (in this case, perhaps a measure of the degree
of sedation) but none of the concentration observations. Thedose event records are the
same as those of the earlier example. Supposethat the drug concentrations from each
individual have been used to estimate that individual’s K and V parameters, and that
these estimates are now included on every event record for the individual. Finally, sup-
pose that the proposed structural model for the effect, E, is an "E-max" model:

E = Emax
Cp

C50 + Cp

where hereCp is understood to mean the prediction of an individual’s drug concentration
in the plasma, andEmax andC50 are PD (pharmacodynamic parameters) modeled as

Emax = θ1 + η1

C50 = θ2 + η2

To fit this data we can use the control statements of figure 12.1.To obtain initial parame-
ter estimates, let us assume that the following is observable in the data. The average
value of all effect measurements is about 50.Across individuals, the average value of the
largest effect measurement within each individual’s data is about 100, and the average
value of the individual’s observed concentration at about half this largest measurement is
about 20. (This is seen when concentration measurements and effect measurements are

-132-



Chapter 12 - Brief Descriptions of Other Features

examined together.) Let us also assume 20% random interindividual variability in Emax

andC50 and 4% intraindividual variability in the observation. Fromthis we obtain initial
estimates of 100 and 20 forθ1 and θ2, (100×. 2)2 for Ω11, (20×. 2)2 for Ω22, and
(50×. 04)2 for Σ.

This example is examined again in in Section 3.2, which shows the use of $PRED state-
ments, and in Section 5, which shows how observed concentrations and effects can be fit
simultaneously.

References: Users Guide VI (PREDPP) IV.B.2

$PROBLEM PHARMACODYNAMIC MODEL USING $ERROR STATEMENTS
$INPUT ID TIME AMT INDK INDV DV
$DATA EFFDATA
$SUBROUTINE ADVAN1
$PK

K=INDK
V=INDV
S1=V

$ERROR
EMAX=THETA(1)+ETA(1)
C50=THETA(2)+ETA(2)
E=EMAX*F/(C50+F)
Y=E+ERR(1)

$THETA 100 20
$OMEGA 400 16
$SIGMA 4
$ESTIMATION

Figure 12.1. The input to NONMEM-PREDPP for analysis of effect observations.

2.2. OtherPharmacokinetic Models: ADVAN5-9, ADVAN13-15

Appendix 1 lists ADVAN routines for the most commonly-used pharmacokinetic models.
Other ADVAN routines are:
ADVAN5 (General Linear)
ADVAN6 (General Nonlinear)
ADVAN7 (General Linear with Real Eigenvalues)
ADVAN8 (General Nonlinear Kinetics with Stiff Equations)
ADVAN9 (General Nonlinear Kinetics with Equilibrium Compartments)
ADVAN13 (General Nonlinear Kinetics With Stiff/Nonstiff Equations using
LSODA)(nm71)
ADVAN14 (General Nonlinear Kinetics With Stiff/Nonstiff Equations using
CVODES)(nm74)
ADVAN15 (General Nonlinear Kinetics with Equilibrium Compartments using
IDAS)(nm74)

With the general methods the user defines a model of up to 999 compartments using spe-
cial options of the $MODEL record.For a linear model (ADVAN5 and ADVAN7), it is
sufficient to specify (directed) compartmental connections and to compute their rate con-
stant parameters with $PK statements.ADVAN 5 and 7 make use of numerical approxi-
mations to the matrix exponential. For a nonlinear model (ADVAN6, ADVAN8,
ADVAN9, ADVAN13, ADVAN14, ADVAN15), differential equations must be supplied
to govern the kinetics, via $DES statements.It is possible to specify initial conditions for
the differential equations using the I_SS (Initial Steady State) feature; Reserved variable
ISSMOD may be used.
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For ADVAN9 and ADVAN15, algebraic equations may also be supplied via $AES state-
ments.

The use of the term ’nonlinear’ with ADVAN 6, 8, 9, 13, 14, and 15 only indicates that a
system of any type of first-order differential equations is allowed; such equations could
be linear or non-linear.

In all cases, the basic features of PREDPP described in Chapter 7 are still available, such
as the ability to introduce doses of any kind to any compartment of the model.It should
be noted that the general ADVAN routines are relatively slow. For example, when a gen-
eral method is used for a model identical to that of an analytic method (ADVAN1 through
ADVAN4 or ADVAN10 through ADVAN12) the run time increases, usually by an order
of magnitude.

Some ADVAN and SS routines must be told the number of accurate digits that are
required in the computation of drug amounts, i.e., the relative tolerance. They may also
be told the absolute tolerance.With some ADVAN and SS, the tolerances may be speci-
fied for each compartment.They may be specified by $SUBROUTINES record options
TOL, ATOL, SSTOL, SSATOL; by the corresponding options of the $TOL record; or by
user-written subroutine TOL (which may also specify tolerances by NONMEM Step).
Option TOL (relative tolerance) may also be specified on the $COVARIANCE record.
Option ATOL (absolute tolerance) may also be specified on $ESTIMATION and
$COVARIANCE records.

See Guide NONMEM 7, "Controlling the Accuracy of the Gradient Evaluation and Indi-
vidual Objective Function Evaluation"

With ADVAN9, ADVAN13, ADVAN14, and ADVAN15, reserved variable MXSTEP
may be used to set the number of integration steps.

With $AES, $AESINIT statements are also required.If there is no TIME data item,
$AESINIT may specify a calling protocol for the AES subroutine. (See 2.7 below for a
discussion of calling protocols.)

CALLFL=-1:
Call ADVAN9 and ADVAN15 and AES with every event record (default)

CALLFL=1:
Call ADVAN9 and ADVAN15 and AES once per individual record.

Equivalent calling protocol phrases are:

(EVERY EVENT)
(ONCE PER IR)

References: Users Guide VI (PREDPP) VI, VII
References: Users Guide IV (NM-TRAN) V.C.3, 4, 7-10

2.3. Zero-Order Bolus Doses

Instantaneous bolus doses, which have AMT>0 and RATE=0, are described in Chapter 6.
Such doses appear instantaneously in the dose compartment. Zero-order bolus doses are
doses that enter the dose compartment via a zero-order process (in the same manner as do
infusions) except that the rate or duration of the process is computed with $PK state-
ments. Whenthe RATE data item has the value -1, then the $PK statements must include
an assignment statement for an additional PK parameter, Rn (the "modeled rate for com-
partment n"), whose value gives the rate of entry of the drug during the interval of time
between the last event record and the current one. There is a different such parameter for
ev ery compartment receiving a zero-order bolus dose.When the RATE data item has the
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value -2, then the $PK statements must include an assignment statement for an additional
PK parameter, Dn (the "modeled duration for compartment n"), whose value at the time
of the dose event gives the duration time of the dose. The rate and duration parameters
can be modeled like any other PK parameters; in particular, the assignment statements
can involve θ ’s which are to be estimated. These parameters can be used to model the
drug release rate or dissolution time of a tablet or capsule.

Steady-state levels involving zero-order bolus doses can be computed.

Steady-state with constant infusion was described in Chapter 6. Steady-state infusions
may also have modeled rates (i.e., the RATE data item may be -1).

References: Users Guide VI (PREDPP) III.F.3, F.4

2.4. TheAdditional Dose Data Item: ADDL

ADDL is a dose-related data item that is used to request that a given number of additional
doses, just like the dose specified on the event record, be added to the system at a regular
time interval, starting from the time on the event record. PREDPP itself adds these doses
at the appropriate future times; no actual dose event record is generated by the Data Pre-
processor or by PREDPP. A positive integer value in ADDL specifies how many addi-
tional doses (i.e., in addition to that already specified in the event record) are to be given,
and the value in the II (interdose interval) data item (which is required) specifies the time
interval between doses.

ADDL may be non-zero on a steady-state dose event record (except for steady-state infu-
sions), in which case additional doses are given, maintaining the dosing regimen into the
future. Non-steady-statekinetic formulas are used to advance the system between each
additional dose.Reserved variables DOSTIM (the time of a lagged dose or additional
dose to which the system is being advanced) and DOSREC (the dose record correspond-
ing to the dose entering atDOSTIM) may be used.
See also Section 2.6 below.

References: Users Guide VI (PREDPP) V.K

2.5. Laggeddoses: the ALAG Parameter

PREDPP permits an additional PK parameter called an absorption lag time. One such
parameter can be defined for each compartment and applies to all doses to that compart-
ment. It gives the amount of time that a dose is held as a "pending" dose. When the
absorption lag time has expired, the dose is input into the system.In effect, the value of
the absorption lag time parameter is added to the value of the TIME data item on the dose
ev ent record. With NM-TRAN, recognized names for absorption lag time parameters
have the form ALAGn, where n is the compartment number. Reserved variables DOS-
TIM (the time of a lagged dose or additional dose to which the system is being advanced)
and DOSREC (the dose record corresponding to thedose entering atDOSTIM) may be
used.
See also Section 2.6 below.

See Guide VI, Chapter V, Note 3 for the effect of ALAGn with Steady-State doses.

References: Users Guide VI (PREDPP) III.F.6
References: Users Guide IV (NM-TRAN) V.C.5

2.6. ModelEvent Times: MTIME

Model event times MTIME(i) are additional PK parameters defined in the PK routine or
$PK block. A model event time is not associated with any compartment, but, like an
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absorption lag time, defines a time to which the system is advanced. Whenthe time is
reached, indicator variables areset and a call to PK is made. At this call (and/or subse-
quent to this call) PK or DES or AES or ERROR can use theindicator variables to
change some aspectof the system, e.g., a term in a differential equation, or the rate of an
infusion. Reserved variables MNEXT, MPAST, MNOW, MTDIFF may be used.

MTIME does not apply to Steady-State doses. See Guide VI, Chapter V, Note 4.

2.7. Controlling Calls to PK and ERROR

In order to evaluate the $PK and $ERROR statements, PREDPP calls the PK and ERROR
subroutines. Bydefault, the subroutines are called with every event record. PREDPP
may be instructed to limit calls to certain event records in order to save the computing
time involved with unnecessary calls (e.g. when the PK parameters do not vary from
ev ent record to event record within an individual). It is also possible to cause the PK sub-
routine to be called at times which do not correspond to any actual event record.

Using NM-TRAN, calls to PK are controlled by the presence of one of the following
pseudo-statements, at the start of the $PK block:
CALLFL=-2:

call with every event record, at additional and lagged dose times, and at modeled
ev ent times.

CALLFL=-1:
call with every event record (default).

CALLFL=0:
call with the first event record of each individual record and with new values of
TIME.

CALLFL=1:
call once per individual record.

A calling protocolphrasemay be used instead of a pseudo-statement.A calling protocol
phrase may use upper- or lower-case characters.It must be enclosed in parentheses.
NM-TRAN can understand minor variations in the wording. E.g.,the word "CALL" and
prepositions such as WITH can be omitted. Here are calling protocol phrases equivalent
to the above four pseudo-statements, respectively.
(CALL WITH NON-EVENT TIMES)
(CALL WITH EVERY EVENT RECORD)
(CALL WITH FIRST EVENT RECORD AND NEW TIME)
(CALL ONCE PER INDIVIDUAL RECORD)

The choiceCALLFL=-2 (CALL WITH NON-EVENT TIMES) is intended to be used
when PK parameters Dn and/or Fn apply to additional or lagged dosesand the model for
these parameters depends on some time-varying concomitant variable such as type of
drug preparation or patient weight.By default, the values of the PK parameters which
apply to the dose are those values computed by PK with the first event record having a
value of TIME greater than the time at which the dose actually enters the system (the
additional or lagged dose time).However, if PREDPP is instructed to also call PK at the
additional or lagged dose time, then the values of the PK parameters are those values
computed at these special calls. At such calls, PK has available to it information from the
initiating dose event record itself, and information from the two event records whose
TIME values bracket the additional or lagged dose time. Along withCALLFL=-2 in the
$PK block, the NM-TRAN $BIND record may be useful; see Users Guide IV.
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Using NM-TRAN, calls to ERROR are controlled by the presence of one of the following
pseudo-statements at the start of the $ERROR block:
CALLFL=-1:

call with every event record (default).
CALLFL=0: call with observation events only.
CALLFL=1: call once per individual record.

A calling protocol phrase may be used instead of a pseudo-statement.As in the $PK
block, the calling protocol phrase may use upper- or lower-case characters and must be
enclosed in parentheses.

Here are calling protocol phrases equivalent to the above three pseudo-statements, respec-
tively.

(CALL WITH EVERY EVENT RECORD)
(CALL WITH OBSERVATION EVENTS)
(CALL ONCE PER INDIVIDUAL RECORD)

NM-TRAN automatically instructs PREDPP to limit calls to ERROR to once perproblem
for the simple error models discussed in Chapter 8, Sections 3.1 and 3.2:
Y=F+ERR(1)

Y=F+F*ERR(1)

Y=F*(1+ERR(1))

Y=F*EXP(ERR(1))

During the Simulation Step, PREDPP ignores any limitation and calls the ERROR sub-
routine with every event record.

Even when calls to PK and/or ERROR are limited, the CALL input data item can be used
to force additional calls for specific event records as needed.

References: Users Guide VI (PREDPP) III.B.2, III.H, IV.C, V.J
References: Users Guide IV (NM-TRAN) V.C.5, C.6

2.8. Output-Type Compartments

With all versions of PREDPP output-typecompartments may be defined using the
$MODEL record. Suppose there is a compartment named METABURI (for metabolite in
urine). If it is to be an output-type compartment, it must defined as follows:
$MODEL COMP=(METABURI,NODOSE,INITIALOFF)

The compartment is initally off, may be turned on and off, and may not receive a dose.
Just as with the default output compartment, CMT may be negative on an observation
record, allowing the observation to be obtained, and then the compartment turned off,
with a single record. There may be more than one such compartment, in addition to the
default output compartment. An output-type compartment must be turned on with an
other-type event record in order to start accumulating drug. An output-type is not com-
puted by mass-balance, but must instead be computed explictly by the ADVAN routine,
e.g., using a differential equation when a general non-linear model is used.

For an example, see Chapter 6, Section 9.

ID TIME EVID UVOL DV CMT AMT
1 9.50 0 75 .058 -3 0

With ADVAN2, compartment 3 is the default compartment for output, and the observa-
tion at TIME 9.50 may have CMT=-3. But suppose a general linear or non-linear model
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is used (ADVAN5,6,7,8,9,13) and there are more than 3 user-defined compartments.

If the $MODEL statement describes the 3d. compartment as simply
$MODEL COMP=NAME

then the default compartment attributes apply (initial on, off/on allowed, dose allowed)
and the compartment is not an output-type compartment. PREDPP produces this error
message for data record 3:
SPECIFIED COMPARTMENT MAY NOT BE TURNED OFF WITH AN OBSERVATION RECORD

There are two ways to avoid this error message. First, it is always possible (for any com-
partment that may be turned off, even the output compartment) to use two records instead
of one, e.g., first the observation, then a record with EVID=2 that turns off the compart-
ment:

1 9.50 0 75 .058 3 0
1 9.50 2 0 0  -3 0

Alternately, it is possible to leave the data as-is, and change the $MODEL statement so
that compartment 3 is an output-type compartment.

2.9. Transgeneration of Input Data: the INFN Subroutine

NONMEM may be used to modify the data records before any computations are per-
formed and also after all computations have been performed. This is referred to as
transgenerationof the data.Transgeneration at the beginning of a problem can be used,
for example, to change weight-normalized doses to unnormalized doses.PREDPP allows
the user to supply a subroutine called INFN or a $INFN block of abbreviated code ("ini-
tialization/finalization") in which transgeneration can be performed.(The PREDPP li-
brary includes a default INFN subroutine which does nothing.)

The NONMEM PASS subroutine is used for transgeneration. $INFN and $PRED code
may use the following statements to process each record of the data set. ICALL values
may be 0, 1 or 3, for run initializaton, problem initialization, and problem finalization,
respectively.

IF (ICALL == 3) THEN
DOWHILE(DATA)
...

ENDDO
ENDDO

Reserved variable PASSRC may be of interest.

References: Users Guide VI (PREDPP) VI.A

3. User-written PRED Subroutines

It is not necessary to use PREDPP with NONMEM. Either $PRED statements or a user-
written PRED subroutine may be used in place of PREDPP to supply NONMEM with
predicted values for the DV data item according to some (not necessarily pharmacoki-
netic) model. An example using $PRED statements is given here. A special caveat
applies to user-written PRED subroutines that are recursive: see 4.6 below.

References: Users Guide I (Basic) C.2

3.1. Required Data Items

The only required data items when PREDPP is not used are the NONMEM data items
DV, MDV, and ID. When PREDPP is used, the Data Preprocessor is able to recognize
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which records contain observed values and which do not, and it supplies the MDV data
item if it is not already present in the data file.When PREDPP is not used, the Data Pre-
processor cannot do this. The input data file must already contain the MDV data item if it
is needed, i.e., if the DV i tem of some data record does not contain a value of an actual
observation.

If $PRED statements are used, they must calculate a variable called Y, using input data
items and NONMEM’sθ , η, and (for population models)ε vectors in the calculation.

References: Users Guide I (Basic) B.1
References: Users Guide IV (NM-TRAN) III.B.8

3.2. AnExample of $PRED Statements: Pharmacodynamic Modeling

The syntax of $PRED statements is essentially the same as discussed for $PK and
$ERROR statements.$PRED statements can be used for simple pharmacokinetic and
pharmacodynamic models. In figure 12.1 above an example was given of pharmacody-
namic modeling using $ERROR statements. Suppose that in that example, drug concen-
tration is always measured at the same time as drug effect. Supposetoo, that rather than
input the individuals’ values of K and V and use them to compute a predicted drug con-
centration for the individual, the observed drug concentration itself is used in the Emax
model. Thismeans that the the observed concentrations are again incorporated into the
data, but now as values of an independent variable, rather than as the DV data item.This
also means that a pharmacokinetic model is not needed, and therefore, PREDPP is not
needed either. Figure 12.2 shows the control stream for this new example.

$PROBLEM A SIMPLE PHARMACODYNAMIC MODEL
$INPUT ID TIME CP DV
$DATA EFFDATA
$PRED
EMAX=THETA(1)+ETA(1)
C50=THETA(2)+ETA(2)
E=EMAX*CP/(C50+CP)
Y=E+ERR(1)
$THETA 100 20
$OMEGA 400 16
$SIGMA 4
$ESTIMATION

Figure 12.2. The input to NONMEM including $PRED statements for analysis of effect data.

4. Advanced Features of NONMEM

4.1. Full Covariance Matrices: $OMEGA BLOCK and $SIGMA BLOCK

In the examples of Chapter 2 and 9, there appeared statements such as:
$OMEGA .0000055, .04

This is an example of the specification of initial parameter estimates for a variance-
covarianceΩ matrix which is constrained to bediagonal. Initial estimates are given for
the variances ofη1 and ofη2. The covariance betweenη1 andη2 is constrained to be 0,
i.e.,ω12 = cov(η1,η2) = 0. Anotherway of writing this statement is:
$OMEGA DIAGONAL(2) .0000055, .04

The optionDIAGONAL(2) states explicitly that the block contains two ηs and that it has
diagonal form.
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If the data supports the possibility thatη1 andη2 covary with each other, it may be useful
to modelΩ as being unconstrained and allow NONMEM to estimate the covariance. A
special form of the $OMEGA record is used, in which initial values are supplied for both
variances and the covariance. For example:
$OMEGA BLOCK(2) .0000055, .0000001, .04

The optionBLOCK(2) states that there are two η variables in the block, and that covari-
ance is to be estimated. The new element is
ω12 = ω21 = cov(η1,η2) = cov(η2,η1) = 1 × 10−7.

$OMEGA BLOCK is used for both population and individual studies, i.e., it is the same
whetherη is used in the first case in a model for residual error or is used in the second
case in a model for random interindividual error. In a population study, if there is more
than oneε variable, and the model allows these variables to covary, then $SIGMA
BLOCK is used in a similar manner.

The initial estimates of even more complicatedΩ and Σ matrices may be given using
multiple $OMEGA and $SIGMA records.For example, the initial estimates of a mixture
of correlated and uncorrelated random variables may given. Also,in this context (as with
the simple form of the $OMEGA and $SIGMA records described in Chapter 9, Section
3) variances-covariances may be constrained to fixed values by means of the FIXED
option. Finally, some variances-covariances may be constrained to equal others by means
of the BLOCK SAME option.

The ability to fix all variances-covariances in bothΩ andΣ allows Bayesian estimates to
be obtained of the pharmacokinetic parameters of a single individual, based on the indi-
vidual’s data and a prior population distribution for the parameters.

References: Users Guide IV (NM-TRAN) III.B.10

4.1.1. More About $OMEGA and $SIGMA

Initial estimates of a block of $OMEGA or $SIGMAmust be positive definite unless the
entire block is fixed to 0.

If initial estimates of a block of $OMEGA or $SIGMAis not positive definite because of
rounding errors, a value will be added to the diagonal elements to make it positive defi-
nite. A message in the NONMEM report file will indicate if this was done. (nm73).

Additional options include:
VARIANCE (initial estimates of diagonal elements are variances (default))
STANDARD or SD (initial estimates of diagonal elements are standard deviations)
COVARIANCE (initial elements of off-diagonal elements are covariances (default))
CORRELATION (initial elements of off-diagonal elements are correlation)
CHOLESKY (the block is specified in its Cholesky form)

NONMEM converts all initial estimates to variance and covariances. Thevalues
desplayed in the NONMEM report and in the raw and additional output files are always
variances and covariances.

If the initial estimate of $OMEGA or $SIGMA has band-symmetric form, NONMEM
will be constrained to retain this form (nm7).

Special value of $OMEGA elements for unconstrained etas: If all diagonal elements of
$OMEGA are "1.0E+06 FIXED" this indicates that, in a multi-subject data set, each sub-
ject’s data is to be analyzed as individual data. This is described by NONMEM as
ANALYSIS TYPE: POPULATION WITH UNCONSTRAINED ETAS(nm73)

-140-



Chapter 12 - Brief Descriptions of Other Features

Short-cuts may be used for entering repeated information.

BLOCK SAME(m) option
A count m may be included.With $OMEGA BLOCK(n) SAME(m) the
$OMEGA BLOCK(n) SAME record is repeated m times.Similarly for $SIGMA
records (nm73).

$THETA, $OMEGA, $SIGMA Repeated values
When specifying initial estimates, a repeated value can be coded using notation
(...)xn. E.g.,$OMEGA (2)x4 can be used in place of $OMEGA 2 2 2 2.Simliarly
for $SIGMA and $THETA.

$OMEGA,$SIGMA VALUES option
If initial estimates of all diagonal elements of $OMEGA or $SIGMA are the same,
and initial estimates of all off-diagonal elements are the same, they can be specified
simply as $OMEGA BLOCK(n)VALUES(diag,odiag).

Informative record names for$OMEGA and$SIGMA may be used to make it easier place
the records in the control stream.

$OMEGAP specifies omega priors
$OMEGAPD specifies degrees of freedom (or dispersion factor) for omega priors

They are identical to$OMEGA records, but understood to specify prior information for
NWPRI. They may be placed anywhere in the control stream, whereas the same records
without "P" or "PD" would have to be in a specific location.

Informative record names$SIGMAP and$SIGMAPD may be used similarly.

4.2. Grouping Related Observations: The L1 and L2 Data Items

The $ERROR statements for a problem may sometimes involve more than one random
variable. For example, there may be two types of observations. Onetype may be an
observation from one compartment of a PK system, or with one assay or preparation, and
another type may be an observation from a different compartment or with a different
assay or preparation. The model for the two types of observations would typically
involve at least two ε variables (e.g. (3.8)). If all observations are made at sufficiently
separated times, there may be little reason to be concerned about correlation between the
two random errors.However, if the two types of observations are taken at the same or
very close to the same time, it is possible that correlation will exist; whatever circum-
stance has influenced one observation to be different from the predicted level may also
have some influence on the other observation. Inthis case a covariance between the two
ε variables should be allowed, as described above in Section 4.1. Then the two types of
observations at the same time point are regarded as two elements of a multivariate
observation.

In the case of population data, there exists a NONMEM data item, L2, which is used to
identify the elements of a multivariate observation. Ineffect, L2 acts in a similar way as
ID, but grouping observationswithin individual records.

In the case of individual data, the ID data item already serves this purpose: it forms
groups of observations whoseη variables may be correlated. Thus, in the input data file,
the ID data item should be the same for those observations which may have correlatedηs.
However, for individual data, the Data Preprocessor normally replaces the ID data item
with a new set of values which describe every observation as being independent of the
others. To prevent the Data Preprocessor from doing this, L1 should be included in the
$INPUT record as the name or synonym for the user-supplied ID data item.
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Auto-correlation: The values of epsilons used in the intraindividual model may be corre-
lated across the observations contained in the L2 record.Auto-correlation may be part of
both Simulation and Estimation. The CORRL2 reserved variable may be used.

References: UsersGuide IV (NM-TRAN) II.C.4, III.B.2
References: UsersGuide II (Supplemental) D.3

4.3. Continuinga NONMEM Run: MSFO and MSFI

The MSFO (Model Specification Output File) option of the $ESTIMATION record
instructs NONMEM to write a ModelSpecificationFile (MSF). It is created when NON-
MEM writes the first iteration summary to the intermediate output file, and is re-written
when every subsequent iteration summary is written.This file can then be read in a sub-
sequent NONMEM run using a $MSFI (Model Specification File Input) record. This file
has much of the information about the model used in the previous run, thus the name
"Model Specification File". It also contains all the information that allows the Estimation
Step from the previous run (which may have terminated, for example, due to the number
of function evaluations exceeding its limit or a computer crash or some other externally-
caused interruption of the NONMEM run) to be continued in the subsequent run.There
are a number of benefits to using a MSF. First, what might be a long Estimation Step
(due to a very lengthy search) can be split over a series of runs, each with a limited num-
ber of function evaluations. Any run which terminates prematurely due to computer fail-
ure can be restarted from the MSF output in the previous run. (This provides a "check-
point/restart" capability.) Theprogress made in the Estimation Step can also be evaluated
between runs, and a decision made as to whether it is worth continuing a search which is
consuming excessive amounts of computer time. Second, the Covariance, Tables, and
Scatterplot Steps can be performed in later runs, each using the MSF from the final run
with the Estimation Step.It is advisable to perform the Covariance Step only after satis-
factory results have been obtained from the Estimation Step. Third, when NONMEM
writes to the MSF, it also writes iteration summaries to the intermediate printout file (IN-
TER). Theseiteration summaries are in the original parameterization (nm72).

Options are described in Guide VIII. These include NORESCALE, ONLYREAD , and
NPOPETAS (nmvi). (NPOPETAS gives information to NM-TRAN rather than NON-
MEM.) The VERSION option allows NONMEM to read MSF files generated by previ-
ous versions of NONMEM (nm74). The NOMSFTEST option tells NONMEM to turn off
strict MSFI error testing (nm74).

Option NEW allows analysis to continue, or to allow an analysis on a new data set,
resuming from the final parameters of the MSF file. (nm74)

References: Users Guide I (Basic) C.4.4
References: Users Guide IV (NM-TRAN) III.B.6, B.12
References: Introduction to NONMEM 7

4.4. NONMEM Can Obtain Initial Estimates for θ , Ω, Σ
NONMEM can be directed to obtain initial estimates for one or more elements ofθ , Ω, or
Σ. This is done in a separate Initial Estimates Step.For an element ofθ , omit the initial
estimate but include lower and upper bounds, e.g., (1, ,50) in the $THETA record. (The
NUMBERPOINTS option may be used to control the number of points inθ space exam-
ined by NONMEM during the search for initial estimates ofθ .) For a block ofΩ or Σ,
omit all initial estimates on the $OMEGA BLOCK (or DIAGONAL) record, or $SIGMA
BLOCK (or DIAGONAL) record, respectively.
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Note that when $PK and $ERROR statements are present but the $OMEGA and/or
$SIGMA records are absent, NONMEM will be directed to obtain initial estimates for the
variances of the random variables in question, assuming the diagonal form of the matrix.

References: Users Guide IV (NM-TRAN) III.B.9-11

4.5. Improving Parameter Estimates: REPEAT and RESCALE

The Estimation Step can be immediately repeated after the search has terminated success-
fully, by including theREPEAT option on the $ESTIMATION record. This can improve
the accuracy of the parameter estimates when one or more initial estimates are wrong by
a few orders of magnitude.The final estimates from the first implementation of the Esti-
mation Step are used as the initial estimates of the second implementation, and thus the
scaling used with the STP is different from that with the first implementation, allowing
fewer leading zeros after the decimal point in the STP. When the Estimation Step is con-
tinued by means of a Model Specification File, similar rescaling can be requested using
theRESCALE option of the $MSFI record.

References: Users Guide IV (NM-TRAN) III.B.12, B.14
References: Users Guide II (Supplemental) F

4.6. TheCovariance Step: R−1, S−1, Special Computation

The Covariance Step, which computes standard errors of the parameter estimates, first
computes a covariance matrix of the parameter estimates.(This is not the same as theΩ
or Σ matrix). It is possible to request that this covariance matrix be computed in one of
three different ways: either asR−1, S−1, or R−1SR−1 (the default), whereR andS are two
matrices from statistical theory, the Hessian and Cross-Product Gradient matrices, respec-
tively. OptionsMATRIX=R andMATRIX=S of the $COVARIANCE record are used to
request theR−1 and S−1 matrices, respectively. The Covariance Step can produce addi-
tional output. When the default covariance matrix is used,R−1 and/orS−1 can be printed.
This is requested by optionsPRINT=R and/orPRINT=S. Eigenvalues are be printed if
requested by optionPRINT=E. Multiple PRINT options can be specified.

A special computation isrequiredwhen the data are from a single individual and a recur-
sive PRED is used.A recursive PRED is one which stores the results of certain computa-
tions using the values from one event record, and uses these results in later computations
with the values from a later event record. PREDPP advances the kinetic system from one
time point to the next and therefore is an example of a recursive PRED. WhenPREDPP
is used and the data is from a single individual, NM-TRAN automatically requests the
special computation. When a recursive user-written PRED is used and the data are from
a single individual, theSPECIAL option of the $COVARIANCE recordmustbe used.

TheCONDITIONAL option of the $COVARIANCE record requests that the Covariance
Step be implemented only if Estimation Step terminates successfully, and is the default.
TheUNCONDITIONAL option can be used to request that it be implemented no matter
how the Estimation Step terminates.

References: Users Guide IV (NM-TRAN) III.B.15
References: Users Guide II (Supplemental) D.2.5

4.6.1. More About $COVARIANCE

Other options of interest:
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COMPRESS (affects how the Covariance matrices are displayed in the NONMEM report)
NOSLOW|SLOW (SLOW Requests a slower method of computation)
SIGL|SIGLO (affects how computations are done in the Covariance Step)
RESUME (allows the Covariance Step to resume from a MSF)
NOFCOV (turns of the Covariance Step for Estimation steps using the classical methods)

The $ESTIMATION record option NOCOV may be used to turn off the Covariance Step
following a particular Estimation step, and to turn it back on again.

See Section 6.8 for more about $COV.

4.7. Multiple Problems in a Single NONMEM Run

NONMEM can implement more than one problem in a single run. That is, the input con-
trol stream can contain more than one $PROBLEM record, each followed by its own set
of problem specification statements.This feature can be useful in a variety of situations.
A series of what otherwise would be separate runs, each analyzing a single individual’s
data within a population data file, can be performed conveniently without building sepa-
rate data files for each individual. Also,more than one data set can be analyzed using the
same model and the same problem specification.Multiple problems are also useful with
NONMEM’s Simulation Step, described below.

Note that abbreviated code such as $PK and $ERROR statements cannot appear after the
first problem. If the $DAT A record is omitted or the filename is specified as * on a
$DAT A record in a problem subsequent to the first, the previous data set is re-used.

With multiple problems, the following NONMEM reserved variables are of interest:
NPROB,IPROB

A sequence of problems may be defined to be a superproblemby means of the NM-
TRAN $SUPER record, and NONMEM may also be directed to repeat them a specific
number of times.

With superproblems, the following NONMEM reserved variables are of interest:
S1NUM S2NUM S1NIT S2NIT S1IT S2IT
SKIP_ variable for Superproblem termination

References: Users Guide IV (NM-TRAN) III.B.1

4.8. SimulationUsing NONMEM: The $SIMULATION Record

The term simulationrefers to the generation of data points according to some model.A
simple form of simulation is performed when the Estimation Step is omitted but the Table
Step is implemented. The PRED column of the table contains predictions based on the
information in the data records and the initial estimates ofθ , under the model specified in
the PRED (PREDPP) subroutine. Random variablesη and ε (if any) have no effect on
the predictions and may be omitted. If the only purpose of the run is to obtain simulated
values, and these variables are present, it is best (but not required) that their variances be
fixed to 0. NONMEM does not compute the objective function in this circumstance,
which has certain advantages.

NONMEM can also perform a Simulation Step, in which another type of simulation is
performed. Inthe Simulation Step, each value of the DV data item of each record with
MDV=0 is replaced by a simulated observation generated from the model, but including
statistical variability†. The PRED (PREDPP) routine usesη and ε values that are

† During the Simulation Step, values of F computed by PRED or PREDPP for records having MDV=1 are irrel-
evant and are ignored by NONMEM.
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supplied by NONMEM according to user-specified random distributions (e.g., with vari-
ances given by the initial estimates ofΩ andΣ). If Ω andΣ matrices are fixed to zero, for
example, the simulated values are the same as the predictions described above.

If the data are then displayed by the Table Step, the DV column for records with MDV=0
contains the simulated observations obtained from the Simulation Step.For records hav-
ing MDV=1, the DV column contains whatever was in the original data record.The
PRED column of the table contains predictions as described above. If the Estimation
Step was not implemented, the values ofθ used for these predictions are the initial val-
ues. Ifthe Estimation Step was implemented, the values ofθ used for the predictions in
the PRED column are the final parameter estimates.Note that the observations that are fit
during the search are the simulated values obtained by the Simulation Step.

Often data are simulated using the Simulation Step, then analyzed using one or more
other steps (e.g. Estimation and Covariance Steps), and this process is repeated a fixed
number of times, using the same model.The Simulation Step accommodates this easily
with the notion of a NONMEMsubproblem,whereby these steps are repeated within the
same NONMEM problem.However, on occasion it can be useful to have multiple prob-
lems (see Section 4.7), where one problem implements the Simulation Step, and the sub-
sequent problem implements other steps.For example, this is one way to obtain different
initial parameter estimates for the Estimation Step than for the Simulation Step.

TheONLYSIMULATION option causes NONMEM to suppress evaluation of the objec-
tive function. With this option, PRED-defined variables displayed in tables and scatter-
plots (see Section 4.13) are simulated values, i.e., use simulatedηs and initial θ s, and
weighted residual values in tables and scatterplots are always 0.

References: Users Guide IV (NM-TRAN) III.B.13
References: Users Guide VI (PREDPP) III.E.2, L.1 , IV.B.1-2, C, G.1

4.8.1. More About $SIMULATION

With simulation, subroutines SIMETA and SIMEPS are used.

With simulation and subproblems, the data set for each subproblem after the first is the
same data set used by the previous subproblem, and includes any changes (transgenera-
tion) made by the previous subproblem.With nm74, the REWIND option of $SIMULA-
TION may be used to request that the original data set be used for all sub-problems.(If
transgeneration is performed on the data set by $INFN when ICALL=1, the resulting data
set is considered to be the original data set.)

See Section 6 for a discussion of the BOOTSTRAP and STRAT (stratification) features of
simulation, and also parallelization during simulation.

The following NONMEM reserved variables are of interest during simulation:
IREP, NREP

NONMEM subroutine RANDOM may be used in abbreviated code to obtain numbers
from a random source (nmiv, nm7).

The $SIMULATION record has other options, including:

a random seed and optionsNEW, NORMAL, UNIFORM, or PARAMETRIC for each of sev-
eral random sources;
TRUE=INITIAL, TRUE=FINAL, or TRUE=PRIOR, to specify what the "true parameter
values" for the Simulation should be;
PREDICTION or NOPREDICTION to specify whether the Y (or F) variable or the DV
variable is set to the prediction;
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REQUESTFIRST or REQUESTSECOND to specify if any eta partials are to be computed.

NONMEM can use the BOOTSTRAP method for simulations.With BOOTSTRAP,
other options are possible:

REPLACE or NOREPLACE
STRAT or STRATF.

$SIM NOSUPRESET feature allows the simulation seeds not to be reset with each itera-
tion of a super-problem.

4.9. Filesfor Subsequent Processing: the $TABLE Record

NONMEM can write the data for a table to an external formatted file, as requested by the
FILE option of the $TABLE record. Other computer programs can read these files.Such
programs can perform further analysis or provide improved graphical displays.These
files normally contain header lines similar to those in a printed table, but the header lines
can be suppressed entirely or in part by means of theNOHEADER, ONEHEADER, ONE-
HEADERALL, ONEHEADERPERFILE options. NOTITLE (suppresses the table titles)
andNOLABEL (supresses column labels) may be used.

Tables may be written to the same or to different table files.

References: Users Guide IV (NM-TRAN) III.B.16

4.9.1. More about $TABLE and $SCATTER

Some options may be used only with a table file.

OptionsNOFORWARD andFORWARD control whether a table file which is used with mul-
tiple problems is positioned at the start of the file or forwarded to the end of the file.

OptionNOPRINT may be used suppress the table in the NONMEM report, orPRINT to
include it as ususal.A printed table is limited to 8 items but a non-printed table file may
have an ulimited number of items (controlled by PDT in $SIZES with default 500).

FORMAT supplies an alternate format for every numeric item in a table file (the default is
s1PE11.4). Analternate name for this option isDELIM.
RFORMAT supplies an alternate format for the full numeric record of a file.
LFORMAT supplies an alternate format for the full label record in a file.

Other options can be used with both printed tables and table files.

FIRSTONLY (include only the first data record from each individual record)
LASTONLY (include only the last data record from each individual record)
FIRSSTLASTONLY (include only the first and last data record from each individual
record)
BY (sort records in the table)
NOAPPEND (suppress items DV, PRED, RES, WRES)
APPEND (list items DV, PRED, RES, WRES; this is the default)

With a $SCATTER record, additional options are:

FIRSTONLY (include only the first data record from each individual record)
OBSONLY (include only the observation records, having MDV=0)

The optionABS0 is similar toORD0 described in Chapter 9, but adds a line zero line on
the abscissa axis of the scatterplots.

Many additional diagnostic and reserved variables may be listed in tables and scatters;
see 6.3 below.
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With the Monte-Carlo generated diagnostics, new options of the $TABLE record may be
used. Notethat if these options affect the values of the weighted residual, the scatterplots
will also be affected.

ESAMPLE=n1
WRESCHOL
SEED=n2
RANMETHOD=[n|S|m]

4.10. DataCheckout Mode

NONMEM’s data checkout mode is intended for preliminary display of data without the
use of a model. In data checkout mode, the PRED routine is not called.Predictions, the
objective function, residuals, and weighted residuals are not computed. Only the Table
and Scatterplot Steps can be implemented in the problem.With NM-TRAN, this mode is
requested by coding the optionCHECKOUT on the $DAT A record. A$SUBROUTINES
record and abbreviated code are required, but they hav eno effect and need only be syn-
tactically correct.

References: Users Guide IV (NM-TRAN) III.B.6

4.11. ObtainingIndividual Parameter Estimates - Conditional Estimates ofηs

With population data, NONMEM can obtain estimates of individual-specific true values
of η from any giv en set of values ofθ , Ω, Σ, and the individual’s data. Theseare called
conditionalestimates ofη. When the conditional estimates are obtained after estimation
is carried out by the First-Order method, they are referred to as "posthoc" estimates.
With NM-TRAN, they are requested by the optionPOSTHOC on the $ESTIMATION
record.

References: Users Guide IV (NM-TRAN) III.B.14

4.12. Population Conditional Estimation Methods

NONMEM can obtain conditional estimates ofη variables as part of the computation of
population parameter estimates.These are called conditionalestimationmethods.With
NM-TRAN, such methods are requested by including the optionMETHOD=CONDI-
TIONAL (or METHOD=1) on the $ESTIMATION record. (The optionMETHOD=ZERO,
or METHOD=0, requests the conventional First-Order method and is the default.) There
are two conditional estimation methods.If NONMEM uses only first-order approxima-
tions, this is the First-OrderConditional Estimation Method. This has one variation,
interaction,which takes into accountη-ε interaction and is requested by the additional
optionINTERACTION on the $ESTIMATION record. If NONMEM uses a certain sec-
ond-order approximation, this is the Laplacianmethod, which is requested by the addi-
tional optionLAPLACIAN on the $ESTIMATION record.Interaction may be specified
with any method, including the Laplacian method.

Note that this usage of the term CONDITIONAL is different from the usage on the
$SCATTERPLOT, $TABLE, and $COVARIANCE records, in which it refers to the cir-
cumstances under which the step in question is implemented.

OptionCENTERING requests that the average conditional estimates ofeach eta becon-
strained to be closeto 0.

References: Users Guide IV (NM-TRAN) III.B.14
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4.13. DisplayingPRED-Defined Variables and Conditional Estimates ofηs

NONMEM can display PRED-defined variables in table and scatterplots.With NM-
TRAN, any variable appearing on the left-hand side of an assignment statement in abbre-
viated code can be displayed by listing it in a $TABLE or $SCATTER record. If the data
are population, NONMEM can also display conditional estimates ofη. With NM-TRAN,
variables ETA(1), ETA(2), etc., can be simply listed in $TABLE and $SCATTER records.
When conditional estimation is not performed, the values displayed are zero.Displayed
values of PRED-defined random variables will use conditional estimates ofη if they hav e
been obtained, otherwise they will be typical values. Thisfeature is available with
PREDPP, as well as with user-written PRED routines.For example, the following
records could replace the $ESTIMATION record in Figure 12.2:

$ESTIMATION POSTHOC

$TABLE ETA(1) EMAX

The $ABBREVIATED record can be used to limit the number of variables available for
display when the number is excessive.

References: Guide III (Installation) V.2.4
References: Guide IV (NM-TRAN) III.B.16-17
References: Guide VI (PREDPP) III.J, IV.E

4.14. Mixture Models

A mixture modelis a model that explicitly assumes that the population consists of two or
more sub-populations, each having its own model.For example, with two sub-popula-
tions, one might assume that some fraction p of the population has one set of typical val-
ues of the PK parameters, and the remaining fraction 1-p has another set of typical values.
Both sets of typical values and the mixing fraction p may be estimated.For each individ-
ual, NONMEM also computes an estimate of the number of the subpopulation of which
the individual is a member. The user must supply a FORTRAN subroutine called MIX or
a $MIX block of abbreviated code to compute the fractions p and 1-p.

Reserved variables NSPOP, P, MIXNUM, MIXEST, MIXP and MIXPT can be used in
abbreviated code. Reserved variable TEMPLT may be used.

References: Users Guide VI (PREDPP) III.L.2

4.15. PREDError Retur n Codes and Error Messages in File PRDERR

A PRED routine can return a PREDerror returncode(1 or 2) to NONMEM, indicating
that it is unable to compute a prediction for a given data record with the current values of
θ ’s andη ’s. For example, PREDPP returns error return code 1 when a basic or additional
PK parameter has a value that is physically impossible (e.g., a scale parameter which is
zero or negative). Error return codes can also be specified by the user in user-written
code or in abbreviated code using the EXIT statement.One reason for doing this is to
constrain parameters in order to avoid floating point machine interrupts. The PREDerror
recovery option determines what action NONMEM will take. With NM-TRAN, the
PRED error recovery option is eitherABORT (which is the default) orNOABORT, and is
specified on the $ESTIMATION and $THETA records.

If an error return code is returned during the Simulation, Covariance, Table or Scatterplot
Step, or during computation of the initial value of the objective function, NONMEM will
abort. If the error return code is returned during the Estimation or Initial Estimates Step,
NONMEM will try to avoid those values ofθ andη for which the error occurs. If they
cannot be avoided, NONMEM’s actions depend on the error return code value, as
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follows:

1 If NOABORT is specified on $ESTIM or $THETA, try to avoid the current values of
θ andη. If ABORT is specified on $ESTIM or $THETA, then abort.

2 Abort in all cases.

NOABORTFIRST may be specified on $THETA (nmvi) Same as NOABORT option, but
also applies to thefirst value of the theta vector that is tried.

NOHABORT may be specified on $ESTIM (nm7).

PRED routines may optionally provide text accompanying the error return code.NON-
MEM writes all text associated with error return codes to a file, PRDERR. The contents
of this file should always be carefully reviewed.

References: Users Guide III (Installation) III.2.1.1
References: Users Guide IV (NM-TRAN) IV.A, IV.C.5-6
References: Users Guide VI (PREDPP) III.K, IV.F

4.16. User-Written Subroutines

Although most NONMEM applications can be accomplished using NM-TRAN abbrevi-
ated code, there are cases in which user-written FORTRAN subroutines are needed.The
$SUBROUTINES record allows the user to specify the names of user-written routines
that are needed in the NONMEM load module.A user may choose to write his own
PRED, PK, ERROR, INFN, MODEL, DES, or AES subroutine. Some subroutines that
are distributed with NONMEM are dummy, or "stub" routines, that do nothing.Of these,
subroutines CCONTR, CONTR, CRIT, PRIOR, USMETA, SPTWO, MIX can be
replaced to obtain an objective function different from the default. NONMEMsubroutine
MIX must be replaced for mixture models. The names of all such routines are specified
using the identically named options of the$SUBROUTINES record, e.g.,PRED=sub-
name, CONTR=subname, etc. User-written routines may call other FORTRAN subrou-
tines, which can be specified for inclusion in the load module using the option
OTHER=subname.

With user-written CONTR routines, the NM-TRAN $CONTR record may be useful.

THETAI and THETAR are stubs that may be replaced to transform initial and final theta
values. The$THETAI and $THETAR records described in Section 6 can be used to gen-
erate the replacement code in FSUBS.

References: Users Guide IV (NM-TRAN) III.B.4, B.6

4.17. PRIOR

The PRIOR subroutine and $PRIOR record allows a Bayesian penalty function to be
added to theNONMEM objective function. This serves as a constraint on the estimates
of THETA, OMEGA, and SIGMA and thusas away for stable estimates to be obtained
with insufficient data.

NONMEM subroutines that may be used are NWPRI and TNPRI (nmvi).With NWPRI,
informatively-named $THETAP, $OMEGAP, $SIGMAP records can be used to provide
prior information (nm73).

The option NOPRIOR of the $ESTIMATION record controls whether or not the prior
information is used for a given Estimation Step.

References: Introduction to NONMEM Version VI
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5. Observations of Two Different Types

An NM-TRAN control stream is shown in Figure 12.3, for the analysis of a data set
which contains observations of two different types.A fragment of the data set, shown in
Figure 12.4, contains the data for one individual. Thisexample illustrates how concentra-
tion and effect data can be fit simultaneously, and includes many of the advanced features
described in this chapter, such as pharmacodynamic modeling in the $ERROR state-
ments, correlation between elements ofΣ, and the L2 data item.

Suppose that the data set for the phenobarbital example of Chapter 2 is modified to
include both concentration and effect observations, and that a data item called TYPE is
used to distinguish between them. When TYPE is 1, DV contains an effect measurement.
When TYPE is 2, DV contains a concentration. The $PK statements are the same as
those of Figure 2.12. The $ERROR statements are the same as those of Figure 12.1,
except that the elements ofθ andη are renumbered to follow those used in the $PK state-
ments. The(random) variable Y1 is assigned the same value as Y in the $ERROR state-
ments of Figure 12.1 The (random) variable Y2 is assigned the same value as Y in the
$ERROR statements of Figure 2.12, except thatε2 is used rather thanε1.

The input data file contains observations of both types which were made at the same time
value. Theev ent records therefore include the L2 data item.Figure 12.4, like Figure 2.7,
shows the data for the first individual, but includes TYPE and L2 data items and effect
observations. Notethat the L2 data item has a different value for each multivariate obser-
vation within the individual record. (The values 1 and 2 are chosen arbitrarily and may
be re-used for the L2 data items in the next individual’s data, if desired.)

The $THETA, $OMEGA, and $SIGMA records contain the values shown in Figures 2.12
and 12.1 and one other value, 2.8, for the covarianceΣ12 = cov(ε1, ε2). Theestimate 2.8
is chosen so that the correlation is, arbitrarily, .5
(2. 8= Σ12 = (Σ11Σ22)

1
2 corr = (8 × 4)

1
2 . 5).
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$PROBLEM COMBINED PK/PD MODEL
$INPUT ID TIME AMT WT APGR DV TYPE L2
$DATA COMBDATA
$SUBROUTINE ADVAN1
$PK

TVCL=THETA(1)+THETA(3)*WT
CL=TVCL+ETA(1)
TVVD=THETA(2)+THETA(4)*WT
V=TVVD+ETA(2)

; THE FOLLOWING ARE REQUIRED BY PREDPP
K=CL/V
S1=V

$ERROR
EMAX=THETA(5)+ETA(3)
C50=THETA(6)+ETA(4)
E=EMAX*F/(C50+F)
Y1=E+ERR(1)
Y2=F+ERR(2)
Q=1
IF (TYPE.EQ.2) Q=0
Y=Q*Y1+(1-Q)*Y2
$THETA (0,.0027) (0,.70) .0018 .5 100 20
$OMEGA .000007 .3 400 16
$SIGMA BLOCK(2) 4 2.8 8
$ESTIMATION

Figure 12.3. The input to NONMEM-PREDPP for analysis of the population phenobarbital data, including
both concentration and effect observations.

1 0. 25.0 1.4 7 . 2 0
1 2.0 . 1.4 7 6.0 1 1
1 2.0 . 1.4 7 17.3 2 1
1 12.5 3.5 1.4 7 . 2 0
1 24.5 3.5 1.4 7 . 2 1
1 37.0 3.5 1.4 7 . 2 0
1 48.0 3.5 1.4 7 . 2 1
1 60.5 3.5 1.4 7 . 2 0
1 72.5 3.5 1.4 7 . 2 1
1 85.3 3.5 1.4 7 . 2 0
1 96.5 3.5 1.4 7 . 2 1
1 108.5 3.5 1.4 7 . 2 0
1 112.5 . 1.4 7 8.0 1 2
1 112.5 . 1.4 7 31.0 2 2

Figure 12.4.The first individual’s phenobarbital data, including both concentration and
effect observations.

The above $ERROR statements can be coded more simply.

$ERROR
EMAX=THETA(5)+ETA(3)
C50=THETA(6)+ETA(4)
E=EMAX*F/(C50+F)
IF (TYPE.EQ.2) THEN
Y=F+ERR(2)
ELSE
Y=E+ERR(1)
ENDIF

Figure 12.5. Alternate $ERROR statements
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6. SupplementalList of Features through NONMEM 7.4

With NONMEM 7 there are many new features, including new Estimation Methods.
This section lists features of NONMEM, PREDPP, and NM-TRAN that are not discussed
elsewhere in this guide. The version of NONMEM in which each feature appears is
listed. Theuser should consult other guides for details.

6.1. NONMEM Features

Odd-Type Data (nmv)
Non-continuous observed responses ("odd-type data") can be analyzed.$ESTI-
MATION options LIKELIHOOD or -2LL must be used.Y is set to a (conditional)
likelihood.
Reserved variable F_FLAG may be used (nmvi).

New methods of Estimation
METHOD=HYBRID with option ZERO (nmv)
STIELTJES withoptions GRID, REPEAT1, REPEAT2, ZERO (nmvi)
ITS Iterative Two Stage (nm7)
Expectation-Maximization (EM) and Monte Carlo Bayesian (nm7)

Expectation feature (nmv)
This feature uses the NONMEM marginal (MRG_) data item.MRG_ identifies
records for which NONMEM computes and displays marginal quantities (expecta-
tions) Expectations are computed when ICALL=5.

Raw data average feature (nmv)
This feature uses the NONMEM raw-data (RAW_) data item.RAW_ identifies
template records for which NONMEM computes and displays raw-data averages.
Raw data averages are computed when ICALL=6.Reserved variables TEMPLT
and the $OMIT record may be used (nmvi).The NONMEM utility routine RAN-
DOM may be used to obtain numbers from different random sources.

Non-parametric analysis methods (nmvi)
The $NONPARAMETRIC record is used to request the Non-parametric method of
analysis. Optionsinclude:
MARGINALS or ETAS, MSFO=filename, RECOMPUTE, EXPAND, NPSUPP=n
or NPSUPPE=n

SORT option of $ESTIMATION (nmvi)
With classical methods, individual contribution to the objective function and gradi-
ents may be sorted before they are summed, so that smaller numbers are summed
before larger numbers.

Reserved Variables YLO/YUP (nmvi)
During the analysis an interval is defined in which(or outside of which)an
observation is conditioned to exist. Reserved variable PR_Y is also of interest.

Reserved Variables CTLO/CTUP (nmvi)
An observation may be the event that the value of a normally distributed variable
falls in a given interval. Reserved variable PR_CT is also of interest.

NONMEM Repetition feature (nmvi)
This features uses reserved variables RPTI,RPTO,RPTON,PRDFL. Analternate
way is to use the RPT_ data item.

MU Modeling (MU Referencing) (nm7)
MU_i variables may be used in Abbreviated code with EM methods of Estimation.
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NM-TRAN checks the use of MU_i variables, unless optionNOCHECKMU of the
$ABBR record is used (nm73).Thetas may be input and reported in their natural
domain, even when used as logs (e.g., linear MU referencing) using $THETAI and
$THETAR records (nm73).

New method of setting initial values of thetas, omegas, and sigmas. (nm72)
See CHAIN option of $ESTIMATION and $CHAIN.

Multiple Estimation steps (nm72)
If the $ESTIMATION record is present more than once within a problem, then
each subsquent record requests a separate Estimation Step rather than providing
more options for a single Estimation Step.

BOOTSTRAP method (nm73)
BOOTSTRAP may be specified with $NONPARAMETRIC and $SIMULATION
records. Thisrequests that a bootstrap sample be used. Options STRAT and
STRATF may be used for stratification.With $SIMULATION, options REPLACE
or NOREPLACE may be used.An example is given of bootrapping single subject
data (nm74).

More than 2 levels of mixed effects (nm73)
Increased number of mixed effects levels. Random effects across groups of individ-
uals, such as clinical site, can be modeled. The $LEVEL record is used.

Alternate method (POPULATION WITH UNCONSTRAINED ETAS) for single-subject
analysis (nm73)
All the subjects may be analyzed together, but with $OMEGA diagonal values
fixed to a special value 1.0E+06.

New values of MDV (nm73)
MDV may be set to 100, 101. Such records are ignored during Estimation.
Reserved variables MDVI1, MDVI2, MDVI3 may also be used; they are defined in
include file nonmem_reserved_general.

Initial Estimates for ETAs feature (nm73)
By default, the initial value used for ETA’ s in the Estimation Step search is 0.The
$ETAS and $PHIS records provide user-supplied initial estimates.

Tranformations of THETA values (nm73)
$THETAI transforms the initial values in the $THETA and $THETAP records.
$THETAR transforms the final theta values for the NONMEM report and addi-
tional output files. May be used with MU Modeling.

Constraints on model parameters (nm73)
Additional algorithmic constraints may be imposed upon model parameters by use
of the subroutine CONSTRAINT. Option CONSTRAIN of the $ESTIMATION
record and the $ANNEAL record may be used to give information to the subrou-
tine. Thisfeature is available only for the EM and Bayesian algorithms.

Additional Reserved Variables
The descriptions of the following reserved variables can be found in Introduction to
NONMEM 7 MXSTEP FIRSTEM MDVRES NPDE_MODE DV_LOQ CDF_L

6.2. MiscellaneousFeatures

Interactive control of NONMEM (nm7)
A NONMEM run can now be controlled to some extent from the console by issu-
ing certain control characters.
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Dynamic Memory Allocation (nm72)
No need to recompile NONMEM or NM-TRAN for large problems. Most arrays
are sized automatically. If necessary, the $SIZES record may be used.E.g., the
default maximum number of data items per data record is 50, but may be increased
by specifying a larger value for PD; the maximum number of items per table is
500, but may be increased by specifying a larger value for PDT.

Parallel Computing (nm72)
Parallel Computing is requested using the nmfe option -parafile and specified using
.pnm files. The options PARAFILE of the $ESTIMATION and $COVARIANCE
records may also be used.With nm74, Option FPARAFILE of the $ESTIMATION
record controls parallelization for final eta (EBE) computation.Option PARAFILE
of the $TABLE controls parallelization for weighted residual computation.Option
PARAFILE of the $SIMULATION record may also be used.

6.3. Changesto NONMEM Outputs

Reports include Covariance and Correlation Matrices for OMEGA and SIGMA (nm72)

Reports include ETABAR, SE, N, P VAL (nm7)
Option ETABARCHECK of the $ESTIMATION record may be used.

Reports include ETAshrink, EBVshrink, EPSshrink (nm7)
Eta shrinkage evaluation using empirical Bayes variances (EBVs, or conditional
mean variances) is reported. The ETASTYPE option of the $ESTIMATION record
and the ETASXI reserved variable in abbreviated code may be used to control
which etas from which subjects are included.

Reports include tag labels: #METH etc. (nm7)

Raw and additional output files: root.ext, root.cov, root.xml, etc. (nm7)
These files provide numerical results in a columnar format.$ESTIMATION record
option ORDER may be used to control the order of theta, omega, sigma in these
files. $ESTIMATION record option NUMDER may be used to request files with
numerical and analytic eta derivatives: root.fgh, root.agh (nm73)

Tables and Scatters may request NONMEM-generated items

Elements of G and H (e.g., G11, H11) and elements of ETA (nmvi)

A range of etas using the format ETAS(k:n) may be requested (nm73).
Number lists or a syntax flexible (TO, :, BY) may be used(nm74). Examples are
ETAS(1 TO 10 by 3), ETAS(1,5,12,4).

OBJI (Objective function values for each individual) (nm72)

Additional statistical diagnostic items (nm7, nm73)

In addition to the PRED, RES, and WRES items, the following may be
listed.

PREDI, RESI, WRESI
CPRED, CRES, CWRES
CPREDI, CRESI, CWRESI
CIPRED, CIRES,CIWRES
CIPREDI, CIRESI,CIWRESI
NIPRED, NIRES, NIWRES
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IPRD, IRS,IWRS
EPRED, ERES, EWRES

Monte-Carlo generated diagnosticsare not linearized approximations like the
other diagnostic types. These include

ECWRES
EIPRED, EIRES,EIWRES
NPDE Monte-Carlo generated normalized probabilitydistribution error) (nm71)
NPD correlated value of NPDE (nm72)

With FIXEDETAS=(list), the specified etas are treated as if they are fixed effects
when NONMEM evaluates population diagnosticsduring the $TABLE
step.(nm74)

The EXCLUDE_BY option can be used to exclude records from the table or scat-
ter. (nm74).

The VARCALC option asks NONMEM to report standard errors (xxx_SE) in the
tables for PREDPP and user-defined items. (nm74)

A reserved variable of interest when evaluating residuals and weighted residuals is
MDVRES which may be set in PRED to cause NONMEM to treat an observation
as missing duringthe computation ofresiduals and weighted residuals. (nm73)

6.4. PREDPP

New PREDPP data items in $INPUT: XVID1 XVID2 XVID3 XVID4 XVID5 (nm72)
Special values of EVID allow repeated observation records, e.g., for Stochastic dif-
ferential equations.

CMT and PCMT values 100,1000
Specification of the default compartment for output (nm, nm73)

Compartment Amounts A(i), TSTATE (nmvi)

A_0 (compartment initialization) (nmvi)
May be used with any ADVAN. A_0FLG

I_SS (Initial Steady State) for general non-linear models (nmvi2.0)
It is possible to specify initial conditions for the differential equations using the
I_SS (Initial Steady State) feature. Reserved variable ISSMOD may be used.

DES array: COMPACT vs. FULL for general non-linear models (nmv)

ISFINL reserved variable with AES and DES (nmvi)
Allows the abbreviated code to take special action on the final call to AES and DES
for an integration interval. TIME data item may be negative.

6.5. NM-TRAN

6.5.1. GeneralFeatures

Case-insensitivity (nm72)
Both lower and upper case may be used in the NM-TRAN control file.

Continuation and line length (nm73)
Any line may be continued with "&" and may be 67000 characters long.

Warning messages (nmv)
The numbers of warning messages of various types may be controlled using the
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$WARNING record.

6.5.2. DataPreprocessor

$DAT A TRANSLATE (nmv, nm73)
Allows TIME and II values to be rescaled, with specified number of decimal
points.

ill-formed data files (nmvi)
NM-TRAN is better able to handle a data file whose final line does not terminate
correctly.

tabs in data files (nmvi)

ˆM in data files (nmvi)
NM-TRAN can read data files in which tabs are present, and whose lines end with
ˆM.

$DAT A BLANKOK (nmvi)
NM-TRAN will not allow blank lines in a data file unless the BLANKOK option is
used.

Larger data files (nmvi)
The RECORDS=n option of $DAT A may specify a number as large as 99999999.

MISDAT Missing Data Indicator (nm74)
MISDAT specifies anumerical value indicating amissing data value in the data
set, which is displayed on $TABLE table outputs,but is safely interpretedas 0
by other steps of NONMEM.

6.5.3. Abbreviated Code

FORTRAN 90/95 syntax may be used.
For example, logical expressions may be written using symbols ==,>, instead of
.EQ., .GT., etc.

Increased number of THETA, ETA, EPS (nm72)
Subscripts of THETA, ETA, EPS may be as large as 999.

$ABBR record: COMRES, COMSAV
Creates variables that are saved between nonmem passes. NONMEM Reserved
variables COM, COMACT are used.

$ABBR record: DERIV2 (nmIV), NOFASTDER(nm72) DERIV1 (nm74)
Affects generated code in FSUBS.See also NOFIRSTDERCODE reserved vari-
able in abbreviated code.

$ABBR REPLACE (nm73)
Any character string may be replaced.This allows for symbolic reference to thetas,
etas, and epsilons. Replacement with selection by data item and parameter is per-
mitted.
With nm74, the syntax is more flexible. Symboliclabels for eta may be used in the
$TABLE record. Symbolic label substitutions will appear in the NONMEM report
file and $TABLE outputs.$ESTIMATION record option NOSUB may be used to
control label substitution in the NONMEM report file.$TABLE record option
NOSUB may be used to control label substitution in $TABLE files.$SCATTER
record option NOSUB may be used to control label substitution in Scatterplots.
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$ABBR DECLARE (nm73)
Allows integer variables and array (subscripted) variables to be used in Abbrevi-
ated code.

Recursive abbreviated code (nmvi)
Allows a random variable to retain the value from the previous data record instead
of being set to zero. May be used to implement recursive kinetics in$PRED.

User-supplied functions FUNCA,FUNCB,FUNCC and VECTRA,VECTRB,VECTRC
(nmvi)
FUNCA etc. are reserved names for user-supplied functions They may have scalar
or vector-valued arguments. VECTRAetc. are reserved names for vectors used as
arguments. Whenfunctions are used in abbreviated code, the eta derivatives of the
arguments are computed correctly. Any vector may be used with any function.
With NONMEM 7, there are more reserved functions and vectors.

$ABBR FUNCTION, $ABBR VECTOR (nm74)
In NONMEM 7.4 the $ABBR FUNCTION option and $ABBR VECTOR option
allows user-defined function names and user-defined argument vector names.

PROTECT functions (nm74)
Versions of FORTRAN functions are available that protect against domain viola-
tions, divide by zero, and floating point overflows. For example, PLOG is the pro-
tective code routine that performs the LOG operation.The $ABBR PROTECT
record causes NM-TRAN to automatically replace FORTRAN functions in abbre-
viated code with the protective functions.

WRITE/PRINT statements
Character strings, format specification, Array options FULL vs. DIAG

DO WHILE, DO WHILE(DAT A) statements
Looping; transgeneration.

Include files for NONMEM_RESERVED variables (nm73)
If the name of an include file starts with NONMEM_RESERVED, it may contain
definitions of variables that will be parsed by NM-TRAN for use in abbreviated
code.

6.5.4. Reserved Variables in Abbreviated Code

Here is a partial list of reserved variables that are not mentioned elsewhere in this guide.

ICALL
NONMEM reserved variable. Tells PRED when NONMEM is doing Run initial-
ization, Problem initialization, Estimation, Problem finalization, Simulation,
Expectiation, Data Average. (nmv)

NEWIND
NONMEM reserved variable. Tells PRED when data from a new individual record
is starting.

NIREC, NDREC (nmvi)

FIRSTOBS, LASTOBS (nm74)
NONMEM reserved variables. Input data file record counters. NONMEM 7.4 pro-
vides additional record counters such as FIRSTOBS, LASTOBS, etc. in file non-
mem_reserved_general.
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LIREC NINDR INDR1 INDR2 reserved variables (nmvi2.0)
NONMEM reserved variables. Descriptive of the individual record.

MSEC, MFIRST, IFIRSTEM
NONMEM reserved variables. Tells PRED which derivatives to compute.

THETAFR, OMEGA, SIGMA, SETHET, SETHETR, SEOMEG, SESIGM (nmvi,nm74)
NONMEM reserved variables. Thecurrent values of OMEGA, SIGMA, et. al.,
may be used in abbreviated code.

IIDX,CNTID (nmvi)
NONMEM reserved variables. Individual contribution to the objective function.

PRED_,RES_,WRES_, and other variables
Variables with similar names and the same values as statistical diagnostic items
PRED_, RES_, WRES_, CPRED_, CRES__, CWRES, etc., may be used on the
right in $PRED and $ERROR blocks (nm7)

NONMEM_reserved_general (nm73)
This is a file in the util directory with declarations for many additional reserved
variables.

6.6. Utility Routines

This is a list of utility programs found in the util directory.

nmfe74
The nmfe shell script has many new options, including options for parallel comput-
ing.

finedata
Augments an NM-TRAN data file to incorporate additional, non-observation, time
values spaced at regular increments.

nmtemplate
Performs variable substitutionon appropriately tagged control stream template
files, and produces new control stream files. Compare with the $ABBR REPLACE
feature, above.

table_quant
Transforms results in raw output file of $COV SIRAMPLE step, places into a table
file with frequencies and cumulative values

table_resample
Resamples from raw output file of $COV SIRAMPLE step, using the WEIGHT
information

table_compare
Compares the numerical values between two table files produced by the$TA-
BLE record.

table_to_xml
Converts additional output table files produced by NONMEM to XML Formatted
files.

xml_compare
Compares the contents of two NONMEM report XML files.

doexpand
Expand an NM-TRAN control stream file that has been annotated with DOE
(which stands for DO expand) and ENDDOE (which stands for ENDDO expand)
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directives.

ddexpand
Expands a control stream file by adding equations for time-delay differntial equa-
tion problems.

neff Performs effective sample statistics on population parameters in raw output file
genereated by Bayesian or NUTS analysis

neffi Performs effective sample statistics from individual parameters genereated by
Bayesian or NUTS analysis

6.7. All Options for $ESTIMATION

This section lists all options of the $ESTIMATION record.Some are discussed earlier in
this guide and are listed here for completion.Some options are only appropriate with
specific estimation methods.For more information, see the $ESTIMATION help item.

-2LL (nmv)
Y evaluated in $ERROR or $PRED is intepreted as -2 times log likelihood

AT OL (nm72)
Absolute tolerance adjustment for ADVAN9 and ADVAN13

AUTO (nm73)
Have NONMEM determine optimal settings for certain EM/Bayes options

CALPHA (nm7)
alpha error rate for Monte Carlo EM and Bayes convergence

CENTERING (nmv)
Impose centering of average empirical Bayes estimates (EBEs) about zero (FOCE).

CINTERVAL (nm7)
Correlation iteration interval for Monte Carlo EM and Bayes convergence

CITER/CNSAMP (nm7)
Number of iteration samples to use for Monte Carlo EM and Bayes convergence

CONDITIONAL (nmiv)
Assess objective function around each subject’s (conditional) etas during Estima-
tion (FOCE/Laplace)

CONSTRAIN (nm72)
Impose algorithmic constraints on thetas through CONSTRAINT subroutine
(EM/BAYES)

CTYPE (nm7)
Select convergence criterion

DERCONT (nm73)
Correct for derivative continuity in change of objective function with theta
(SAEM/IMP)

DF (nm71)
degrees of freedom of t-distribution of sampling density for IMP and IMPMAP

DFS (nm73)
degrees of freedom for simulating initial SIGMAS (CHAIN only)

EONLY (nm71)
Expectation step only, no advancement of thetas or sigmas for EM methods.With
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nm74, also affects individual conditional means/modes and conditional variances,
and approximate variances.

ETABARCHECK (nmvi)
p-value of ETABAR (mean EBEs) tests similarity to ETABAR of a previous prob-
lem

ETADER (nm73)
Select alternative finite difference methods for eta derivatives

ETASAMPLES (nm74)
Generates posterior density samples of etas

ETASTYPE (nm73)
Determine whether non-influential etas should be included in ETABAR/Shrinkage
statistics

FAST (nm74)
Uses analatical derivatives of thetas and sigmas to speed up FOCE analyses

FILE (nm71)
specify alternative name for raw ouptut file containing fixed effects parameters
progress

FNLETA (nm72)
Determine how final etas are obtained for table outputs

FORMAT/DELIM (nm71)
specify alternative numerical format for output files.

FPARAFILE (nm74)
Turn ON or OFF parallelization of final etas evaluation.

GRD (nm71)
Specify gradient behavior of THETAS and SIGMAS for EM/BAYES methods

GRDQ (nm74)
Gradient quick option, specifying what number of fraction of importance samples
generate should be used for gradient evaluation of non-mu modeled parameters

GRID (nmvi)
Set up search grid pattern for Stieltjes method

HYBRID (nmv)
Use conditional etas except for those etas listed in ZERO option (hybrid of FOCE
and FO)

IACCEPT (nm71)
Acceptance/rejection ratio or proposal density coverage for EM/BAYES

IACCEPTL (nm74)
Scale a second multi-variate normal density, to cover long tails in the posterior den-
sity.

INTERACTION (nmiv)
Assess residual variance (epsilon terms) using conditional (non-zero) etas.

ISAMPEND (nm73)
Maximum value for ISAMPLE

ISAMPLE (nm71)
Number of Monte Carlo ETA samples to collect for each subject
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ISAMPLE_M1 (nm71)
Number of ETA samplings to test in the OMEGA space (SAEM/BAYES)

ISAMPLE_M1A (nm72)
Number of ETA samplings to test using ETA samples of other subjects
(SAEM/BAYES)

ISAMPLE_M2 (nm71)
Number of multi-variate ETA vector samplings to test in the local space
(SAEM/BAYES)

ISAMPLE_M3 (nm71)
Number of uni-variate ETA samplings to test in the local space (SAEM/BAYES)

ISCALE_MAX (nm72)
Maximum factor to expand prospoal density for ETA sampling
(SAEM/BAYES/IMP/IMPMAP)

ISCALE_MIN (nm72)
Minimum factor to scale prospoal density for ETA sampling
(SAEM/BAYES/IMP/IMPMAP)

KAPPA (nm74)
Specify power term to be used in average acumulating samples for mass matrix
production for NUTS analysis

KNUTHSUMOFF (nm74)
Turn off precision retaining KnuthSUm algorithm when summing individual OFVs
to produce total OFV.

LAPLACE (nmiv)
2nd Order conditional estimation method

LEVWT (nm74)
Specify how to weigh subjects in nested random levels ($LEVEL) problem

LIKE (nmv)
Y evaluated in $ERROR or $PRED is interpreted as likelihood

LNTWOPI (nm74)
Add the N*log(2pi) term to the objective function

MADAPT (nm74)
Specify how the mass matrix is updated during a NUTS analysis

MAPCOV (nm74)
MAPCOV=1 is the default.

MAPINTER (nm72)
Iteration interval at which to use MAP estimates for proposal density (IMP)

MAPITER (nm72)
Number of first set of iterations at which to use MAP estimates for proposal density
(IMP)

MASSRESET (nm74)
Initialize mass matrix accumulation, or borrow from previous estimation.

MAXEVAL (nmiv)
Maximum number of function evaluations (FO/FOCE/FOCEI/Laplace)

MCETA (nm73)
Number of Monte Carlo samples to assess best starting eta vector for MAP
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estimation

METHOD (nmiv)
Specify method of estimation

MSFO (nmiv)
File name for containing estimation information to use in subsequent analyses

MUM (nm71)
Turn on or off MU-referencing for EM/BAYES analysis

NBURN (nm71)
Number of burn-in iterations for SAEM/BAYES methods

NITER/NSAMPLE (nm71)
Number of iterations for EM/BAYES methods

NOABORT (nmiv)
Have NONMEM Recover from numerical errors during estimation

NOCOV (nm73)
Do not evaluate covaruiance step for particular estimation step

NOHABORT (nm73)
Have NONMEM recover from all numerical errors during estimation (stronger than
NOABORT)

NOLABEL (nm71)
Do not print column names in additional output files

NOOMEGABOUNDTEST (nmvi)
Do not limit how much OMEGA elements may change in an estimation
(FO/FOCE/Laplace)

NOSIGMABOUNDTEST (nmvi)
Do not limit how much SIGMA elements may change in an estimation
(FO/FOCE/Laplace)

NOTHETABOUNDTEST (nmvi)
Do not limit how much THETA parameters change in an estimation
(FO/FOCE/Laplace)

NOSUB (nm74)
Turn off substitution of variable labels in Table headers.

NOTITLE (nm71)
Do not print title (header) in additional output files

NONINFETA (nm73)
Determine how NONMEM treats etas that do not influence the subject’s data likeli-
hood

NOPRIOR (nm71)
Turn on or off the contribution of the prior information

NSIG (nmiv)
number of signficant digits for convergence criterion (classical methods, ITS)

NUMDER (nm73)
Output numerical and/or analytical ETA derivatives

NUMERICAL (nmv)
Use finite difference method for 2nd derivative ETAS in MAP estimation (Laplace,
ITS, MAP, IMPMAP)
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NUTS_BASE (nm74)
Specify number of iterations for stage II of warmup process of NUTS analysis

NUTS_DELTA (nm74)
Sample acceptance rate for NUTS analysis

NUTS_EPARAM (nm74)
Specify parameterization for individual parameters/etas in NUTS analysis

NUTS_GAMMA (nm74)
Gamma factor for NUTS algorithm

NUTS_INIT (nm74)
Specify number of iterations for stage I of warmup process of NUTS analysis

NUTS_MASS (nm74)
Specify whether mass matrix should be full, diagonal, block-diagonal, etc.

NUTS_MAXDEPTH (nm74)
Sets the maximum number of total branchings to try in the NUTS algorithm in the
search for the next decorrelated sample

NUTS_OPARAM (nm74)
Specify parameterization for Omegas in NUTS analysis

NUTS_REG (nm74)
Specify diagonal dominance algorithm for mass matrix in NUTS analysis.

NUTS_SPARAM (nm74)
Specify parameterization for Sigmas in NUTS analysis

NUTS_STEPINTER (nm74)
An initial step size is calculated every NUTS_STEPINTER iterations.

NUTS_STEPITER (nm74)
An initial step size is calculated for the first NUTS_STEPITER iterations.

NUTS_TERM (nm74)
Specify number of iterations for stage III of warmup process of NUTS analysis

NUTS_TEST (nm74)
Specify acceptance/rejection algorithm in NUTS algorithm

NUTS_TRANSFORM (nm74)
Specify whether estimation parameters or momentum parameters are to be trans-
formed in NUTS algorithm.

OACCEPT (nm7)
Select acceptance/rejection ratio for Metroplis-Hastings algorithm of finding
OMEGAS (BAYES)

OLKJDF (nm74)
Set degrees of freedom for LKJ correlation for Omegas

OLNTWOPI (nm74)
Include log(2pi) degrees of freedom from eta density portion of objective function

OMEGABOUNDTEST (nm74)
Limit how much OMEGA elements may change in an estimation
(FO/FOCE/Laplace)

OMITTED (nmiv)
Omit estimation
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OPTMAP (nm73)
Select optimization method for MAP estimation

ORDER (nm72)
Select ordering of fixed effects parameters in raw output file

OSAMPLE_M1 (nm71)
Number of samples for Metroplis-Hastings global search of finding OMEGAS
(BAYES)

OSAMPLE_M2 (nm71)
Number of samples for Metroplis-Hastings local search of finding OMEGAS
(BAYES)

OVARF (nm74)
The weight to STD prior to the log sqrt OMEGA diagonal elements

PA CCEPT (nm71)
Select acceptance/rejection ratio for Metroplis-Hastings algorithm of finding
THETAS/SIGMAS (BAYES)

PARAFILE (nm72)
Specify new parallization file for estimation, or turn ON/OFF parallelization

PARAFPRINT (nm74)
Print iteration interval for parallelization log file

PHITYPE (nm74)
have .phi file contain conditional neans phis or etas

POSTHOC (nmiv)
Assess EBEs for each subject after FO estimation

PREDICTION (nmv)
Determines how Y or F is interpreted with simulation

PRINT (nmiv)
Iteration print interval

PSAMPLE_M1 (nm71)
Number of samples for Metroplis-Hastings (MH) global search of finding
THETAS/SIGMAS (BAYES)

PSAMPLE_M2 (nm71)
Number of samples for MH local multi-variate search of finding THETAS/SIG-
MAS (BAYES)

PSAMPLE_M3 (nm71)
Number of samples for MH local uni-variate search of finding THETAS/SIGMAS
(BAYES)

PSCALE_MIN (nm73)
Minimum factor to expand prospoal density for MH sampling of THETAS/SIG-
MAS(BAYES)

PSCALE_MAX (nm73)
Maximum factor to scale prospoal density for MH sampling of THETAS/SIG-
MAS(BAYES)

RANMETHOD (nm72)
Select random number generator and behavior for Monte Carlo EM and BAYES
methods
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REPEAT (nmiv)
repeat estimation starting at final parameters from first loop (FO/FOCE/Laplace)

REPEAT1 (nmvi)
repeat first stage of Stieltjes estimation

REPEAT2 (nmvi)
repeat second stage of Stieltjes estimation

SADDLE_HESS (nm74)
Selects type of Hessian to be used for Saddle reset process

SADDLE_RESET (nm74)
Set the number of times a saddle_reset is performed

SEED (nm7)
Select starting seed for Monte Carlo EM and Bayes methods

SIGL (nm7)
Significant digits of individual objective function assessment

SIGLO (nm72)
Significant digits to assess ETAS in MAP estimation

SLOW (nmvi)
Use slow method of advancing fixed effects parameters

SIGMABOUNDTEST (nmvi)
Limit how much SIGMA elements may change in an estimation
(FO/FOCE/Laplace)

SLKJDF (nm74)
Set degrees of freedom for LKJ correlation for Sigmas

SORT (nmvi)
Sort individual objective function values before summing into total objective func-
tion

STDOBJ (nm73)
Stochastic standard deviation tolerance of objective function to determine best
ISAMPLE for IMP/IMPMAP

STIELTJES (nmvi)
Higher order assessment of objective function

SVARF (nm74)
The weight to STD prior to the log sqrt Sigma diagonal elements

THETABOUNDTEST (nmvi)
Limit how much THETA parameters change in an estimation (FO/FOCE/Laplace)

THIN (nm74)
Sample intervals to be recorded in the raw output file for Bayesian analysis

TTDF (nm74)
Set t-distribution degrees of freedom for priors to Thetas

ZERO (nmv)
List of etas for which conditional etas are not to be used in HYBRID method

References: Introduction to NONMEM 7
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6.8. All Options for $COVARIANCE

This section lists all options of the $COVARIANCE record. Some are discussed earlier
in this guide and are listed here for completion.For more information, see the
$COVARIANCE help item.

AT OL (nm73)
Asolute tolerance for differential equation problems

CHOLROFF (nm74)
Have R matrix evaluated according to earlier versions of NONMEM.

COMPRESS (nmv)
Covariance Step arrays are printed in compressed format regardless of dimension
size of covariance of estimates

CONDITIONAL (nmiv)
Evaluate covaraince step only if estimation successful

FAST (nm74)
Uses analatical derivatives of thetas and sigmas to speed up covariance step

FILE (nm74)
Select file name of raw output file for SIR sampling

FORMAT (nm74)
Select format of numbers to be written to raw output file during SIR sampling

FPOSDEF (nm74)
Force positive definiteness on R matrix after Preconditioning

IACCEPT (nm74)
Acceptance rate (sampler expansion) during SIR importance sampling

IACCEPTL (nm74)
Acceptance rate of the secondary sampler during SIR Importance sampling

KNUTHSUMOFF (nm74)
Turn off precision retaining KnuthSUm algorithm when summing individual OFVs
to produce total OFV.

MATRIX (nmiv)
Select type of Information matrix to be evalauted during Covariance step

NOFCOV (nm72)
Turn off covariance estimation for FOCE method

NOSLOW (nm72)
Use analytical derivatives of Omegas to evaluate gradients during covariance step

PARAFPRINT (nm74)
Print iteration interval for parallelization log file during covariance step

PFCOND (nm74)
Force predonditioning even if Rmatrix is positive definite during covariance step

PRECOND (nm74)
Set number of preconditioning cycles to perform during covaraince step

PRECONDS (nm74)
Select whether preconditioning should be done on Thetas, Omegas, and/or Sigmas
of R matrix portion in covariance step
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PRETYPE (nm74)
Select the R matrix corrector type when preconditioning during the variance-
covariance step.

PRINT (nmiv)
Select to Print out additional matrices and items (E=eigenvalues, R=R matrix, S=S
matrix)

RANMETHOD (nm74)
Select randomozation method for SIR sampling

RESUME (nm73)
Collect intermediate information to resume covariance step if interrupted

SIGL (nm71)
Significant digits of individual objective function assessment during covariance
step

SIGLO (nm72)
Significant digits to assess ETAS in MAP estimation during covariance step

SIRCENTER (nm74)
Where the sampling (proposal) density is to be centered during SIR sampling

SIRDF (nm74)
Degrees of freedom of t-distribution sampler used during SIR sampling

SIRNITER (nm74)
The number of times to perform SIR sampling

SIRPRINT (nm74)
Set the console print iterations interval during SIR sampling of covariance step

SIRSAMPLE (nm74)
Number of random samples to generate during SIR sampling of covariance step.

SIRTHBND (nm74)
Determines whether R and S matrix are evaluated in uncosntrained or constrained
domain for thetas during SIR sampling

SLOW (nmvi)
Have Omega gradients evaluated numerically

SPECIAL (nmiv)
The special computation will be used in the Covariance Step with a recursive
PRED subroutine.

THBND (nm74)
Determines whether R and S matrix are evaluated in uncosntrained or constrained
domain for thetas during main covariance step

TOL (nm72)
Selects relative tolerance for differential equation integration during covariance
step

UNCONDITIONAL (nmiv)
Evaluate covaraince step whether or not estimation successful

References: Introduction to NONMEM 7
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1. What This Chapter is About

This chapter describes error messages that can appear in NONMEM’s output and dis-
cusses some possible causes and remedies. It is not encyclopedic; only selected messages
are discussed. NM-TRAN messages are meant to be self-explanatory, as are many
PREDPP messages, and important NONMEM messages are documented in NONMEM
Users Guide, Part I, Chapter G.Unlike certain other regression programs, NONMEM-
PREDPP will not try to mask what is perceived as a real problem and to which attention
must be given by the user before the computation can proceed; an error message results
and often, the program terminates.

The Estimation and Covariance Steps do not always terminate successfully. This is a nor-
mal part of the process of model building.

2. Abnormal Termination of the Estimation Step

Normal termination of the Estimation Step is indicated by the message:

MINIMIZATION SUCCESSFUL

Even when this message is seen, it is possible that the Estimation Step has not run cor-
rectly. Final estimates should be different from initial estimates. If the initial and final
estimates are the same and the gradients for a parameter are zero at every iteration†, this
is a sign of a modelling error. The parameter does not affect any predictions, as discussed
in Chapter 7, Section 4.2.If there were bounds, estimates should be well away from the
bounds. Afinal estimate which is close to a bound is discussed in Chapter 11, Section
4.3.

Abnormal termination of the Estimation Step is indicated by a message whose first line
is:

MINIMIZATION TERMINATED

One of several messages will follow, indicating the type of failure. Themessages are
listed in Users Guide I.

Tw o of the most common are discussed here separately.

2.1. "DUE TO MAX. NO. OF FUNCTION EVALU ATIONS EXCEEDED"

If after any iteration the total number of evaluations of the objective function (Chapter 10,
figure 10.5, line 33) is equal to or greater than the maximum allowed (Chapter 10, figure
10.2, line 51), the minimization search is halted with this message. If the $ESTIMA-
TION record requested that a Model Specification File be written, it is possible to con-
tinue the search from this point in a subsequent NONMEM run. In Chapter 12, Section
4.3, a strategy is discussed by which the number of function evaluations is deliberately set
to a low value in order to structure a lengthy run as a series of shorter runs.

Whenever this message is obtained, it is important to examine the intermediate output and
evaluate the progress made so far. A poorly-specified model, for example, may cause
very slow convergence of the minimization search. Raising the maximum number of
function evaluations (using the MAXEVAL option of the $ESTIMATION record) may
not be advisable.

† A gradient may reach zero at or near the final iteration; this is not an error. Note also that no gradient is com-
puted or printed for a parameter whose value is fixed, so if a gradient is always zero, it is not for this reason.
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2.2. "DUE TO ROUNDING ERRORS (ERROR=134)"

This message will be accompanied in the intermediate output by a message beginning:
NUMSIGDIG: .... which gives the approximate number of significant digits obtained in each
of the parameters being estimated. At least one such number will be less than the number
requested.

The number of significant digits obtained should be examined. Ifit is at least 2, and the
gradient vector appears stable throughout the last few iterations, a satisfactory minimum
may well have been obtained.(It may be desirable to re-run the problem with the print
interval for iteration summarization set to 1 (PRINT=1 in the $ESTIMATION record) so
that the progress made at every iteration can be examined.) Thefinal parameter estimates
should be examined, and if they appear reasonable, they might be accepted. Although the
user may have requested more than 2 significant digits, the data may only support about 2
digits, given the precision of the arithmetic being used.By examining the gradients care-
fully, it is often possible to obtain further information about which parameter estimates
are less-well determined.

Even though the final parameter estimates may be adequate, it is unlikely that the mini-
mum is sufficiently well-determined to allow the Covariance Step to run successfully, at
least with the number of significant figures requested in the Estimation Step.The Estima-
tion Step may need to be rerun, requesting only 2 significant figures, followed by the
Covariance Step.

If the number of significant digits is less than 2 (or even neg ative), then the final estimates
should not be trusted. The problem may be model misspecification or insufficient data.

Model misspecification is a very general problem involving some mismatch between the
model and the data. This can result in particularly large values of the objective function
or slow convergence of the minimization search. Sometimes the model is overparameter-
ized. Thismeans that the model has more parameters than can be well-enough estimated
from the data (e.g., a biexponential model is fit to monoexponential data). When model
misspecification occurs due to over-parameterization, then the Estimation Step will usu-
ally proceed smoothly, but terminate with fewer than 2 significant digits. It is best to start
with simple models (see Chapter 11).

A related problem arises when a covariance element, e.g.,Ω12 (or Σ12), is being esti-
mated. If the ID (or L2 data item) is not used correctly, it may appear as though the
covariance does not affect objective function values, and then this parameter will not be
well estimated. In other words, it may appear as though the model is overparameterized
due to the inclusion of this parameter. See Chapter 12, Section 4.2.

3. Abnormal Termination of the Covariance Step

It is possible for the Estimation Step to terminate successfully, and yet the Covariance
Step generates an error message. Error messages from the Covariance Step are printed
immediately after line 46 of Figure 10.5. The messages are listed in Users Guide I.

When a message arises, often it is:

R MATRIX ALGORITHMICALLY NON-POSITIVE-SEMIDEFINITE

BUT NONSINGULAR

COVARIANCE STEP ABORTED

In order for the minimization routine to terminate successfully, it needs to determine that
the final gradient vector is sufficiently small, which is a necessary condition for a mini-
mum to have been achieved. This condition, however, is not sufficient. A sufficient
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condition, that the R matrix be positive definite (and therefore, that the apparent mini-
mum not be a saddle point) is only checked in the Covariance Step. The message means
that the sufficient condition appears not to be satisfied. The final estimate is, therefore, in
doubt.

Sometimes the message is:

R MATRIX ALGORITHMICALLY SINGULAR

COVARIANCE STEP UNOBTAINABLE

S MATRIX ALGORITHMICALLY SINGULAR

This arises when there exists a parameter whose values do not actually affect the predic-
tions and whose gradient in the intermediate output is always 0.

In general, successful completion of the Covariance Step requires a better defined mini-
mum than does the successful completion of the Estimation Step.

4. MiscellaneousProblems

This section discusses a few simple errors which prevent NONMEM-PREDPP from run-
ning successfully.

4.1. Proportional Error Model

A common error is to use the proportional error model while some predicted values for
actual observations are zero or close to zero.(For example, if the first dose is an infusion
and there is a "baseline" observation at the start of the infusion, the predicted level will be
zero.)

With individual data this will lead to an error message similar to the following (the indi-
vidual number may be different from 1):

PROGRAM TERMINATED BY OBJ, ERROR IN ELS

WITH INDIVIDU AL 1 (IN INDIVIDUAL RECORD ORDERING)

VAR-COV OF DAT A FROM INDIVIDUAL RECORD ESTIMATED TO BE SINGULAR

With population data this will lead to an error message similar to the following (the indi-
vidual and record numbers may be different than 1):

PROGRAM TERMINATED BY OBJ, ERROR IN CELS

WITH INDIVIDU AL 1 (IN INDIVIDUAL RECORD ORDERING)

INTRAINDIVIDUAL VARIANCE OF D AT A FROM OBS RECORD1 ESTIMATED TO BE 0

4.2. Errors in the Pharmacokinetic Model

When using a new model, a run should done in which the Estimation Step is not run, and
a scatterplot of PRED vs DV with unit slope line is produced, to verify that the model
and the initial parameter estimates are reasonable.It is much harder to diagnose errors in
the model or the initial estimates after the Estimation Step fails. Make sure that the initial
value of the objective function is not excessively large, and that the unit slope line shows
on the plot: scaling errors can easily go undetected! E.g., if the units are incorrect at
some point in the model (L vs ml), the predictions may be wrong by a factor of 1000.
Similarly, if no scale was specified for the compartment being observed, the predictions
for the observations are compartment amounts rather than concentrations. In both cases,
the shape of the PRED vs DV plot may appear linear, but the axes may be labeled quite
differently. When observations from two different compartments are present in the data
(e.g.,Cp andCu), some of the observations may be scaled incorrectly. This is discussed
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in Chapter 6, Section 9, and Chapter 7, Section 4.3.3.

5. Errors with PREDPP

5.1. Error Messages from a TRANS Routine

TRANS routines can produce error messages. Here is one from TRANS2:
ERROR IN TRANS2 ROUTINE: V IS ZERO

Appendix 2 shows that TRANS2 normally computesK=CL/V. The routine checks that
V is not zero, and upon finding that it is, it prints the informative message, and terminates
the run (thus avoiding a machine "division by zero" interrupt by the operating system).
This error usually occurs with the initial parameter estimates.E.g., suppose the relevant
$PK statement is:
V=THETA(1)+WT*THETA(2)

For some values ofθ1, θ2, and WT, a value of zero is being computed for V. The initial
estimates ofθ1 andθ2 should be checked. Theinterceptθ1 might have been fixed to zero,
in which case then, the values of WT should also be checked. If WT is recorded only on
the first event record of each individual’s data, careful coding is required to insure that a
value of zero is not used when the $PK record is evaluated with subsequent event records.

5.2. Error Messages from ADVAN Routines

A similar error message can be generated in PREDPP, e.g.
PK PARAMETER FOR OBSERVA TION COMPARTMENT’S SCALE IS ZERO

Some scale parameter is modeled in such a way as to produce a zero.Again, the code for
that scale parameter, and the initial estimates for theθ ’s used therein, should be checked.
Perhaps the scale parameter is being set equal to a volume parameter, and as described
above, the volume parameter is being set to zero.When TRANS1 is used, the volume
parameter is neither recognized nor checked.

5.3. Numericdifficulties in PREDPP

Numeric difficulties can occur with linear pharmacokinetic models (e.g., ADVAN1-4) in
the process of computing certain exponentials. They can occur from an error in the units
of either a rate constant and/or the TIME data items.They can also occur from inordi-
nately large values for a rate constant which arise during the minimization search.This
might be avoided by placing appropriate constraints onθ ’s.

They can also occur when the system is advanced over an excessively long period of
time. Thiscan happen within an individual record, when the individual had a course of
drug treatment, followed by a wash-out period, followed by another course of drug treat-
ment. Thefirst dose record of treatment courses other than the first should have EVID
data item equal to 4 (reset-dose) rather than 1 (dose), to avoid computing excessively
small compartment amounts (see Chapter 6, Section 7.3), and to reduce computational
cost.

Difficulties can occur in the process of computing predictions with ADVAN2 and
ADVAN4 when values of KA and K arise during the minimization search that are very
close to one another. The models encoded into the ADVAN routines assume that KA and
K hav efairly distinct values, and the formulas for the predictions have the term KA-K in
the denominator. If, for example, the typical values of K and KA are associated withθ1

andθ2, respectively, then one might try reparameterizing. The typical values of K and
KA-K can be associated withθ1 andθ2, so that K̃ = θ1 andK̃A = K̃ + θ2. A lower bound
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of zero should be placed onθ2†.

A similar situation occurs with TRANS3, where VSS-V occurs in the denominator of the
expression for K21. As above, reparameterization and a constraint on an element ofθ
may help.

† This technique also prevents a "flip-flop" from occurring. (In the original parameterization, the final estimates
of θ1 andθ2 can be the final estimates of the typical values of KA and K, respectively).
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ADVAN Compartments Basicand additional PK parameters
ADVAN1 1= Central K Rate constant of elimination

2 = Output S1 Scale for central compartment
S2 Scalefor output compartment
F1 Bioavailability for central compartment
F0 OutputFraction

ADVAN2 1= Depot KA Absorption rate constant
2 = Central K Rate constant of elimination
3 = Output S1 Scale for depot compartment

S2 Scalefor central compartment
S3 Scalefor output compartment
F1 Bioavailability for depot compartment
F2 Bioavailability for central compartment
F0 OutputFraction

ADVAN3 1= Central K Rate constant of elimination
2 = Peripheral K12 Rate constant from central to peripheral
3 = Output K21 Rate constant from peripheral to central

S1 Scalefor central compartment
S2 Scalefor peripheral compartment
S3 Scalefor output compartment
F1 Bioavailability for central compartment
F2 Bioavailability for peripheral compartment
F0 OutputFraction

ADVAN4 1= Depot KA Absorption rate constant
2 = Central K Rate constant of elimination
3 = Peripheral K23 Rate constant from central to peripheral
4 = Output K32 Rate constant from peripheral to central

S1 Scalefor depot compartment
S2 Scalefor central compartment
S3 Scalefor peripheral compartment
S4 Scalefor output compartment
F1 Bioavailability for depot compartment
F2 Bioavailability for central compartment
F3 Bioavailability for peripheral compartment
F0 OutputFraction

ADVAN10 1= Central VM Maximum Rate
2 = Output KM Michaelis Constant

S1 Scalefor central compartment
S2 Scalefor output compartment
F1 Bioavailability for central compartment
F0 OutputFraction
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ADVAN Compartments Basicand additional PK parameters
ADVAN11 1= Central K Rate constant of elimination

2 = Peripheral 1 K12 Rateconstant from central to periph. 1
3 = Peripheral 2 K21 Rateconstant from periph. 1 to central
4 = Output K13 Rate constant from central to periph. 2

K31 Rateconstant from periph. 2 to central
S1 Scalefor central compartment
S2 Scalefor peripheral 1 compartment
S3 Scalefor peripheral 2 compartment
S4 Scalefor output compartment
F1 Bioavailability for central compartment
F2 Bioavailability for periph. 1 compartment
F3 Bioavailability for periph. 2 compartment
F0 OutputFraction

ADVAN12 1= Depot KA Absorption rate constant
2 = Central K Rate constant of elimination
3 = Peripheral 1 K23 Rateconstant from central to periph. 1
4 = Peripheral 2 K32 Rateconstant from periph. 1 to central
5 = Output K24 Rate constant from central to periph. 2

K42 Rateconstant from periph. 2 to central
S1 Scalefor depot compartment
S2 Scalefor central compartment
S3 Scalefor peripheral 1 compartment
S4 Scalefor peripheral 2 compartment
S5 Scalefor output compartment
F1 Bioavailability for depot compartment
F2 Bioavailability for central compartment
F3 Bioavailability for periph. 1 compartment
F4 Bioavailability for periph. 2 compartment
F0 OutputFraction
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Alternative Parameters ReparameterizationLines

ADVAN1 TRANS2
CL Clearance K=CL/V

V Volume of distribution

ADVAN2 TRANS2
CL Clearance K=CL/V

V Volume of distribution KA=KA

KA Absorption rate

ADVAN3 TRANS3
CL Clearance K=CL/V

V Central Volume K12=Q/V

Q Intercompartmental clearance K21=Q/(VSS-V)

VSS Volume of distribution at steady state

ADVAN3 TRANS4
CL Clearance K=CL/V1

V1 Central volume K12=Q/V1

Q Intercompartmental clearance K21=Q/V2

V2 Peripheral volume

ADVAN3 TRANS5
AOB A/B K21=(AOB*BETA+ALPHA)/(AOB+1)

ALPHA alpha K=ALPHA*BETA/K21

BETA beta K12=ALPHA+BETA-K21-K

ADVAN3 TRANS6
ALPHA alpha K=ALPHA*BETA/K21

BETA beta K12=ALPHA+BETA-K21-K

K21 Rate constant from periph. to central K21=K21

ADVAN4 TRANS3
CL Clearance K=CL/V

V Central Volume K23=Q/V

Q Intercompartmental clearance K32=Q/(VSS-V)

VSS Volume of distribution at steady state KA=KA

KA Absorption rate

ADVAN4 TRANS4
CL Clearance K=CL/V2

V2 Central volume K23=Q/V2

Q Intercompartmental clearance K32=Q/V3

V3 Peripheral volume KA=KA

KA Absorption rate
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ADVAN4 TRANS5
AOB A/B K32=(AOB*BETA+ALPHA)/(AOB+1)

ALPHA alpha K=ALPHA*BETA/K32

BETA beta K23=ALPHA+BETA-K32-K

KA Absorption rate KA=KA

ADVAN4 TRANS6
ALPHA alpha K=ALPHA*BETA/K32

BETA beta K23=ALPHA+BETA-K32-K

K32 Rate constant from periph. to central K32=K32

KA Absorption rate KA=KA

ADVAN11 TRANS4
CL Clearance K=CL/V1

V1 Central volume K12=Q2/V1

Q2 Intercompartmental clearance 1 K21=Q2/V2

V2 Peripheral volume 1 K13=Q3/V1

Q3 Intercompartmental clearance 2 K31=Q3/V3

V3 Peripheral volume 2 V3=V3

ADVAN11 TRANS6
ALPHA alpha K=ALPHA*BETA*GAMMA/(K21*K31)

BETA beta V1=ALPHA+BETA+GAMMA

GAMMA gamma V2=ALPHA*BETA+ALPHA*GAMMA

K21 Rate constant from periph. 1 to central +BETA*GAMMA

K31 Rate constant from periph. 2 to central K13=(V2+K31*K31-K31*V1-K*K21)/(K21-K31)

K12=V1-K-K13-K21-K31

ADVAN12 TRANS4
CL Clearance K=CL/V2

V2 Central volume K23=Q3/V2

Q3 Intercompartmental clearance 1 K32=Q3/V3

V3 Peripheral volume 1 K24=Q4/V2

Q4 Intercompartmental clearance 2 K42=Q4/V4

V4 Peripheral volume 2 V4=V4

KA Absorption rate KA=KA

ADVAN12 TRANS6
ALPHA alpha K=ALPHA*BETA*GAMMA/(K32*K42)

BETA beta V2=ALPHA+BETA+GAMMA

GAMMA gamma V3=ALPHA*BETA+ALPHA*GAMMA

K32 Rate constant from periph. 1 to central +BETA*GAMMA

K42 Rate constant from periph. 2 to central K24=(V3+K42*K42-K42*V2-K*K32)/(K32-K42)

K23=V2-K-K24-K32-K42

KA Absorption rate KA=KA
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The following is an alphabetic list of NM-TRAN control records.

See Guide VIII, On-line Help, or On-line HTML for the options and for more information.See Appendix 4

for the corresponding NONMEM control records (FCON).

$ABBREVIATED

$AES

$AESINIT

$ANNEAL

$BIND

$CHAIN

$CONTR

$COVARIANCE

$DATA

$DEFAULTS

$DES

$ERROR

$ESTIMATION

$ETAS

$INDEX

$INFN

$INPUT

$LEVEL

$MIX

$MODEL

$MSFI

$NONPARAMETRIC

$OMEGA

$OMEGAP

$OMEGAPD

$OMIT

$PHIS

$PK

$PRED

$PRIOR

$PROBLEM

$SCATTER

$SIGMA

$SIGMAP

$SIGMAPD

$SIMULATION

$SIZES

$SUBROUTINES

$SUPER

$TABLE

$THETA

$THETAI

$THETAP
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$THETAPV

$THETAR

$TOL

$WARNING
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The following is a list of NONMEM control records and options. These are generated by NM-TRAN in a file

called FCON. They are listed in the order that they appear in FCON.

Records marked with * may be continued. The record name, e.g., "INDX", is not repeated on continua-

tion(s). Any time a field may contain 0, it may contain blanks instead, which are read as 0.Constants SD,

PD, LVR are from SIZES. Constants INF, INTBIG, INTSMALL indicate the largest floating point number,

the largest integer value, and smallest integer value, respectively, that can be represented in the computer’s

architecture. (Insome cases, e.g., BOOTSTRAP option of SIMULATION, it means an integer of up to 11

digits).

FILE record (FILE) (A4,4X,A72)

Field No. Value Function

1 NULL no file stream

72 chars name of file stream

SUPER record (SUPR) (A4,4X,I4,I8,I4)

Field No. Value Function

1 1-9999 Numberof problems in the superproblem

2 2-9999 Numberof iterations of the superproblem.

3 0 Input information will be printed for first problem only

1 Input information will be printed for all problems

PROBLEM record (PROB) (A4,4X,A72)

Field No. Value Function

1 72 chars problemheading

DATA record (DATA) (A4,4X,18I4)

Field No. Value Function

1 0or blank data set is embedded in the control stream

1 data set is in a separate file

-1 re-usethe data set from the previous problem.

2 0or blank FORTRAN unit not to be rewound

1 FORTRAN unit to be rewound

3 0 data set to be read to FINISH record or end of file

1-9999 no.of data records (low-order digits)

4 1-PD no.of data items per data record

5 0 not data checkout

1 data checkout only

6 0-9999 no.of data records (high-order digits)

The no. of data records is Field 6 * 10000 + Field 3.

When Field 6 is 0 or blank, this is simply Field 3

7 0 Simulation NOREWIND from$SIMULATION record

1 Simulation REWIND from$SIMULATION record

8 0 NOSUPRESET

1 SUPRESET (default)
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ITEM record (ITEM) (A4,4X,18I4)

Field No. Value Function

1 0-PD index of ID data item

2 1-PD index of DV data item

3 0-PD index of MDV data item

4 0-PD no.of data item indices in INDXS

5 0 no user-supplied labels.

1 user-supplied labels.

6 0 standard labels PRED,RES and WRES used.

1 nonstandard labels used.

7 0-PD index of L2 data item

8 0-PD index of first data item specified in CONTR record

9 0-PD index of second data item specified in CONTR record

10 0-PD index of third data item specified in CONTR record

11 0-50 no. of user-supplied labels for tables, scatters

12 0-PD index of MRG_ data item

13 0-PD index of RAW_ data item

14 0-PD no. of items on OMIT record

15 0-PD index of RPT_ data item

INDEX record (INDX)* (A4,4X,18I4)

Field No. Value Function

1 1-PD 1stelement of INDXS

2 1-PD 2ndelement of INDXS

etc.

XVID record (XVID) (A4,4X,18I4)

Field No. Value Function

1 0-PD XVID1

2 0-PD XVID2

3 0-PD XVID3

4 0-PD XVID4

5 0-PD XVID5

MSDT record (MSDT) (A4,4X,20(1PE22.14E3,1X)

Field No. Value Function

1 -INF-INF MISDAT(1)

2 -INF-INF MISDAT(2)

20 -INF-INF MISDAT(20)

LABEL record (LABL)* (A4,X2,A74)

The LABL record contains a comma-delimited list of labels, beginning at position 6, with an unlimited num-

ber of continuation records. Each label is right-adjusted in a field of SD characters. By default (i.e., with
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SD=20 in SIZES), there are 3 labels per line. The order is as follows:

Field No. Function

1: labelof 1st data item

2: labelof 2nd data item

etc.

m: labelof last data item

m+1: labelfor PRED (if ITEM(6)=1)

m+2: labelfor RES (if ITEM(6)=1)

m+3: labelfor WRES (if ITEM(6)=1)

m+p+1: labelfor 1st variable in NMPRD4†

m+p+2: labelfor 2nd variable in NMPRD4† , etc.

m+p+q: labelfor last displayed variable in NMPRD4

Note

m=no. of data items per data rec.=DAT A(4)

p=3 if non-standard labels for PRED, RES, WRES (ITEM(6)=1)

p=0 otherwise

q=no. of user supplied labels for tables, scatters=ITEM(11)

† Blank if this variable is not displayed

Additional LABEL record (LBW1)* (A4,X2,A74)

The LBW1 record contains a comma-delimited list of labels for the additional diagnostic items, starting at

position 6 in each line. The format is similar to that of the LABL record, but leading spaces are omitted.The

default labels are as follows:

IWRS,IPRD,IRS

NPRED,NRES,NWRES

NIWRES,NIPRED,NIRES

CPRED,CRES,CWRES

CIWRES,CIPRED,CIRES

PREDI,RESI,WRESI

IWRESI,IPREDI,IRESI

CPREDI,CRESI,CWRESI

CIWRESI,CIPREDI,CIRESI

EPRED,ERES,EWRES

EIWRES,EIPRED,EIRES

NPDE,ECWRES,NPD

OBJI

LABEL record for THETA (LTHT)* (A4,X4,A72)

LABEL record for ETA (LETA)* (A4,X4,A72)

LABEL record for EPS (LEPS)* (A4,X4,A72)

LABEL record for RESIDUAL LABEL (LRES) (A4,X1,A5)

Symbolic names for elements of THETA, ETA, and EPS (respectively), for NONMEM to use in the report
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file (label substitution). If label substitution is not requested, the LTHT, LETA, and LEPS records are

optional and (if present) should have blanks starting in position 9.

Example: Suppose the NM-TRAN control file contains

$ABBR REPLACE THETA(KA,K,CL)=THETA(1 TO 3)
$ABBR REPLACE ETA(CL)=ETA(3),ETA(V)=ETA(5)
Then the generated LABEL records are:

LTHT 1=THETA(KA),2=THETA(K),3=THETA(CL)

LETA 3=ETA(CL),5=ETA(V)

LEPS

OMIT record (OMIT)* (A4,4X,18I4)

Field No. Value Function

1 4chars no.of 1st data item omitted from template matching

2 4chars no.of 2nd data item omitted from template matching

etc.

FORMAT record (FORM) (A4,4X,A72/A80)

Field No. Value Function

1 80 chars formatspecification

(field begins on first continuation record)

FIND record (FIND) (A4,4X,18I4)

Field No. Value Function

1 0

2 0

3 0  No Model specification file (MSFI)

1 A Model specification file (MSFI) is to be read.

4 0  estimate on file not to be rescaled.

1 estimate on file to be rescaled.

5 0  No ONLYREAD option

1 ONLYREAD option

6 0  MSFTEST option (default)

1 NOMSFTEST option

7 0  MSFI not new (default)

1 MSFI new

MSF Version Record (MSFV) (A4,X4,A72)

Right after the FIND record for MSFI, if it exists, the MSFV (NM74) contains the MSF version, starting at

position 9. This will be blank if not specified explicitly. Example:

MSFV 7.2.0

INITIAL VALUES record for ETA (ETA)* (A4,I4,(comma-delimited list))
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INITIAL VALUES record for PHI (PHI)* (A4,I4,(comma-delimited list))

With FILE specified:

Line FieldNo. Value Function

1 1 0 indicates file name is given.

1 2  File name starting in position 9 (through 88 max)

With no FILE specified:

Line FieldNo. Value Function

1 1 1-LVR numberof initial values for etas or phis.

Listed starting at position 9 of each line.

Initial STRUCTURE record (STRC) (A4,4X,18I4)

Field No. Value Function

1 0-999 lengthof THETA

2 0-999 dimensionof OMEGA

3 0-999 dimensionof SIGMA

4 blank

5 blank

6 0or blank OMEGA constrained with a block set partition

1 OMEGA constrained to be diagonal

7 0or blank only if field 6 has value 1

1-999 numberof block sets for OMEGA

If the dimension of SIGMA is 0, the following fields may be ignored.

8 0or blank SIGMA constrained with a block set partition

1 SIGMA constrained to be diagonal

9 0or blank SIGMA only if field 8 has value 1

1-999 numberof block sets for SIGMA

10 blank

11 blank

12 0or blank default THETA boundary test

1 No default THETA boundary test

13 0or blank default OMEGA boundary test

1 No default OMEGA boundary test

14 0or blank default SIGMA boundary test

1 No default SIGMA boundary test

STRUCTURE record for OMEGA (STRC)* (A4,4X,18I4)

STRUCTURE record for SIGMA (STRC)* (A4,4X,18I4)

Field No. Value Function

1 1-999 sizeof 1st. block set
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2 1-999 dimensionof blocks in 1st. block set

3 1-999 sizeof 2nd. block set

4 1-999 dimensionof blocks in 2nd. block set

etc.

THETA CONSTRAINT record (THCN) (A4,4X,18I4)

Field No. Value Function

1 0or blank THETA unconstrained

1 THETA constrained

2 0or blank use default size of initial. est. search

1-9999 no.of points to be examined during initial est. search.

3 0or blank ABORT if PRED sets error return code to 1 during search

1 NOABORT - Ignore PRED error return code during search

2 NOABORTFIRST - Same, even with first values.

THETA record (THTA)* (A4,4X,(comma-delimited list))

Field No. Value Function

1 initial est. ofθ1

(blank if NONMEM is to obtain the inital est.)

2 initial est. ofθ2

(blank if NONMEM is to obtain the inital est.)

etc.

LOWER BOUND record (LOWR)* (A4,4X,(comma-delimited list))

Field No. Value Function

1 lower bound forθ1

2 lower bound forθ2

etc.

UPPER BOUND record (UPPR)* (A4,4X,(comma-delimited list))

Field No. Value Function

1 upper bound forθ1

2 upper bound forθ2

etc.

DIAGONAL record (DIAG)* (A4,1X,A1,1X,A1,(comma-delimited list))

for OMEGA or SIGMA

Field No. Value Function

Pos. 1 0 Diagonals Variance

1 Diagonals standard deviation (STANDARD)

Pos. 2 blank Notfixed.

1 Fixed.
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2 NONMEM is to obtain the inital estimate(s).

1 initial est. of (1,1) element of matrix

2 initial est. of (2,2) element of matrix

etc.

BLOCK SET record (BLST)* (A4,1X,A1,1X,A1,(comma-delimited list))

for OMEGA or SIGMA

Field No. Value Function

Pos. 1 blank DiagonalsVariance, Off-diagonals covariance

1 Diagonals standard deviation, Off-diagonals covariance (STANDARD)

2 Diagonals Variance, Off-diagonals correlation (CORRELATION)

3 Diagonals standard deviation, Off-diagonals correlation (STANDARD CORRELATION)

4 Cholesky format (CHOLESKY)

Pos. 2 blank Notfixed.

1 Fixed.

2 NONMEM is to obtain the inital estimate(s).

1 initial est. of (1,1) element of matrix

2 initial est. of (1,2) element of matrix

etc.

use symmetric enumeration

SIMLUATION record (SIML) (A4,4X,I2,I3,I2,I13,5I2,I13,I6,I6,1X,A16)

Field No. Value Function

1 0or blank Simulation Step implemented

1 Simulation Step not implemented

If the value is 1, the subsequent fields may be ignored.

2 1-10 no.of random sources (SORC records)

3 0 eta (eps) changes with each record

1 eta (eps) changes with new ind.rec. (L2 rec) (NEW)

4 0-9999 no.of subproblems

5 0 compute objective function and other steps

1 only the simulation step

6 0or blank no partial derivatives from PRED needed

1 PRED should compute 1st. derivatives (REQUESTFIRST)

2 PRED should compute 2nd. derivatives (REQUESTSECOND)

7 0or blank simulated observation isY or F (PREDICTION)

1 simulated observation is DV (NOPREDICTION)

8 0or blank Use inital ests. (TRUE=INITIAL)

1 with MSFI, use final ests. (TRUE=FINAL)

2 use values in THET_P, OMEG_P, SIGM_P set by the PRIOR routine (TRUE=PRIOR)

9 0 REPLACE

1 NOREPLACE

10 -1 BOOTSTRAP using as many subjects as are in the data set

0 No BOOTSTRAP (the default)

1-INTBIG BOOTSTRAP using the given number of subjects

11 0-PD STRAT data column number

12 0-PD STRATF data column number
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13 ALPHA RANMETHOD

ADDITIONAL RECORDS FOR SIML (A4,4X,I12,A)

Record Function

SFIL PARAFPRINT (0-INTBIG),PARAFILE (line may accomodate up to 80 character file for total of 88 characters)

SOURCE record (SORC) (A4,4X,2A12,I4)

Field No. Value Function

1 -1-21474836447 firstseed

2 0-21474836447 secondseed

3 0or blank random numbers are pseudo-normal (NORMAL)

1 random numbers are pseudo-uniform (UNIFORM)

2 random numbers are from a nonpar. distrib (NONPARAMETRIC)

DEFAULT record (DFLT) (A4,4X,I4)

Field No. Value Function

1 -1-1 NOSUBoption of DEFAULT record

CHAIN record (CHN)

Line Format FieldNo. Value Function

1 (A4,4I12,F12.5,I12) 1 0-4 CTYPE

2 INTSMALL-INTBIG SEED

3 INTSMALL-INTBIG ISAMPLE

4 0-INTBIG NSAMPLE

5 0.0001-1.0 IACCEPT

6 0-INTBIG DF

2 (4X,4I12,A12) 1 INTSMALL-INTBIG ISAMPEND

2 0-3 SELECT

3 0-3 NOTITLE(1,3),NOLABEL(2,3)

4 -1-INTBIG DFS

5 ALPHA RANMETHOD

ADDITIONAL RECORDS FOR CHAIN (A4,4X,A)

Record Function

CFIL FILE (line may accomodate up to 80 character file for total of 88 characters)

CDLM FORMAT

ORDR ORDER

CHFL PARAFPRINT (I12:0-INTBIG),PARAFILE (line may accomodate up to 80 character file for total of 88 characters)
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LEVEL record (OLEV)* (A4,X4,A20,A52)

Field No. Value Function

1 ALPHA Dataitem type

2 ALPHA level description

LEVEL rec. contination rec. (OLEV)* (A4,X4,X20,A52)

Field No. Value Function

1 blank

2 ALPHA level description (continues level description from previous record)

ANNEAL record (ANNL) (A4,X4,A6,A6)

Field No. Value Function

1 1-LVR EtaNumber

2 0-INF StartingOmega value

ESTIMATION record (ESTM) (A4,4X,18I4)

Field No. Value Function

1 0or blank Estimation Step implemented

1 Estimation Step not implemented

If the value is 1, the subsequent fields may be ignored.

Field No. Value Function

2 0-9999 maximumno. of function. evaluations (low-order digits)

-1 Reusethe value from the previous run (with MSFI)

3 1-8 numberof significant figs. required in final est.

4 0or blank no summarization of iterations

n>0 every nth iteration summarized

5 0or blank no second search (REPEAT)

1 second search (REPEAT) implemented

6 0or blank MSF not output

1 MSF output

7 0or blank First order (FO) method

1 Conditional method(METHOD=COND)

8 0or blank No POSTHOC etas are to be estimated.

1 POSTHOC etas are to be estimated.

9 0or blank Etas are 0 for comp. of intraind. error (NOINTERACTION)
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1 Nonzero etas for comp. of intraind. error INTERACTION

10 0or blank Do not use Laplacian method.

1 Laplacian method is to be used.

11 0or blank ABORT if PRED sets error return code to 1

1 NOABORT - Attempt theta-recovery when PRED error code 1.

2 NOHABORT - Attempt recovery even at first iteration

12 0or blank Faster method of compuation (NOSLOW)

1 Slower method of computation (SLOW)

2 Slower method of computation (SLOW=2); for Stieltjes

3 Fast analytical derivative method of compuation (FOCE only)

13 0or blank avg. cond. est. of etas unconstrained (NOCENTER)

1 avg. cond. est. of etas constrained close to 0. (CENTER)

14 0or blank First-order model not used (NOFO)

1 First-order model used with METHOD=1 CENTERING (FO)

15 0or blank Second eta-derivs. computed by PRED (NONUMERICAL)

1 Second eta-derivs. for Laplacian to be obtained numerically.

16 0or blank Y or F (with user-supplied code) is a prediction.

1 Y or F is a LIKELIHOOD.

2 Y or F is a -2LOGLIKELIHOOD

17 0or blank Not the Hybrid method

1-99 no.of etas fixed to zero by ZERO recs. (Hybrid method)

18 0or blank Not the Stieltjes method.

1 Stieltjes method; no GRID option.

2 Stieltjes method; GRID was specified.

ESTIMATION rec. continuation rec. ( )(A4,4X,18I4)

Field No. Value Function

1 0or blank Required if estimation step is omitted, otherwise:

0 or blank TheREPEAT2 option is not coded; same as NOREPEAT2

1 REPEAT2 (with Stieltjes)

2 0or blank No ETABARCHECK.

1 ETABARCHECK option is coded.

3 0or blank. Sum contrib. to obj. func. in data set order.

1 Sort contrib. to obj. func. prior to sum (SORT)

4 0-9999 maximumno. of function evaluations (high-order digits)

The no. of func. evals. is Field 4 * 10000 + low-order

When Field 4 is 0 or blank, this is simply low-order

5 -1,0,100 SIGLdefault

1-15 SIGLvalue

6 -1,0,100 SIGLOdefault

1-15 SIGLOvalue

BAYES ESTIMATION record (BEST)

Line Format FieldNo. Value Function

1 (A4,4I12,F12.5,I12) 1 -1-16 BAYES METHOD

<=0 FO/FOCE/Laplace
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10 DIRECT

11 BAYES

12 ITS

13 SAEM

14 IMP

15 IMPMAP

16 CHAIN

2 -1-INTBIG PSAMPLE_M1

3 -1-INTBIG PSAMPLE_M2

4 0-INTBIG PSAMPLE_M3

5 0.0001-1.0 PACCEPT

6 -1-INTBIG OSAMPLE_M1

2 (X4,2I12,F12.5,3I12) 1 -1-INTBIG OSAMPLE_M2

2 0-INTBIG OSAMPLE_M3

3 0.0001-1.0 OACCEPT

4 1-INTBIG ISAMPLE/ICHAINS (non-CHAIN)

INTSMALL-INTBIG ISAMPLE (CHAIN)

5 0-INTBIG ISAMPLE_M1

6 0-INTBIG ISAMPLE_M2

3 (X4,I12,F12.5,4I12) 1 0-INTBIG ISAMPLE_M3

2 0.0-1.0 IACCEPT

3 0-INTBIG NSAMPLE/NITER

4 0-INTBIG NBURN

5 0-INTBIG DF

6 0-3 EONLY

4 (X4,5I12,F12.5) 1 INTSMALL-INTBIG SEED

2 0-1 NOPRIOR

3 0-3 NOTITLE(1,3),NOLABEL(2,3)

4 0-4 CTYPE

5 1-INTBIG CITER/CNSAMP

6 0.0000001,1 CALPHA

5 (X4,4I12,2E12.5) 1 0-INTBIG CINTERVAL

2 0-INTBIG MAPITER

3 -1-INTBIG MAPINTER

4 0-INTBIG ISAMPLE_M1A

5 0-INF ISCALE_MIN

6 0-INF ISCALE_MAX

6 (X4,5I12,A12) 1 0-INTBIG CONSTRAIN

2 0-15 ATOL

3 0-2 FNLETA

4 0-2 OPTMAP

5 0-3 ETADER

6 ALPHA RANMETHOD

7 (X4,5I12,E12.5) 1 0-INTBIG MCETA

2 0-2 NONINFETA

3 INTSMALL-INTBIG ISAMPEND (CHAIN)

4 0-1 ETASTYPE

5 0-1 AUTO

6 0.0-1000 STDOBJ
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8 (X4,I12,2E12.5,I12,I12,I6) 1 0-3 NUMDER

2 0-INF PSCALE_MIN

3 0-INF PSCALE_MAX

4 -1-INTBIG DFS

5 0-3 SELECT

6 0-1 NOCOV

9 (4X,I6,I6,I6,E12.5,E15.8,I6) 1 0-1 DERCONT

2 -1-1 NOSUB

3 0-2 MAPCOV

4 0.0-1.0 IACCEPTL

5 -10.0-INF GRDQ

6 0-INTBIG ISAMPLE_M1B

10 (4X,4(I12),2(E15.8)) 1 -1-1 MASSRESET

2 0-1 BAYES_METHOD (0:BAYES, 1:NUTS)

3 -1-INTBIG MADAPT

4 0-INTBIG IMAD APT (NOT USED)

5 0.0001-INF KAPPA

6 0.0001-INF IKAPPA

11 (4X,6(E15.8)) 1 0.0-INF NUTS_GAMMA

2 0.0-INF IGAMMA (NOT USED)

3 0.O-1.0 NUTS_DELTA

4 0.0-1.0 IDELTA (NOT USED)

5 0.0-INF OLKJDF

6 0.0-INF SLKJDF

12 (4X,3(E15.8)) 1 0.0-INF TTDF

2 -INF-INF OVARF

3 -INF-INF SVARF

13 (4X,A12,A12,I4,I4,I4,I4,I4,I4) 1 ALPHA NUTS_TYPE(NOT USED)

2 ALPHA NUTS_MASS

3 0-1 NUTS_TRANSFORM

4 0-1 INUTS_TRANSFORM(NOT USED)

5 0-2 NUTS_EPARAM

6 0-10 WISHTYPE(NOT USED)

7 0-1 NUTS_OPARAM

8 0-1 NUTS_SPARAM

14 (4X,I12,I12,I12,3(E15.8)) 1 0-INTBIG NUTS_STEPITER

2 0-INTBIG NUTS_STEPINTER

3 0-1 NUTS_TEST

4 0-INF NUTS_INIT

5 -99-INF NUTS_BASE

6 0-INF NUTS_TERM

15 (4X,I12,I12,I12,E15.8,E15.8,I4) 1 0-1 KNUTHSUMOFF

2 0-1 LEVWT

3 -1-INTBIG NUTS_MAXDEPTH

4 0.0-INF NUTS_CHOLBND(NOT USED)

5 0.0-INF NUTS_REG

6 0-INTBIG SADDLE_RESET

16 (4X,I12,I12,I12,I12,I12) 1 0-1 SADDLE_HESS

2 0-INTBIG THIN
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3 0-1 ETASAMPLES

4 0-1 PHITYPE

5 0-4 LEVSWITCH(NOT USED)

ADDITIONAL RECORDS FOR ESTIMATION (A4,4X,A)

Record Function

BFIL FILE (name be up to 256 characters)

BDLM FORMAT/DELIM

BMUM MUM (may go beyond 80 characters)

BGRD GRD(may go beyond 80 characters)

ORDR ORDER

PFIL PARAFPRINT (I12:0-INTBIG),PARAFILE (name be up to 256 characters)

FFIL FPARAFPRINT (I12:0-INTBIG),FPARAFILE (name be up to 256 characters)

ZERO record (ZERO)* (A4,4X,18I4)

Field No. Value Function

1 0 conditional estimate for eta(1)

1 eta(1) is fixed to 0 (HYBRID method)

2 0 conditional estimate for eta(2)

1 eta(2) is fixed to 0 (HYBRID method)

etc.

GRID record (GRID) (A4,4X,9A8)

Field No. Value Function

1 nr as specified in GRID=(nr,ns,r0,r1)

2 ns as specified in GRID=(nr,ns,r0,r1)

3 r0 as specified in GRID=(nr,ns,r0,r1)

4 r1 as specified in GRID=(nr,ns,r0,r1)

NONPARAMETRIC record (NONP) (A4,4X,6I4,I12,I6,I6)

Field No. Value Function

1 0or blank Nonparametric step implemented conditionally

1 Nonparametric step implemented unconditionally

2 0or blank use nonparametric estimate from input MSF

1 recompute nonparametric estimate

3 0or blank obtain marginal cumulatives

1 compute conditional nonpar. etas (CNPE ETAS)

4 0or blank no model specification file is output

1 amodel specification file is output

5 0,1 1=BOOTSTRAP

6 0-3 EXPAND(1,3),NPSUPPE(2,4)
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7 0-INTBIG NPSUPP(E)value

8 1-INTBIG STRAT data column number

9 1-INTBIG STRATF data column number

ADDITIONAL RECORD FOR NONPARAMETRIC (A4,4X,I12,A)

Record Function

NFIL PARAFPRINT (0-INTBIG), PARAFILE (name be up to 256 characters)

COVARIANCE record (COVR) (A4,4X,18I4)

Field No. Value Function

1 0or blank Covariance Step conditionally implemented

1 Covariance Step unconditionally implemented

2 Covariance Step not implemented

2 0or blank covariance matrix set to (R inverse) S (R inverse)

1 covariance matrix set to R inverse

2 covariance matrix set to S inverse

3 0or blank neither R nor S printed.

1 Rmatrix printed

2 Smatrix printed

3 both R and S printed

4 0or blank eigenvalues not printed

1 eigenvalues printed.

5 0or blank default computation.

1 Special computation with a recursive PRED subroutine.

6 0or blank Print Covariance Step arrays in normal format.

1 Print Covariance Step arrays in compressed format.

7 1

8 0or blank

9 0or blank Normal method of computation

1 Slower method of computation (SLOW)

3 Fast analytical derivative method of compuation (FOCE only)

Additional COVARIANCE record (COVT) (A4,4X,6I4,I12,I6,I6,I6,I6,I6,I6,I2,I2,A10)

Field No. Value Function

1 -1,0,100 SIGLdefault

1-15 SIGLvalue

2 1-15 TOL

3 -1,0,100 SIGLOdefault

1-15 SIGLOvalue

4 1-15 ATOL

5 0-1 1=NOFCOV

6 0-1 1=COVRESUME

7 0-INTBIG SIRSAMPLEvalue

8 0-INTBIG SIRNITERvalue
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9 0-1 SIRCENTERvalue

10 0-INTBIG PRECOND value

11 0-INTBIG PFCOND value

12 0-2 PRETYPE value

13 0-1 FPOSDEF value

14 0-1 1:THBND=0, 0:THBND=1

15 0-1 1:SIRTHBND=0, 0:SIRTHBND=1

16 ALPHA PRECONDS value

Second line of COVT Record (COVT) (8X,I8,I4,I4,E12.5,E12.5,E12.5,A16)

Field No. Value Function

1 0-INTBIG SIRPRINTvalue

2 0-1 CHOLROFF value

3 0-1 KNUTHSUMOFFvalue

4 0.0-INF SIRDF

5 0.0-1.0 IACCEPT

6 0.0-1.0 IACCEPTL

7 ALPHA RANMETHOD

ADDITIONAL RECORDS FOR COVARIANCE (8X,I12,A)

Record Function

CPAR PARAFPRINT (0-INTBIG), PARAFILE (name be up to 256 characters)

Initial TABLE record (TABL) (A4,4X,18I4)

Field No. Value Function

1 0or blank Table Step conditionally implemented

1 Table Step unconditionally implemented

2 Table Step not implemented

If the value is 2, the next field may be ignored, and there should not appear

any individual TABLE records.

2 1-10 numberof tables

ADDITIONAL RECORDS FOR TABLE (A4,4X,I12,A)

Record Function

PPAR PARAFPRINT (0-INTBIG),PARAFILE (name be up to 256 characters)

Individual TABLE record (TABL) (A4,1X,3A1,I4,9(I6,I2)
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Field No. Value Function

Pos. 1 blank nooption record.

1 an option record follows.

(only if at least one item on the option rec. is non-blank)

1 0-PDT numberof selected data item types

2 1-9999 index of 1st selected data item type

3 0-8 sortcode for data items of 1st selected type

-1 Exclude-byitem marked by -1

4 1-9999 index of 2nd selected data item type

5 0-8 sortcode for data items of 2nd selected type

etc.

Individual TABLE rec. contin. rec. ( )*(A4,1X,3A1,I4,9(I6,I2)

(as needed)

Field No. Value Function

1 1-999 index of 9th. selected data item type

2 0

3 1-999 index of 10th. selected data item type

4 0

etc.

Individual TABLE record option rec.( )(A4,4X,5I4,I12,I12,A12,I2,I2,I2,I2,1X,A

Field No. Value Function

1 blank Every data record appears in the table.

1 Only the first data rec. from each ind. rec. (FIRSTONLY)

2 Only the last data rec. from each ind. rec. (LASTONLY)

3 Only the first and last data rec. from each ind. rec. (FIRSTLASTONLY)

2 1  With TABLE file, no printed table (NOPRINT)

2 With TABLE file, printed table appears in the NONMEM output.

3 0  default

1 ONEHEADER

4 NOTITLE

8 NOLABEL

5 ONEHEADER NOTITLE

9 ONEHEADER NOLABEL

14 NOHEADER(same as NOTITLE NOLABEL)

4 blank TheTABLE file is opened and is positioned at the start.

1 The TABLE file is positioned at the end (FORWARD)

5 blank DV, PRED, RES, WRES appear automatically

1 DV, PRED, RES, WRES do not appear unless listed (NOAPPEND)

6 INTSMALL-INTBIG SEED

7 3-INTBIG ESAMPLE

8 ALPHA RANMETHOD

9 0-1 WRESCHOL

10 -1-1 NOSUB

11 0 No SE to PRED item

1 SE to PRED item
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12 0-1 NPDTYPE

13 ALPHA FORMAT (May be up to 20 characters, so total line length may be up to 89 characters)

Additional TABLE records (A4,4X,A)

Record Function

FRML LFORMAT (record may be longer than 80 characters)

FRMR RFORMAT (record may be longer than 80 characters)

FETA FIXEDETAS number list (record may be longer than 80 characters)

Initial SCATTERPLOT record (SCAT) (A4,4X,18I4)

Field No. Value Function

1 0or blank Scatterplot Step conditionally implemented

1 Scatterplot Step unconditionally implemented

2 Scatterplot Step not implemented

If the value is 2, the next field may be ignored, and there should not appear

any individual SCATTERPLOT records.

2 1-20 numberof families

Individual SCATTERPLOT record (SCAT) (A4,4X,9I8/8X,9I8)

Field No. Value Function

1 1-23 index of data items plotted on abcsissa axis

2 1-23 index of data items plotted on ordinate axis

3 0or blank a single scatterplot

1 aone-way partitioned scatterplot

2 atwo-way partitioned scatterplot

If the value of field 3 is 0 or blank, the next two fields should be ignored.

4 1-23 index of 1st separator

If the value of field 3 is 1, the next field should be ignored.

5 1-23 index of 2nd separator

6 0or blank no unit slope line appears

1 unit slope line appears

7 0-99999999 no.of the first data rec. for the scatter (FROM)

8 0-99999999 no.of the last data rec. for the scatter (TO)

9 0or blank a line through zero on the ordinate axis if appropriate.

1 aline through zero on the ordinate axis. (ORD0)

-1 noline through zero on the ordinate axis.

10 0or blank a line through zero on the abscissa axis if appropriate.
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1 aline through zero on the abscissa axis. (ABS0)

-1 noline through zero on the abscissa axis.

11 0or blank Every data record appears in the scatter.

1 Only the first data rec. from each ind. rec. (FIRSTONLY)

12 0or blank Every data record appears in the scatter

1 Only data records with MDV=0 (OBSONLY).

12 -1-1 NOSUB
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100,1000 CMT data item 155
100,1000 PCMT data item 155
100,101 MDV data item 153
1.0E+06 140,153
154
2000 54
-2LL option of $ESTIMATION record 152, 159

- A -

A_0,A_0FLG reserved variable 155
α -level test 48
Abbreviated Code 156
abbreviated code 5, 10
$ABBREVIATED record 148
ABORT 148
ABS0 option of $TABLE record 146
ABS 73
absorption, first-order 8
Absorption lag parameter ALAG 135
absorption rate KA 10
ACOS 73
additional dose 74
additional PK parameter 55, 72
additive error model 27, 37, 41, 85, 90
ADDL data item 135
ADVAN1 13
ADVAN2 9
ADVAN57 133
ADVAN68,13-14 133
ADVAN9_15 133
ADVAN 4, 71
advance 35,71, 74
$AESINIT record 134
$AES record 134
AES subroutine 132
A(i) reserved variable 155
ALAGn 135
All Options for $COVARIANCE 166
All Options for $ESTIMATION 159
AMT data item 56, 58
ANALYSIS TYPE 140
$ANNEAL record 153
ANSI FORTRAN 4
APPEND option of $TABLE record 146
ASIN 73
assay 29
assay, bias of 25
AT AN 73
AT OL option of $COVARIANCE record 134, 166
AT OL option of $ESTIMATION record 134, 159
auto-correlation 142
AUTO option of $ESTIMATION record 159

- B -

basic PK parameter 55, 72
bias of assay 25
bias of estimate 43
$BIND record 136

bioavailability 59-62,72, 79
BLANKOK option of $DAT A record 156
BLOCK option of $OMEGA record 139
BLOCK option of $SIGMA record 139
BLOCK SAME(m) option of $OMEGA record 141
BLOCK SAME(m) option of $SIGMA record 141
bolus dose, instantaneous 59
bolus dose, multiple 60
bolus dose, zero-order 134-135
bootstrap 146,153
BOOTSTRAP option of $NONPARAMETRIC record
153
BOOTSTRAP option of $SIMULATION record 153
BY option of $TABLE record 146

- C -

calendar date 66
CALL data item 58, 74, 84, 137
CALLFL reserved variable 134,136
calling protocol phrase 136-137
call to ERROR subroutine 58, 136
call to PK subroutine 58, 136
CALPHA option of $ESTIMATION record 159
case insensitivity 155
CCONTR subroutine 149
CCV error model 27, 37, 41, 85, 90
CENTERING option of $ESTIMATION record 147,
159
central compartment 9, 71
CHAIN option of $CHAIN record 153
CHAIN option of $ESTIMATION record 153
Changes to NONMEM Outputs 154
CHECKOUT option of $DAT A record 147
checkpoint-restart 142
chi-square 48
CHOLESKY option of $OMEGA record 140
CHOLESKY option of $SIGMA record 140
CHOLROFF option of $COVARIANCE record 166
CI 44,129
CINTERVAL option of $ESTIMATION record 159
CIPRED,CIRES,CIWRES reserved label of $TA-
BLE,$SCATTER record 154
CIPREDI,CIRESI,CIWRESI reserved label of $TA-
BLE,$SCATTER record 154
CITER/CNSAMP option of $ESTIMATION record 159
CL, clearance 13, 24
clearance CL 13, 24
clock time 56, 65, 69
CMT data item 57, 71
CNTID reserved variable 158
Code, Abbreviated 156
coefficient of variation 27
colon ":" in II data item 69
colon ":" in TIME data item 66
COM,COMACT reserved variable 156
command, operating system 5
COMPACT 155
compartment, central 9, 71
compartment 9
compartment, default dose 9, 71-72
compartment, depot 9, 60, 72

-197-



compartment, dose 57, 59
compartment, equilibrium 133
compartment number 57, 71, 93
compartment, output 25, 57, 60, 64, 72
compartment, prediction 57
compartment, zero-out a 72
COMPRESS option of $COVARIANCE record 144, 166
COMRES,COMSAV option of $ABBREVIATED record
156
concentration 23
concentration, plasma 8, 25, 30, 35
concentration, urine 25, 30, 35, 38, 64
concomitant data 55
conditional estimate 147
conditional estimation method 147
conditional estimation method, first-order 147
CONDITIONAL option of $COVARIANCE record 143,
166
CONDITIONAL option of $ESTIMATION record 159
CONDITIONAL option of $SCATTERPLOT record 92
CONDITIONAL option of $TABLE record 92
conditional statement 77
confidence interval 44-46,129
console control characters 153
constant coefficient of variation (CCV) error model 27,
37, 41, 85, 90
constant infusion 62
CONSTRAIN option of $ESTIMATION record 153,
159
constraint, parameter 10, 87, 114
CONSTRAINT subroutine 153
& continuation character 155
continuation line 155
control language, NONMEM 5
$CONTR record 149
CONTR subroutine 149
correlation 36
correlation matrix of estimate 92, 102
Correlation matrix OMEGA,SIGMA output 154
correlation of parameter estimate 45
correlation of residual vsy 117
CORRELATION option of $OMEGA record 140
CORRELATION option of $SIGMA record 140
CORRL2 reserved variable 142
COS 73
covariance 36,89, 139
covariance matrix 36, 39, 103
covariance matrix, full 139
covariance matrix of estimate 92
Covariance matrix OMEGA,SIGMA output 154
COVARIANCE option of $OMEGA record 140
COVARIANCE option of $SIGMA record 140
$COVARIANCE record 10, 87, 91-92, 97, 102
covariance step 91-92, 102, 168
CPRED,CRES,CWRES reserved label of $TA-
BLE,$SCATTER record 154
CPREDI,CRESI,CWRESI reserved label of $TA-
BLE,$SCATTER record 154
CRIT subroutine 149
CTLO CTUP reserved variable 152
CTYPE option of $ESTIMATION record 159

- D -

DAT1,DAT2,DAT3 data item 67
data checkout 96,147
data, effect 132,150
data file name 52

data, individual 8,23, 69
data item 8, 29, 50
data item, dropping 55, 67, 70
data item label 54
data item, null 50
data items, maximum number of 51, 55
data item, steady-state 58
data, population 55, 89
Data Preprocessor 156
Data Preprocessor 65
data record 50
$DAT A record 52,65, 97, 144
data set 50
data set, deleting records from 50-51
data set, sequence of 50, 52
data set, size of 50
data, single-response population 23
date, calendar 66
DATE data item 66
days 54,67
day-time translation 65, 69
ddexpand utility 159
DECLARE option of $ABBREVIATED record 157
default dose compartment 9, 71-72
degrees of freedom 48, 141
deleting records from data set 50-51
DELIM option of $TABLE record 146
dependent variable 8-9,23
depot compartment 9, 60, 72
DERCONT option of $ESTIMATION record 159
DERIV1 option of $ABBREVIATED record 156
DERIV2 option of $ABBREVIATED record 156
$DES record 134
DES subroutine 132
DF option of $ESTIMATION record 159
DFS option of $ESTIMATION record 159
DIAG 157
diagonal elements of OMEGA 37
DIAGONAL option of $OMEGA record 139
DIAGONAL option of $SIGMA record 139
diagonal variance-covariance matrix 89, 139
dispersion factor 141
distribution of parameter estimate 44
do directive 158
doexpand utility 158
dose, additional 74
dose amount 58
dose compartment, default 9,71-72
dose compartment 57, 59
dose event record 56, 58
dose, implied 60
dose, infusion 59
dose, instantaneous bolus 59
dose, lagged 74
dose, multiple bolus 60
dose, multiple 12
dose-related data item 58
doses, multiple steady-state 63
dose, steady-state 60
dose, zero-order bolus 134-135
DOSTIM reserved variable 135
DOWHILE(DAT A) 138
DROP option of $INPUT record 55, 67, 70, 97
dropping data item 55, 67, 70
drug level 61
duration, modeled 135
duration of infusion 59
DV data item 8, 55-56
dynamic memory allocation 154
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- E -

EBV 154
EBVshrink output 154
ECWRES reserved label of $TABLE,$SCATTER record
155
effect data 132, 150
eigenvalue 133,143
EIPRED,EIRES,EIWRES reserved label of $TA-
BLE,$SCATTER record 155
elimination rate K 10, 24
ELS, extended least squares 42
Emax model 132
EM 7
EM method 152
enddo directive 158
end of infusion 59
EONLY option of $ESTIMATION record 159
Epectation-Maximation 7
EPRED,ERES,EWRES reserved label of $TA-
BLE,$SCATTER record 154
ε 32
EPSshrink output 154
EPS variable 84,89
equilibrium compartment 133
error, estimation 43
error, interindividual 36
error, intraindividual 25,36
error message, operating system 53
error message, PREDPP 171
error message, TRANSLATOR 171
error model, additive 27, 37, 41, 85, 90
error model, CCV 27, 37, 41, 85, 90
error model, constant coefficient of variation (CCV) 27,
37, 41, 85, 90
error model 25, 84, 90
error model, exponential 28,37, 85
error model, log-normal 28, 37, 85
error model, power function 29, 42, 85
error model, proportional 27, 37
error model, statistical 23
error, MSE mean squared 43
$ERROR record 5, 14, 55, 150
$ERROR record 84, 86
error recovery option 148
error return code 148
ERROR subroutine, call to 58, 136
ERROR subroutine 4-5, 55, 72, 132
error variance 15,26
ERR variable 25,84, 89
ESAMPLE option of $TABLE record 147
estimate, bias of 43
estimate, conditional 147
estimate, initial 10, 133
estimate of ETA, individual 147
estimate of theta, initial 87
estimate of variance, initial 90, 142, 150
estimate, perturbed initial 88
estimation error 43
estimation method, first-order conditional with interac-
tion 147
estimation method, first-order 147
estimation method, laplacian 147
$ESTIMATION record 10, 87, 91, 97, 153
estimation step 91, 101, 143, 153, 168
ETABARCHECK option of $ESTIMATION record 154,
159
ETABAR output 154
ETADER option of $ESTIMATION record 159

η 25
ETA, individual estimate of 147
ETA(k:n) reserved label of $TABLE record 154
ETAn reserved label of $TABLE record 154
ETASAMPLES option of $ESTIMATION record 159
ETAS(...) 154
ETAshrink output 154
ETAS option of $NONPARAMETRIC record 152
$ETAS record 153
ETASTYPE option of $ESTIMATION record 159
ETASTYP option of $ESTIMATION record 154
ETASXI reserved variable 154
ETA variable 14,25, 84, 89
ev ent record, dose 56, 58
ev ent record 56
ev ent record, observation 56,84
ev ent record, other 56-57, 74
ev ent record, reset-dose 57
ev ent record, reset 57
EVID data item 56, 65
EVID data item, generated 69
exception, floating-point 148
EXCLUDE_BY 155
EXIT statement 148
EXPAND option of $NONPARAMETRIC record 152
expectation feature 152
experiment, replication of 43
EXP 73
exponential error model 28, 37, 85
extended least squares ELS 42
external table file 146

- F -

FAST option of $COVARIANCE record 166
FAST option of $ESTIMATION record 159
Features, NONMEM 152
F distribution 48
F_FLAG reserved variable 152
filename option of $DAT A record 52
FILE option of $COVARIANCE record 166
FILE option of $ESTIMATION record 159
FILE option of $TABLE record 146
final parameter estimate 91
finedata utility 158
FINISH record 52
FIRSTLASTONLY option of $TABLE record 146
FIRSTONLY option of $TABLE record 146
first-order absorption 8
first-order conditional estimation method 147
first-order conditional with interaction estimation method
147
first-order estimation method 147
fixed effects 23,55
fixed effects parameter 23, 33
FIXEDETAS 155
FIXED option of $OMEGA record 89, 100, 140
FIXED option of $SIGMA record 89, 100, 140
FIXED option of $THETA record 88,100
flip-flop 172
floating-point exception 148
FNLETA option of $ESTIMATION record 159
FOCE method 91
FO method 91
FORMAT/DELIM option of $ESTIMATION record 159
FORMAT option of $COVARIANCE record 166
FORMAT option of $TABLE record 146
format specification 50, 52, 65, 69-70
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FORTRAN 6,50
FORTRAN OPEN statement 52
FORTRAN READ statement 53
FORWARD option of $TABLE record 146
FPARAFILE option of $ESTIMATION record 154, 159
FPOSDEF option of $COVARIANCE record 166
fraction, output 72, 79
FROM option of $SCATTERPLOT record 104
FSUBS 6
full covariance matrix 139
FULL 155,157
full model 47, 118
FUNCA reserved variable 157
function of parameters 43

- G -

GAMLN 73
general mixed effects model 39
generated EVID data item 69
generated ID data item 69
generated MDV data item 69
generated subroutine 6
GG array 98
Gn1 reserved label of $TABLE record 154
goodness of fit 10, 47, 118
gradient 100,168
GRD option of $ESTIMATION record 159
GRDQ option of $ESTIMATION record 159
GRID option of $ESTIMATION record 152, 159

- H -

half-life 43,46
hierarchical file 51
Hn1 reserved label of $TABLE record 154
hours 54,67
HYBRID option of $ESTIMATION record 152, 159
hyperbolic model 34
hypotheses, joint 47
hypothesis, null 46
hypothesis test 19, 46, 105

- I -

IACCEPTL option of $COVARIANCE record 166
IACCEPTL option of $ESTIMATION record 159
IACCEPT option of $COVARIANCE record 166
IACCEPT option of $ESTIMATION record 159
ICALL reserved variable 138,157
ID data item, generated 69
ID data item 51, 55, 141, 169
identification number, patient 51
IFIRSTEM reserved variable 158
IGNORE option of $DAT A record 53
II/24 54
II data item, colon ":" in 69
II data item 56, 59, 69, 135
IIDX reserved variable 158
II option of $DAT A record 156
ill-formed data file 156
implied dose 60
INCLUDE record 94
index plot 107,116

indicator variable 29,35, 77, 81, 85-86
individual data 8, 23, 69
individual estimate of ETA 147
individual parameter estimate 147
individual record 55
INDR1,INDR2 reserved variable 158
infinite infusion 62
INFINITY 87, 97
$INFN record 138
INFN subroutine 132, 138
informative form,informative record name 141
infusion, constant 62
infusion dose 59
infusion, duration of 59
infusion, end of 59
infusion, infinite 62
infusion, multiple 61
infusion, rate of 58
Initial condition 134
initial estimate 10, 133
initial estimate of theta 87
initial estimate of variance 90,142, 150
initial estimate, perturbed 88
initial estimate step 88, 91, 142
initialization/finalization 138
initial parameter estimate 142
$INPUT record 54, 59, 96
installation of NONMEM 2, 4
instantaneous bolus dose 59
INTERACTION method 91
INTERACTION option of $ESTIMATION record 147,
159
interactive control 153
interdose interval 59,69, 135
INTER file 142
interindividual error 36
interindividual variability 36
interrupt 148
INT 73
intraindividual error 25, 36
intraindividual variability 25,36
inverse covariance matrix of estimate 92
IPRD,IRS,CIWRS reserved label of $TABLE,$SCAT-
TER record 154
IPROB reserved variable 144
IREP reserved variable 145
ISAMPEND option of $ESTIMATION record 159
ISAMPLE_M1A option of $ESTIMATION record 159
ISAMPLE_M1 option of $ESTIMATION record 159
ISAMPLE_M2 option of $ESTIMATION record 159
ISAMPLE_M3 option of $ESTIMATION record 159
ISAMPLE option of $ESTIMATION record 159
ISCALE_MAX option of $ESTIMATION record 159
ISCALE_MIN option of $ESTIMATION record 159
ISFINL reserved variable 155
I_SS 133-134,155
ISSMOD reserved variable 133,155
iteration 100,168
ITS method 152

- J -

joint hypotheses 47

- K -
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KA, absorption rate 10
KAPPA option of $ESTIMATION record 159
K, elimination rate 10, 24
KNUTHSUMOFF option of $COVARIANCE record
166
KNUTHSUMOFF option of $ESTIMATION record 159

- L -

L1 data item 141
L2 data item 141, 150, 169
labels, reserved 54
label substitution 156
lagged dose 74
LAPLACE option of $ESTIMATION record 159
laplacian estimation method 147
LAPLACIAN option of $ESTIMATION record 147
LAST20 option of $DAT A record 54
LASTONLY option of $TABLE record 146
least squares criterion 41
least squares ELS, extended 42
least squares OLS, ordinary 41
least squares WLS, weighted 41
$LEVEL record 153
LEVWT option of $ESTIMATION record 159
LFORMAT option of $TABLE record 146
likelihood ratio test 48, 131
LIKE option of $ESTIMATION record 152, 159
linear model 33
linear system 63
link editing 5
LIREC reserved variable 158
load module 5
log likelihood 48,119
LOG,LOG10 73
log-normal error model 28, 37, 85
Loops 157
lower case 155
lower triangular elements of OMEGA 37
LRECL option of $DAT A record 53

- M -

MADAPT option of $ESTIMATION record 159
MAPCOV option of $ESTIMATION record 159
MAPINTER option of $ESTIMATION record 159
MAPITER option of $ESTIMATION record 159
MARGINALS option of $NONPARAMETRIC record
152
mass balance 72
MASSRESET option of $ESTIMATION record 159
MATRIX option of $COVARIANCE record 143, 166
MAXEVAL option of $ESTIMATION record 92, 159,
168
maximum number of data items 51, 55
maximum number of observation records 56
MAX 73
MCETA option of $ESTIMATION record 159
MDV data item 100,101 153
MDV data item, generated 69
MDV data item 55, 139
MDVI1,2,3 reserved variable 153
MDVRES reserved variable 155
mean squared error, MSE 43
METHOD option of $ESTIMATION record 91, 147,
159

Michaelis-Menten model 34, 71
microconstant 72
minimal model 112
minimum value of objective function 10,48, 91, 101
MIN 73
MISDAT option of $DAT A record 156
mixed effects model, general 39
mixed effects model 26, 31
MIXEST reserved variable 148
MIXNUM reserved variable 148
MIXP reserved variable 148
MIXPT reserved variable 148
$MIX record 148
MIX subroutine 132, 148-149
mixture model 148-149
MNEXT reserved variable 136
MNOW reserved variable 136
model building 105
modeled duration 135
modeled rate 134
model, Emax 132
model, full 47, 118
model, general mixed effects 39
model, linear 33
model, Michaelis-Menten 34, 71
model, minimal 112
model misspecification 102
model, mixed effects 26,31
model, mixture 148-149
model, multiplicative 34, 80
model, one-compartment 8, 13, 23
model, parameter 32
model, pharmacodynamic 132, 139, 150
model, pharmacokinetic 2, 71, 133
model, population 32
model, random effects 126
$MODEL record 133
model, reduced 47, 118
model specification file 92, 142-143
model, statistical 125-126
model, structural 23, 36, 97, 112
MODEL subroutine 132
model, user-defined 133
MOD 73
monitoring of search 91
monte-carlo method 152, 155
monte-carlo 147
MPAST reserved variable 136
MRG_ data item 152
MSEC,MFIRST reserved variable 158
MSE mean squared error 43
$MSFI record 92, 142
MSFO option of $ESTIMATION record 142, 159, 168
MSFO option of $NONPARAMETRIC record 152
MTDIFF reserved variable 136
MTIME 135
multiple bolus dose 60
multiple dose 12
multiple $ESTIMATION records 153
multiple infusion 61
multiple steady-state doses 63
multiplicative model 34,80
multivariate observation 141
MU modeling 152-153
MUM option of $ESTIMATION record 159
MU_reserved varaibles 152-153
MXSTEP reserved variable 134

- N -
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NBURN option of $ESTIMATION record 159
neffi utility 159
neff utility 159
negative objective function 42
nested if 74
nested parentheses 74
NEWIND reserved variable 157
NEW option of $MSFI record 142
NEW option of $SIMULATION record 145
NINDR reserved variable 158
NIPRED,NIRES,NIWRES reserved label of $TA-
BLE,$SCATTER record 154
NIREC,NDREC reserved variable 157
NITER/NSAMPLE option of $ESTIMATION record
159
nmfe74 5
nmfe74 utility 158
nmfe 5
nmtemplate utility 158
NM-TRAN defined 2
NOABORTFIRST 148
NOABORTFIRST option of $THETA record 149
NOABORT 148
NOABORT option of $ESTIMATION record 159
NOAPPEND option of $TABLE record 146
NOCHECKMU option of $ABBREVIATED record 153
NOCOV option of $ESTIMATION record 144, 159
NOFASTDER option of $ABBREVIATED record 156
NOFCOV option of $COVARIANCE record 144, 166
NOFORWARD option of $TABLE record 146
NOHABORT 148
NOHABORT option of $ESTIMATION record 159
NOHABORT option of $THETA record 149
NOHEADER option of $TABLE record 146
NOLABEL option of $ESTIMATION record 159
NOLABEL option of $TABLE record 146
NOMSFTEST option of $MSFI record 142
Non continuous 152
NONINFETA option of $ESTIMATION record 159
NONMEM control language 5
NONMEM Features 152
nonmem_general_reserved 7
NONMEM 1
NONMEM Outputs, Changes to 154
nonmem_reserved_general 153,158
nonmem_reserved 157
$NONPARAMETRIC record 152
NOOMEGABOUNDTEST option of $ESTIMATION
record 159
NOPREDICTION option of $SIMULATION record 145
NOPRINT option of $TABLE record 146
NOPRIOR option of $ESTIMATION record 149, 159
NOREPLACE option of $MSFI record 142
NOREPLACE option of $SIMULATION record 146,
153
NOREWIND 52
NORMAL option of $SIMULATION record 145
NOSIGMABOUNDTEST option of $ESTIMATION
record 159
NOSLOW option of $COVARIANCE record 166
NOSUB option_of $ESTIMATION record 156
NOSUB option of $ESTIMATION record 159
NOSUB option_of $SCATTER record 156
NOSUB option_of $TABLE record 156
NOSUPRESET option of $SIMULATION record 146
NOTHETABOUNDTEST option of $ESTIMATION
record 159
NOTITLE option of $ESTIMATION record 159
NOTITLE option of $TABLE record 146
N output 154
NPDE,NPD reserved label of $TABLE,$SCATTER
record 155

NPOPETAS option of $MSFI record 142
NPROB reserved variable 144
NPSUPP,NPSUPPE option of $NONPARAMETRIC
record 152
NREP reserved variable 145
NSIG option of $ESTIMATION record 159
NSPOP reserved variable 148
null data item 50
null hypothesis 46
NULL option of $DAT A record 53
null value 46
null value of parameter 128-129
number of significant digits 97
NUMBERPOINTS option of $THETA record 142
NUMDER option of $ESTIMATION record 154, 159
NUMERICAL option of $ESTIMATION record 159
NUTS_BASE option of $ESTIMATION record 159
NUTS_DELTA option of $ESTIMATION record 159
NUTS_EPARAM option of $ESTIMATION record 159
NUTS_GAMMA option of $ESTIMATION record 159
NUTS_INIT option of $ESTIMATION record 159
NUTS_MASS option of $ESTIMATION record 159
NUTS_MAXDEPTH option of $ESTIMATION record
159
NUTS_OPARAM option of $ESTIMATION record 159
NUTS_REG option of $ESTIMATION record 159
NUTS_SPARAM option of $ESTIMATION record 159
NUTS_STEPINTER option of $ESTIMATION record
159
NUTS_STEPITER option of $ESTIMATION record
159
NUTS_TERM option of $ESTIMATION record 159
NUTS_TEST option of $ESTIMATION record 159
NUTS_TRANSFORM option of $ESTIMATION record
159
NWPRI subroutine 141, 149

- O -

OACCEPT option of $ESTIMATION record 159
objective function, minimum value of 10, 48, 91, 101
objective function 42,91, 119
OBJI reserved label of $TABLE record 154
observation event record 56, 84
observation records, maximum number of 56
observed value 4,55-56, 90
OBSONLY option of $TABLE record 146
Odd type data 152
OLKJDF option of $ESTIMATION record 159
OLNTWOPI option of $ESTIMATION record 159
OLS, ordinary least squares 41
OMEGABOUNDTEST option of $ESTIMATION record
159
OMEGA, diagonal elements of 37
ω̂ 41
OMEGA, lower triangular elements of 37
OMEGA 10,26, 36
Ω 36, 88
$OMEGAPD record 141
$OMEGAP record 141
$OMEGA record 10, 14, 88-89, 97, 139
OMEGA reserved variable 158
$OMIT record 152
OMITTED option of $COVARIANCE record 166
OMITTED option of $ESTIMATION record 159
one-compartment model 8, 13, 23
ONEHEADERALL option of $TABLE record 146
ONEHEADER option of $TABLE record 146
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ONEHEADERPERFILE option of $TABLE record 146
ONLYREAD option of $MSFI record 142
ONLYSIMULATION option of $SIMULATION record
145
on/off status 57,65, 78
operating system command 5
operating system error message 53
OPTMAP option of $ESTIMATION record 159
ORD0 option of $SCATTERPLOT record 93,146
ORDER option of $ESTIMATION record 154, 159
ordinary least squares OLS 41
OSAMPLE_M1 option of $ESTIMATION record 159
OSAMPLE_M2 option of $ESTIMATION record 159
other event record 56-57, 74
OTHER option of $SUBROUTINE record 149
outlier 108
output compartment 25, 57, 60, 64, 72
output fraction 72, 79
Outputs, Changes to NONMEM 154
output-type 57,65, 72, 137
OVARF option of $ESTIMATION record 159

- P -

PA CCEPT option of $ESTIMATION record 159
PARAFILE option of $COVARIANCE record 154, 166
PARAFILE option of $ESTIMATION record 154, 159
PARAFILE option of $SIMULATION record 154
PARAFILE option of $TABLE record 154
PARAFPRINT option of $COVARIANCE record 166
PARAFPRINT option of $ESTIMATION record 159
parallel computing 154
parameter, additional PK 55, 72
parameter ALAG, Absorption lag 135
parameter, basic PK 55, 72
parameter constraint 10, 87, 114
parameter estimate, correlation of 45
parameter estimate, distribution of 44
parameter estimate, final 91
parameter estimate, individual 147
parameter estimate, initial 142
parameter estimate 41
parameter estimate, precision of 43, 92, 128, 131
parameter, fixed effects 23,33
parameterization 24,43, 46, 72, 76
parameter model 32
parameter, null value of 128-129
parameter, PK 10, 71
parameter, random effects 26,126
parameter, scale 10,24, 71, 77
parameters, function of 43
parameter, time varying 35
PARAMETRIC option of $SIMULATION record 145
partial derivative 6
partitioned scatterplot 93, 104
PASSRC reserved variable 138
PASS subroutine 138
patient identification number 51
PCMT data item 57, 71
PD in $SIZES 154
PD in $SIZES 51
PD in SIZES 51
PDT in $SIZES 146, 154
perturbed initial estimate 88
PFCOND option of $COVARIANCE record 166
pharmacodynamic model 132, 139, 150
pharmacokinetic model 2, 71, 133
phenobarbital example 12,24, 89-90, 105, 132, 151

φ 23
PHI 73
$PHIS record 153
PHITYPE option of $ESTIMATION record 159
PK parameter, additional 55,72
PK parameter, basic 55,72
PK parameter 10, 71
$PK record 5, 10, 55, 71
PK subroutine, call to 58, 136
PK subroutine 4-5, 55, 72, 132
plasma concentration 8, 25, 30, 35
plot, index 107, 116
population data 55, 89
population data, single-response 23
population model 32
positive definite 140
POSTHOC option of $ESTIMATION record 147, 159
power function error model 29, 42, 85
PR_CT reserved variable 152
PRDERR 149
PRDFL reserved variable 152
precision of parameter estimate 43, 92, 128, 131
PRECOND option of $COVARIANCE record 166
PRECONDS option of $COVARIANCE record 166
PRED error recovery option 148
PRED error return code 148
predicted value 4,56
predicted value PRED 11, 92
prediction compartment 57
PREDICTION option of $ESTIMATION record 159
PREDICTION option of $SIMULATION record 145
PREDI,RESI,WRESI reserved label of $TABLE,$SCAT-
TER record 154
PREDPP error message 171
PREDPP library 4
PREDPP 1,71, 155
PRED, predicted value 11,92
$PRED record 6, 97
PRED_,RES_,WRES_ reserved variable 158
PRED subroutine 1, 71, 97, 132, 138
PRED subroutine, recursive 35, 143
Preprocessor, Data 156
P reserved variable 148
PRETYPE option of $COVARIANCE record 166
PRINT option of $COVARIANCE record 143, 166
PRINT option of $ESTIMATION record 92, 159, 169
PRINT option of $TABLE record 146
prior 141
$PRIOR record 149
PRIOR subroutine 149
$PROBLEM record 8, 96, 144
proportional error model 27, 37
PR_Y reserved variable 152
PSAMPLE_M1 option of $ESTIMATION record 159
PSAMPLE_M2 option of $ESTIMATION record 159
PSAMPLE_M3 option of $ESTIMATION record 159
PSCALE_MAX option of $ESTIMATION record 159
PSCALE_MIN option of $ESTIMATION record 159
P VAL output 154
p-value 131

- R -

random effects model 126
random effects parameter 26, 126
random effects 26,32, 80
RANDOM subroutine 145, 152
random variable 6,73, 81, 84
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random variable 81
RANMETHOD option of $COVARIANCE record 166
RANMETHOD option of $ESTIMATION record 159
RANMETHOD option of $TABLE record 147
RATE data item 56, 58
rate, modeled 134
rate of infusion 58
raw data average feature 152
RAW_ data item 152
raw output file 154
RECOMPUTE option of $NONPARAMETRIC record
152
record length 53
RECORDS option of $DAT A record 52,156
recovery option, error 148
recursive PRED subroutine 35, 143
reduced model 47, 118
relative time 56,66
REPEAT1 option of $ESTIMATION record 152, 159
REPEAT2 option of $ESTIMATION record 152, 159
repeated values xn 141
REPEAT option of $ESTIMATION record 143, 159
Repetition feature 152
REPLACE option of $ABBREVIATED record 156
REPLACE option of $SIMULATION record 146, 153
replication of experiment 43
REQUESTFIRST option of $SIMULATION record 146
REQUESTSECOND option of $SIMULATION record
146
RESCALE option of $MSFI record 143
reserved labels 54
reserved variable 7
reset-dose event record 57
reset event record 57
residual error 25, 32
residual RES 16, 92, 115
residual vsy, correlation of 117
RES, residual 16, 92, 115
RESUME option of $COVARIANCE record 144, 166
return code, error 148
REWIND option of $SIMULATION record 145
REWIND 52
RFORMAT option of $TABLE record 146
root.agh output file 154
root.fgh output file 154
root.xxx output file 154
RPT_ data item 152
RPTI,RPTO,RPTON reserved variable 152

R−1
covariance matrix 143

- S -

S1IT,S2IT reserved variable 144
S1NIT,S2NIT reserved variable 144
S1NUM,S2NUM reserved variable 144
SADDLE_HESS option of $ESTIMATION record 159
SADDLE_RESET option of $ESTIMATION record 159
SAME option of $SIGMA record 140
saturation model 34, 80
scale parameter 10, 24, 71, 77
scatterplot, partitioned 93, 104
$SCATTERPLOT record 87,92-93, 97
scatterplot 11,51, 57, 59, 92-93
scatterplot step 104
SD in SIZES 54
SD option of $OMEGA record 140
SD option of $SIGMA record 140
SEED option of $ESTIMATION record 159

SEED option of $TABLE record 147
SEOMEG reserved variable 158
SE output 154
sequence of data set 50, 52
SESIGM reserved variable 158
SE (standard error) 44
SETHET reserved variable 158
SETHETR reserved variable 158
SIGDIGITS option of $ESTIMATION record 91
SIGLO option of $COVARIANCE record 144, 166
SIGLO option of $ESTIMATION record 159
SIGL option of $COVARIANCE record 144, 166
SIGL option of $ESTIMATION record 159
SIGMABOUNDTEST option of $ESTIMATION record
159
σ̂ 41
$SIGMAPD record 141
$SIGMAP record 141
$SIGMA record 14, 87-89, 97, 139
SIGMA reserved variable 158
SIGMA 15,32
Σ 32, 88
significant digits, number of 97
SIMEPS subroutine 145
SIMETA subroutine 145
$SIMULATION record 144
simulation step 99, 144
single-response population data 23
SIN 73
SIRCENTER option of $COVARIANCE record 166
SIRDF option of $COVARIANCE record 166
SIRNITER option of $COVARIANCE record 166
SIRPRINT option of $COVARIANCE record 166
SIRSAMPLE option of $COVARIANCE record 166
SIRTHBND option of $COVARIANCE record 166
size of data set 50
$SIZES record 154
SKIP_ reserved variable 144
SLKJDF option of $ESTIMATION record 159
SLOW option of $COVARIANCE record 144, 166
SLOW option of $ESTIMATION record 159
SORT option of $ESTIMATION record 152, 159
SPECIAL option of $COVARIANCE record 143, 166
SQRT 73
SS data item 56, 58

S−1
covariance matrix 143

standard deviation 27,90, 116
standard error of estimate 92
standard error 8, 10, 44-45, 102, 129, 143
standard error vs. standard deviation 44
STANDARD option of $OMEGA record 140
STANDARD option of $SIGMA record 140
statistical error model 23
statistical model 125-126
STDOBJ option of $ESTIMATION record 159
steady-state data item 58
steady-state doses, multiple 63
steady-state dose 60
steady-state level 61-62, 64
steady-state 135
STIELTJES option of $ESTIMATION record 152, 159
STRAT,STRATF option of $SIMULATION record 146,
153
structural model 23, 36, 97, 112
SUBPROBLEM option of $SIMULATION record 144
subroutine, generated 6
$SUBROUTINE record 134
$SUBROUTINE record 71, 73, 97
$SUBOUTINES record 149
subroutine, user-supplied 6
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subroutine, user-written 149
sum of squares 10, 41
superposition 63
superproblem 144
$SUPER record 144
SUPRESET option of $SIMULATION record 146
SVARF option of $ESTIMATION record 159
symbolic label substitution 156
synonym 54
system, linear 63

- T -

table_compare utility 158
table file, external 146
table_quant utility 158
$TABLE record 87, 92-93, 97
table_resample utility 158
table step 104
table 57,59, 92
table_to_xml utility 158
tabs in data file 156
# tag label output 154
tag label # output 154
TAN 73
TEMPLT reserved variable 148,152
THBND option of $COVARIANCE record 166
theophylline example 8
THETABOUNDTEST option of $ESTIMATION record
159
THETAFR reserved variable 158

θ̂ 41
theta, initial estimate of 87
$THETAI record 153
$THETAP record 153
$THETA record 10,87, 97
$THETAR record 153
THETA 10, 73
THIN option of $ESTIMATION record 159
TIME/24 54,67
TIME data item, colon ":" in 66
TIME data item 56
TIME option of $DAT A record 156
time, relative 56, 66
time varying parameter 35
TNPRI subroutine 149
TOL option of $COVARIANCE record 134, 166
TOL option of $ESTIMATION record 134
TOL option of $SUBROUTINE record 134
$TOL record 134
TOL subroutine 132
to NONMEM Outputs, Changes 154
TO option of $SCATTERPLOT record 104
TRANS1 73
transgeneration 138,157
TRANSLATE option of $DAT A record 54,67, 156
translation 24,72, 98
TRANSLATOR error message 171
TRANSLATOR warning message 5
TRANS 4,24, 72
TRUE option of $SIMULATION record 145
true-value variable 81
TSTATE reserved variable 155
TTDF option of $ESTIMATION record 159
typical value 36,80, 90

- U -

UNCONDITIONAL option of $COVARIANCE record
143, 166
UNCONDITIONAL option of $SCATTERPLOT record
92
UNCONDITIONAL option of $TABLE record 92
UNCONSTRAINED ETAS 140,153
unexplained variability 119,126
UNIFORM option of $SIMULATION record 145
UNIT option of $SCATTERPLOT record 93
unit slope line 11, 93
units 24,77
upper case 155
urine collection 30, 64
urine concentration 25, 30, 35, 38, 64
urine volume 25,30, 64
user-defined model 133
user-supplied subroutine 6
user-written subroutine 149
USMETA subroutine 149

- V -

value, null 46
value, observed 4,55-56, 90
value, predicted 4, 56
VALUES option of $OMEGA record 141
VALUES option of $SIGMA record 141
value, typical 36, 80, 90
VARCALC 155
variability, interindividual 36
variability, intraindividual 25,36
variability, unexplained 119,126
variable, dependent 8-9, 23
variable, indicator 29, 35, 77, 81, 85-86
variable, random 6, 73, 81, 84
variance-covariance matrix, diagonal 89, 139
variance-covariance matrix 42
VARIANCE option of $OMEGA record 140
VARIANCE option of $SIGMA record 140
variance 10,36
VECTRA reserved variable 157
VERSION option of $MSFI record 142
volume of distribution V 8, 24-25
V, volume of distribution 8,24-25

- W -

warning message, TRANSLATOR 5
$WARNING record 156
weighted least squares WLS 41
weighted residual 92
weighted residual WRES 92, 115, 117
WIDE option of $DAT A record 53
WLS, weighted least squares 41
WRESCHOL option of $TABLE record 147
WRES, weighted residual 92, 115, 117

- X -

xml_compare utility 158
XVID1-5 data item 155
LNTWOPI 159
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year 2000 54
YLO YUP reserved variable 152
ỹ 41
y 23

- Z -

ZERO option of $ESTIMATION record 152, 159
zero-order bolus dose 134-135
zero-out a compartment 72


