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Preface

This edition of "NONMEM Users Guide -aR V Introductory Guide" is distributed with
NONMEM 7.4. 1t revises thearsion of Neember 2013, which appeared with NON-
MEM 7.3. Details that hae changed since the prieus edition hee been corrected, and
some ne features hae keen added.

Significant changes since the previous version are marked with bars. |

Examples of NONMEM outputs ka rot been updatedThey remain as thewere in
1994 and are from NONMEM IWW\Vith later versions of NONMEM there are changes in
the outputs. In some cases therding has been changed; there i& mwentent; and the
numerical results may fia changed slightly But none of this décts the features and
methodology that Lewis Sheiner described in chapters 2, 10, and 11.

True to its purpose as an instructional guide fow meers of NONMEM, this Guide
remains oriented to the classic NONMEM methods and basic features (through NON-
MEM VI). References toen earlier versions of NONMEM and PREDPP Veabkeen
deleted.

Chapter 12 (Brief Descriptions of Other Features) has begsede Sectiond-5 hae

been expanded to be more complefenew ction, 2.8. Output-Type Compartments,
describes a feature that hawajs been part of PREDPBuUt was not documentedlote
sub-sections titled "More About ...". Section 6 ("Supplemental List of Features through
NONMEM 7.4") is is a summary of all features of NONMEM not mentionedadises

in this guide.

Appendix 4 is ne to this \ersion. Itcontains implementation details for the recors
listed in Appendix 3.
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Chapter 1 - Introduction to NONMEM, PREDPP, and NM-TRAN

1. What This Chapter is About

This chapter introduces a computer program called NONMEM. It also introduoes tw
programs that are disttibted with NONMEM and mak it easier to use: PREDPP and
NM-TRAN. Thescope of this text itself is described, and suggestions are made for read-
ing it. A somewnhat detailed technical description of the components of NONMEM is
then gven. Thefinal section is a list of additional references.

2. Introducing NONMEM

2.1. Whatis NONMEM?

NONMEM stands for "Nonlinear Mixed Effects Model." NONMEM is a computer pro-
gram, written in FORTRAN 90/95, designed to fit general statistical (nonlineaBsre
sion-type models to data.

NONMEM was deeloped by the NONMEM Project Group at the Wasity of Califor
nia at San Francisco for analyzing population pharmacokinetic data in partictlase
are data typically collected from clinical studies of pharmaceutic agentdviiy the
administration of a drug to individuals and the subsequent aissrvof drug leels
(most often in the blood plasmalProper modeling of these datadtves accounting for
both unexplainable inteand intra-subject effects (random effects), as well as measured
concomitant effects (fixed fects). NONMEMallows this mixed effect modelingSuch
modeling is especially useful when there are onlywagiearmacokinetic measurements
from each indiidual sampled in the population, or when the data collection deaiggsv
considerably between these widuals. Havever, NONMEM is a general program
which can be used to fit models to a wide variety of data.

Like mary nonlinear regression programs, NONMEM does nethany built in" mod-

els (such as the linear model) with which it can compute a prediabee gven the cur

rent values of the regression parameters. Instead, NONMEM calls a subrowiimg ha
entry name PRED ("prediction”) to obtain a predictatle. PREDalso must compute

for NONMEM partial denatives with respect to certain randoranables. Dependingn

the model and the kinds of doses, PRED may be very simple or may be very complicated.
A user can write hisven PRED subroutine. This can be as simple or complicated as is
necessarend may iwolve alls to its own subprograms.

2.2. Whatis PREDPP?

PREDPP stands for "PRED for Population Pharmacokinetics". It is a PRED subroutine
for use with NONMEM and is the second major component distributed with NONMEM.
Whereas NONMEM is a general nonlineagnession tool, PREDPP is specialized to the
kinds of predictions which arise in pharmacokinetic data analysis. It can compute predic-
tions according to mardifferent pharmacokinetic models, according to a great variety of
dosing rgimens. Almosall the examples in this guide use PREDPP.

T NONMEM versions up through VI are the property of thgé&tes of the Uniersity of California, but ICON
Development Solutions hascelusive rights to license their use. NONMEM 7 is the curression of the soft-
ware and is the property of ICON Baopment Solutions.
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2.3. Whatis NM-TRAN?

NM-TRAN stands for "NONMEM Tanslator”. lItis the third major component distrib-
uted with NONMEM. It is a separate, "stand-alone" control language translator and data
preprocessorWhen NM-TRAN is used, a NONMEM run includesaweparate steps:

first the NM-TRAN step, in which a file of NM-TRAN records (whichglrewith "$")

are translated into geral NONMEM input files, and second the NONMEM step itself.

All the examples in this guide use NM-TRANVe grongly recommend its use.

Note that neither NM-TRAN nor NONMEM-PREDPP run interedsi. Files of com-
mands and data are created by means of (say) the operating systemTéditoNM-
TRAN and NONMEM are xecuted, using these files as input. Figure 1..nshihe rela-
tionship between NONMEM, PREDP&d NM-TRAN.

A file of NM-TRAN
records

A data file
Control and data

NM-TRAN
files for NONMEM

\ NONMEM
PREDPP

NONMEM output report

Fig 1.1. NONMEM, PREDPRnd NM-TRAN. A userwritten PRED subroutine could be included instead
of PREDPP.

2.4. Scopef this Introductory Guide

This Guide is intended to be read bywnasers of NONMEM-PREDRPTypically, such
users hee tharmacokinetic data, either from a population or from a singleichdilt, to

be fit to a standard pharmacokinetic model (e.g., a onecmecdmpartment linear mam-
millary model). However, new wers with nonstandard models, or with pharmacoki-
netic/pharmacodynamic data, may also find this guide helpful.

It is assumed that NONMEM and its components are already installed on tlsecoiser’
puter and that the usefawts to learn to use them as quickly as possible. This guide does
not tell hav to perform the installation or oto run an installed NONMEM under a par
ticular operating system; thewauser will have 1 ask experienced users what the local
commands areHowever, someone who is installing NONMEM at ameaite may find it
useful to reiew this guide to get a quickverview of NONMEM, its component pro-
grams, its inputs, and its outputs.

This guide is not a text book in pharmacokinetics or statistics. Readers shoadlilize
with basic concepts in pharmacokinetics and statistical data analysislso assume a

T The terms "population” and "single individual" are used in this guide. NM-TRAN and NONMEM outputs
refer to POPULATION and SINGLE-SUBJECT data and analysis.
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very basic familiarity with FORTRAN.

2.5. Contentsof this Introductory Guide

Chapter 2 contains tw examples of the use of NONMEM. The first presents data from

a dngle individual; estimates are obtained of his pharmacokinetic parameters. The sec-
ond presents data from a group of individuals; estimates are obtained of the pharmacoki-
netic parameters of the population which this group represents. The exampée® serv
introduce NONMEM notation, input and output, and to provide an idea of what is possi-
ble using the system.

Chapter 3 presents the notation and definitions we will use to discuss models fadindi

ual data. The relationship of these models to data is discussed, and the distinction
between so-called fixed effects and random effects is made.

Chapter 4 extends this discussion to models for population data.

Chapter 5 discusses NONMEM fitting criterion, the parameter estimates obtained by
using this criterion, and the standard errors of these estimatd®n discusses hoto

do hypothesis tests with NONMEM.

Chapter 6 tells hav to create data files for NONMEM-PREDPP andahtio describe
them using the $BTA and $INPUT records of NM-TRAN. It also discusses the Data
Preprocessor feature of NM-TRAN.

Chapter 7 tells hav to use NM-TRAN to write simple $SUBROUTINE records for
PREDPPhow to write $PK records for individual data, andvwhto write $PK records for
population data.

Chapter 8tells haw to write simple $ERROR records for PREDREhapters 7 and 8 are
meant to be read in parallel with Chapters 3 and 4.

Chapter 9 tells haw to use NM-TRAN to specify the remaining choices for an analysis.
It tells hov to assign initial values to parameters ($THETA, $OMEGA, $SIGMA
records), hw to gecify what analysis tasks to perform ($ESTIMATION, $@®I-
ANCE records), and ho to specify certain additional output ($TABLE, $STRER-
PLOT records).

Chapter 10describes NONMEM autput in detail.

Chapter 11 outlines the process of modalilding, showing hes a Smple model can be
made more compketo better fit the data.

Chapter 12 briefly describes a variety of features of PREDPP and NONMEM that are
someavhat advanced for this text but are of interest to most users of NONMEs¥er-
ences are gen to aher documents in which additional information can be found.

Chapter 13discusses errors that can occur during a NONMEM run.

Appendix 1 describes PREDP®’ most commonly used pharmacokinetic models
(ADVAN subroutines).

Appendix 2describes alternat parameterizations (TRANS subroutines) for these mod-
els.

Appendix 3is a list of NM-TRAN records.

2.6. How to Read this Guide

Readers who are completelywnéo NONMEM should read this guide starting with
Chapter 2; the examples presented are used again in the later chapters. Chapters 2-5 are
theoretical in nature. Chapters 6-12 describe the detailsuiddiny the input for

-3-
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NONMEM-PREDPP and interpreting the output. Readers whe Iman-pharmacoki-

netic data to fit can skip (or skim) Chapters 3, 4, 7, and 8. Readers who already ha
some familiarity with certain topics (e.g., whovbhased other nonlinear analysis pro-
grams to analyze data) can concentrate on the chapters of interest toAbetrongly
recommend that all users "graduate" to the more thorough NONMEM documentation
listed in Section 4 of this chapter.

Throughout the guide,xamples are gen of NM-TRAN records. These xamples
appear in boldface:

$THETA .01
Examples are alsowgn of (fragments) of input data files. Theppear as follows:
I D AMT TI ME DV
2 320. 0. 0.
2 0 .27 1.71

Alphabetic characters such as ID, AMEc., are shan for descriptie purposes. The
arenot part of the actual data file.

3. ABrief Technical Overview

In this section we discuss the components of NONMEM in some dE&iast-time read-
ers may prefer to skip this section and go directly to Chapter 2, whieh aj eample
of a NONMEM run, and return to this section later (if at all).

3.1. NONMEM

NONMEM is written (almost) entirely in ANSI FORTRAN 90/95. It is distributed on
CD-ROM as FORTRAN source code, some of which is encryptedan be compiled
and run on ancomputer which has a FORTRAN 90/95 compiler and sufficient memory
and speed to run a large, computationally intengiogram.

NONMEM consists of a main program and mauabroutines, all of which are required
for each NONMEM run. As discussed akpone subroutine, PRED, is not included in
NONMEM itself.

3.2. PREDPPand the PREDPP Library

PREDPRP is not a single subroutine. It is a collection of FORTRAN subroutines. Some of
these are alays needed but must be supplied by the user himself (see PK afdRERR
below). Othersare alvays needed and are supplied; these are called the kernel routines.
Others (subroutines ATAN and TRANS, for @ample) are also whys needed, and are
supplied, but are chosen fromfdifent versions corresponding to different pharmacoki-
netic models. The collection of supplied routines constitutes the PREDPP Library.

3.3. Suboutines PK and ERROR

Two very important subroutines of PREDPP are called PK and@RRPK computes

the values of the population or individual pharmacokinetic parameters (e.g., CL and V) of
a gven model and accounts for the "differences" between individual and population v
ues. ER®R accounts for the "differences" between predicted and obsealedsy
These tw subroutines are where the basic task of modelling is carried out; this task is the
users responsibility Chapters 7 and 8 arevdged to a description of these subroutines.

Figure 1.2 shows the major components of PREDPP.
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PREDPP kernal subroutines

ADVAN and TRANS

PK

ERROR

Figure 1.2. Components of PREDPRDVAN and TRANS are chosen from the PREDPP libraP¢ and
ERROR are user-supplied.

3.4. Building an Executable Module for NONMEM

Whether PREDPP is used or a special purpose PRED subroutine is written, the PRED
subroutine must be combined ("linked") with NONMEM,; this process (which is some-
times is called "link editing" or "loading") must ®ldace before the actual NONMEM

run. TheNONMEM-PRED combination is generally called a "load module" oe'e
cutable module". Compiling and linking are processes which are operating system
dependent; each installation must supply its own commands and procedures for these
tasks. Thg may be done before the NM-TRAN step or between it and the NONMEM
step. Thischoice is discussed in Section 3.7 keld-or certain platforms, a front-end
interface preided by the NONMEM Project Group (nmfe74.bat for MS/DOS; nmfe74
C-shell script for Unix-type) can be used to perform these steps, and can create all both
types of load modules described helgenerated subroutines and user-written subrou-
tines.

3.5. NM-TRAN

NM-TRAN provides the following services: control language translation, model specifi-
cation via FORRAN-like datements (called abbreviated code), partideddhtiation,
and preprocessing of the data. ¥laee discussed separately.

3.6. Control Language Translation

NM-TRAN includes a language for communicating control information to NONMEM.
NM-TRAN records are free-form (i.e., spacing between options within a record and the
order of the records and their options igifie) and use English words (or their ablire
ations) for options.For example, the record name $ESTIMATION may be abbreviated to
$EST, the option name SIGDIGITS may be abbreviated to SHEher spaces or commas
may be used to separate optiomefaults are understood for most options, allowing the
records to be relatly compact. Considerable error checking is performed by NM-
TRAN. This reduces the number andvedty of the errors that can occur during the
NONMEM run. NM-TRAN also produces messages that warn the user of possible errors
in the data and/or control stream.

NM-TRAN translates a file of NM-TRAN control records into NONMEM control
records, which use a fixed-field, predominately numerical control language.

3.7. ModelSpecification via Abbreviated Code

With PREDPPFORTRAN subroutines PK and ERROR are needed to specify parts of the
pharmacostatistical modeln most cases, these specifications can be direxpiyessed
within NM-TRAN records $PK and $ERROR, using FIOBAN-like assignment and
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conditional statements called abbreviated co@leese statements are implemented by
NM-TRAN as complete FORTRAN subroutines in file FSUBS, incorporating the abbre-
viated code. An intermediate step between the NM-TRAN and NONMEM steps is
needed to compile these subroutines and link them with NONMEM-PREDPP.

The message "Recompiling certain components" will be displayed at the console at this
step.

Figure 1.3 shows hothe compile and link step relates to the steps of Figure 1.1.

A file of NM-TRAN

records A data file

. pd
I~

NM-TRAN

A file of

FORTRAN subroutines:
FORTRAN PK and ERROR
compiler and/

Control and data loader
files for NONMEM

\ NONMEM
PREDPP

Generated
PK,ERROR

v

NONMEM output report

Figure 1.3. Building a NONMEM load module with generated FORTRAN subroutines. An intermediate
step is placed between theot@eps of Figure 1.1.

If the user supplies complete PK and ERR subroutines (i.e., $PK and $EBR
records are not used), then the NONMEM load module can be buil tiren

Note that gen when PREDPP is not used, the same optioust.eFor example, if the
desired model can be expressed via a $PRED record, then NM-TRAN will generate a
complete PRED subroutind-lowever, whereas NM-TRANs FORTRAN-like g/ntax is
sufficient for most purposes of writing PK and EBR subroutines, it is not sufficient for
writing ary but the simplest of PRED subroutines.

3.8. Fartial Differentiation

NONMEM requires that PRED (whether PREDPP or user-written) compute more than
just predicted &lues. Itmust also compute certain partial detives with respect to the
random wariablesny and £ described in Chapters 3 and 4. When $PK, $ERROR, or
$PRED records are used, NM-TRAN performs symbolic differentiation to generate the
code needed to compute thesewd#itres. Thisrelieves the user of a major burden.

3.9. DataPreprocessor

NM-TRAN includes a Data Preprocessor program which allows the user grestsl-fle
ity in constructing his data file than is allowed in a data file input directly into NON-
MEM. Thisis discussed in Chapter 6.

4. Additional Documentation

More information can be found in the other parts of the NONMEM Users Guide, all of
which may be found as pdf files on the NONMEM distribution medium.
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Part | - Users Basic Guide
A thorough, step by step discussion of the various features and some of the statisti-
cal concepts wolved in using NONMEM, including marexamples.
Part Il - Users Supplemental Guide
A continuation of Part | which includes advanced features of NONMEM.
Part 11l - NONMEM Installation Guide
A guide for installing NONMEM, PREDRRBnd NM-TRAN.

Part IV - NM-TRAN Guide
A complete reference guide to NM-TRAN and the Data Preprocessor.
Part V - Introductory Guide
The present document.
Part VI - PREDPP Guide
A complete reference guide to PREDPP.
Part VII - Conditional Estimation Methods
A description of these methods and some guidelines for their use.
Part VIII - Help Guide
A fast way to locate information on avgh word or topic. The content of the Help

Guide is also supplied on the NONMEM distiion medium as both text files
("on-line help") and html files for on-line searching.

NONMEM V Supplemental Guide
Describes ne features of NONMEM V.

Introduction to Version VI
Describes ne features of NONMEM VI.

Introduction to NONMEM 7.4.0
Describes ne features of NONMEM 7.1, 7.2, 7.3, and 7.4

NONMEM7_Technical_Guide
Technical Guide on the Expectation-Maximization Population Analysis Methods in
the NONMEM 7 Program.New with NONMEM 7.2; revised for NONMEM 7.3
and for NONMEM 7.4

useful_variables
New with NONMEM 7.3; revised for NONMEM 7.4 A description cdinables that
are aailable via the NM-TRAN include file uti\nonmem_general_reserved.
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1. What This Chapter is About

In this chaptertwo examples of the use of NONMEM will bevgn. Thefirst estimates
pharmacokinetic parameters of an individual from his data; the second estimates so-called
population parameters from data from a group ofviddals. Theexamples sem
introduce NONMEM notation, input and output, and to provide an idea of what is possi-
ble using the system. The second example will be discussed again in Chapter 11.

2. AnlIndividual’ s Theophylline Kinetics

Figure 2.1 shows the input used to fit a model to olbsiens of theophylline plasma con-
centrationvstime in a single individual after a single dose of 320 mg.
$PROB S| MPLE NONLI NEAR REGRESSI ON - THEOPHYLI NE
$I NPUT | D AMT TI ME DV
$DATA P2DATA
$SUBROUTI NE ADVAN2
$PK
KA=THETA( 1)
K=THETA( 2)
V=THETA( 3)
S2=V
$ERROR
Y=F+ERR( 1)
$THETA (0, 1.7) (0, .102) (0, 29.)
$OVEGA 1.2
$ESTI MATI ON PRI NT=5
$COVARI ANCE
$TABLE | D AMT TI ME
$SCATTER PRED VS DV UNIT

Figure 2.1. The input (i.e., NM-TRAN control records) for analysis of some individual theophylline data.

The first line (record) gies a rame to the problem. The rest of the lines (records) discuss
the data, the model, and the desired output. Before going into these in some greater
detail, you may want to look right woat figures 2.1 and 2.2, and then 2.4 and Eig-

ure 2.2 shas the data for this problem, and figures 2.4 and 2.% some of NON-
MEM'’s autput. All you need to knw to get a good idea of what this analysis shows is
that the one-compartment model with first-order absorption has been used; thedbserv
concentrations and the times of observation after the bolus dose are in columns 4 and 3,
respectrely, of figure 2.2; and that the symboVDBstands for dependent variable (the
obsenred concentrations, in this casejou should, for &kample, gen at this point, be

able to tell that the estimate obNme of Distribution (V in figure 2.1, and THETA(3) in
figure 2.4) is 32 liters (L), with a standard erroedf 26L. Now consider the figures in
greater detail.

2.1. TheNM-TRAN Control Records

The second record of figure 2.1 names the data items that appear on each data record, and
the third record gies the name of the file containing the data records,AT2Din this
example. Figure.2 shows the contents of PRTA.
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2 320. 0. 0.

2 0. .27 1.71
2 0. .52 7.91
2 0. 1. 8.31
2 0. 1.92 8.33
2 0. 3.5 6. 85
2 0. 5. 02 6.08
2 0. 7.03 5.4
2 0. 9. 4.55
2 0. 12. 3.01
2 0. 24. .90

Figure 2.2. The contents of the data file containing the data records.

According to the second record of figure 2.1, the third data item (column) of a data record
is TIME, the time associated with theeat described by that data record. Therg at a

given time (for this simple data set) can either be the administration of a dose or the
acquisition of an obseation. Thesecond data item of a data record is AMTiount (in

this case in mg) of the dosevsgn at TIME, the time of the recordApparently 320 mg is

given at ime zero (first record of figure 2.2), and no further doses gea @ll zeros in
column 2 thereafter).The fourth data item (column) in P2DA is named I, for
Dependent Variable (the measured plasma thdlipd concentration), as already men-
tioned. Soall of the data records, except the firstieghe time after the 320 mg dose,
and the concentration of thegine (in mg/L) measured in a plasma sample drawn at
that time. The first data item is labelled ID for the IDentification number of the patient.
Here it happens to be 2.

2.2. TheModel

The fourth record of figure 2.1 identifies the pharmacokinetic model PREDPP is to use:
the one-compartment model with first-order absorption. It is implemented by 4 MD
subroutine (see Chapter 1, Section 3.2) which is calleddNR? (See Chapter 7)Figure

2.3 shavs the part of the output of NONMEM for this problem that verifies the suser’
choice of model. It also describes the features of the model in terms of its compartments.
Of relevance to this problem are the DEP@ompartment (where the dose goes, and
from which drug enters the central compartment by a first order process), and the CEN-
TRAL compartment itself. Note, for example, that the default compartment for doses
(i.e., where PREDPP will add doses if not otherwise instructed) is the DE®t@part-

ment, as it should be.



Chapter 2 - NONMEM Examples

ONE COVPARTMENT MODEL W TH FI RST- ORDER ABSORPTI ON ( ADVAN2)
MAXI MUM NO. OF BASI C PK PARAMETERS: 3
BASI C PK PARAMETERS ( AFTER TRANSLATI ON) :

ELI M NATI ON RATE (K) IS BASI C PK PARAMETER NO.: 1
ABSORPTI ON RATE (KA) IS BASI C PK PARAMETER NO.: 3

COVPARTMENT ATTRI BUTES

COWPT. NO FUNCTION I NI TI AL ON OFF DOSE DEFAULT DEFAULT
STATUS ALLOWED ALLOVWED FOR DOCSE  FOR OBS.
1 DEPOT OFF YES YES YES NO
2 CENTRAL ON NO YES NO YES
3 QUTPUT CFF YES NO NO NO

Figure 2.3. The PREDPP output that verifies the ss#oice of model. Features of the model are dis-

cussed, such as the names and numbering of parameters, and the attributes of the various compartments in the

model.

The fifth input record (figure 2.1) signals the start of the sigg€cification of the model

for the pharmacokinetic parameters. This specificationvengn the net 4 lines of so-
called abbreiated code (the $PK record, along with this abbreviated code is called the
$PK block). Some of the parameters that NONMEM estimates are denoteleogin,

and are labeled THE&Tin NONMEM input and output. The model specified in figure
2.1 is very simple. It says that a different unkmaconstant (NONMEM parameter) is to
be assigned to each pharmacokinetic parameter: first-order absorption rate, KA (line 1 of
the PK block, after the $PK record - TH&T)), rate constant of elimination, K (line 2 -
THETA(2)), and wlume of distribution, V (line 3 - THEA{3)). TheS2 parameter (a so-
called scale parameter) is discussed in Chapter 3, Section 2.2.

The sixth input record (figure 2.1 -%1ine) signals the start of the usesgecification of
the (statistical) model for the lack of fit of the pharmacokinetic model to the dhis.
specification is gien in the next line of abbreviated code (the $EMRrecord, along
with this line of abbreviated code is called the $ERROR blo€kge model here says that
observations differ from predictions by an additeror (ERR(1)).

Record 7 ($THETA) gies NONMEM information about possible values of each element
of @ in the format: lower bound, initial estimate, upper bouvhen, as in this particular
record, only tvo numbers are gen for an element of, these are understood to mean the
lower bound and initial estimate; the upper bound is unlimifedcord 8 ($OMEGA)
gives NONMEM an initial estimate of the variance of ERR(1). This statistical parameter
is often denoted byz in statistical discussionsybwith data from a single individual, it

is denoted by2 in NONMEM documentation, and by OMEGA in NONMEM input and
output. Itis understood that a variance parametenisya nonngaive. The SOMEGA
record is further discussed in Chapter 9, Section 3.

2.3. TheOutput

Record 9 ($ESTIMATION) instructs NONMEM to obtain estimates of the parameters,
and the next record (3G®RIANCE) asks that it also obtain standard errors of the
parameter estimateg.he output is shown in figure 2.4. It requires little discussibime

first item, the minimum value of the objeifunction, is a goodness of fit statistic, much
like a sim of squares (and as with a sum of squares, wer lilve value, the better the fit).
The parameter estimates (the paramesdunes at which the objegd function is mini-
mized) and their standard errors fello Note that the estimate of OMEGA, too, has a
standard error Unlike nost fitting programs, NONMEM treats this parametee lgay

-10-
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other.

B R R R R R Y

kokokk ok kK ok ok kkokk Kk k Kk ok k kokokkkkkkkkk oKk kK kkkkKk
kokokk ok kK ok ok kkokk Kk k Kk ok k M NI MUM VALUE OF OBJECTI VE FUNCTI ON Kok okkkkkkkkk oKk kK kkk kK
kokokk ok kK ok ok kkokk Kk k Kk ok k kokokkkkkkkkk oKk kK kkkkKk

B R R R g R R i R A
B R R R R R R T e 8. 940 R R R R R R R T e

B R T R R R R e R R R T Y

kokokk ok kK okkkk oKk ok kk Kk ok k kokokkokkkkkkkokkkkkkkkKk
kokokk ok kK okkkk oKk Kk k Kk ok Kk FI NAL PARAVETER ESTI MATE kokokkokkkkkkkokkkkkkkkKk
kokokk ok kK okkkk oKk Kk k Kk ok Kk Kok kkokkkkkkkokkkkkkk kK

B R T R R R R e R R R T Y

THETA - VECTOR OF FI XED EFEECTS  *% %% % %% % %% & %% % % % %% & % %
TH 1 TH 2 TH 3
1.94E+00 1.02E-01 3.20E+01
OVEGA - OOV MATRI X FOR RANDOM EFFECTS - ETAS ****#%x*
ETAL
ETAL  8.99E-01

B R e R R R R e R R R R T Y

kokokk ok kK kkkkokk ok kkkk ok Kk kokokkkkkkkkk oKk kkkkkkKk
kokokk ok kK kkkkokk ok kkkk ok Kk STANDARD ERROR OF ESTI MATE Kok kkokkkkkkkokkkkkokk kK
kokokk ok kK kkkkokk ok kkkk ok Kk Kok kkokkkkkkkokkkkkokk kK

B R e R R R R e R R R R T Y

THETA - VECTOR OF FEI XED EFEECTS %% %% % % %% %% & %% % k% %% & % %
TH 1 TH 2 TH 3
6.28E-01 7.35E-03 1.25E+00
OVEGA - OOV MATRI X FOR RANDOM EFFECTS - ETAS ****#%x*
ETAL
ETAL  5.44E-01

Figure 2.4. NONMEM output giving the goodness of fit statistic (the minimum value of the objectc-
tion) the parameter estimates, and their standard errors.

The next to last control record asks NONMEM to print a table displaying the input data
and certain computed quantitie&.portion of a NONMEM table is shown in figure 10.10

of Chapter 10. The last control record asks NONMEM to erekatterplot of the pre-
diction of each plasma concentration (PRED) VS the obdevalue (DV) and to dva

the line of identity (UNIT for "unit slope" line) on the plotThe plot is shown in figure

2.5.

-11-
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PRED VS. DV
8. 00E- 01 2. 34E+00 3.88E+00  PRED 5. 42E+00 6. 96E+00 8. 50E+00
TUO0E-0L. . . o ot o s

.

.
2. 26E+00.
.

3. 82E+00.
oV .

5. 38E+00. *

6. 94E+00.

8.BOEH00. . . . . s

Figure 2.5. A scatterplot of the observed data (DV) vs the predictions of the best-fitting model parameters
(PRED). Thdine of identity (intercept = 0; slope = 1) is dmra If all points fell on that line, the fit would be
perfect.

3. A Population Model for Phenobarbital

About 60 infants were gén phenobarbital therapeuticallyA plasma concentrationag
measured in each some hours after the first (loading) doseyddlloy multiple mainte-
nance dosesA second, and sometimes a third concentration were measured fagy
155 concentrations were obsetv Figure2.6 gives the NM-TRAN control recordsThe
data are too lenggtto show in full, but figure 2.7 shows the data for the first widlial .
Figures 2.8 - 2.10 ke ome relgant output. Again, most of the analysis results are
apparent from the figures, and you should try to see if you can figure them out before
going further Note that the $INPUT record wadefines a n& data item, WTthe patient
weight. It's value is gien on every data record for an individual, in the column indicated.
This is so despite the fact that WT may not change within avidodil. Thisis a bit rep-
etitious, but covenient.

T Hle PHENO of NONMEM distribution medium contains the complete data set.

-12-



Chapter 2 - NONMEM Examples

$PROBLEM PHENOBARB
$INPUT  ID TIME AMT W APGR DV
$DATA  PHENO
$SUBROUTI NE ADVANL
$PK
TVCL=THETA( 1)
CL=TVCL+ETA( 1)
TVWD=THETA( 2)
V=TWD+ETA( 2)
THE FOLLOW NG ARE REQUI RED BY PREDPP
K=CL/ V
s1=v
$ERROR
Y=F+ERR( 1)
$THETA (0, .0047) (O, .99)
$OVEGA . 0000055, .04

$SIGVA 25

$ESTI MATI ON PRI NT=5

$TABLE ID TIME AMT WI' APGR
$COVARI ANCE

$SCATTER PRED VS DV UNIT
$SCATTER RES VS W

Figure 2.6. NM-TRAN control records for analysis of some population phenobarbital data.

0. 25.

o

17.3
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PREEREREEEREREERERER
ARARRAARRARARAL
NNNNNNNNNNNN

31.0

Figure 2.7. The first individuad'phenobarbital data.

3.1. TheNM-TRAN Control Records

The records are very similar to those for the theophylline problém. nev features are

that the model has changed (it is implemented byARN1, not ADVAN2), the model

for the pharmacokinetic parameters is more complicated, and an additional scatterplot is
requested. Thdata for each infant is similar to those shown in figure 2 Wehe, now

all of the data records for each infant start withdhmevalue for the ID data item (col-

umn 1), but this value diffefsetweennfants.

3.2. TheModel

ADVANL1 implements the one-compartment (moqumential) model, without first order
absorption. N@bsorption model was needed for this problem because all concentrations
were measured mgrmours after the last (oral) dose, so absorption could be considered to
be complete, and, for the purposes of data analysis, immediate.

The parameters of the one-compartment model are defined by theiatelreode fol-
lowing the $PK statement: Clearance (CL) and Volume of Distribution BOwever,
here each parameter is not simply equal to one of NONMpMameters (an element of
THETA). Rather CL, for example, is equal to a parameter (THED)) plus a ne term,
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ETA(1). Thelatter expresses interindividuahnability, and stands for the deviation of
the individual's true clearance (CL) from the populatioaluve (TVCL, Typical Value of
CLearance, which, in turn, is simply THE{L)). This model is essentially d#rent
from the theophylline model, because it incorporates inteiohail variability (some-
thing that an individual model need not ddote that since PREDPP ultimately needs
the values of microconstants, rather thapsblogical-based pharmacokinetic parameters
such as clearance, code must bexgifor K, the rate constant of eliminatiohere is,
though, a simple alternaé t writing this additional line of code. It is discussed in
Chapter 3 Section 2.1.

The abbreviated code after the $EBRRrecord is exactly the same as that with the theo-
phylline data and xpresses the same model for lack-of fit between observations and pre-
dictions for an indiidual. The$OMEGA and $SIGMA records, whichvgi NONMEM
information about the estimatedniances of the EXand ERR variables, are discussed in
Chapter 9, Section Freviously the initial estimate of the variance of ERR(Bsvgiven

on a $OMEGA record. Here it is\gn on a $IGMA record. This difference in NON-
MEM corventions between indidual type data and population type data will be dis-
cussed more fully in Chapters 3 and 4.

3.3. TheOutput

NONMEM is again instructed to estimate the parameters and their standard €hers.
results are shown in figures 2.8 and 2.9.

ok ok k ko k ok k ok ok ok ok k ok ok ok ok kK k ok k ok k kK ko k ok ok ok Kk ok k ok k ok Kk ok k ok k ok Kk k ok k ok Kk k ok k ok ko k ok k ok k ok k ok k ok k ok k ok k ok kkkk ok k ok k ok k ok k ok k ok k ok k ok k ok kkkk ok k ok ok ko k ko
Kok ok ok kK ok ok ok k ok kK ok ok ok kK ok Kokok ok ok k ok k ok ok ok ok ok ok k ok ok k Kk

KAk Rk KRRk K KRk A KK M NI MUM VALUE OF OBJECTI VE FUNCTI ON kKRR KA KKKk K KRk A KK

Kok ok ok kK ok ok ok k ok kK ok ok ok kK ok Kokok ok ok kK ok ok ok ok ok ok ok k ok ok k Kk
ok kk ko k ok ok ok ok ok ko k ok ok ok Kk ok k ok k ok ko k ok k ok ko k ok k ok Kk ok k ok k ok Kk ok k ok k ok Kk k ok k ok Kk ko k ok k ok k ok k ok k ok k ok ok ok k ko k ok k ok k ok k ok k ok k ok k ok k ok k ko kkkk ok k ok ok ko k ko

Kok ok ok kkkk ok ok ok ok ok kkkk ok kk ok ko k ok kkk ok kk ok ok k ko k ok ok ko k ok ok ko k ok ok 717. 203 Kok ok ok ok ko k ok ok ok ok ok k ok kk ok ok ok ok ok k ok kk ok ko kk ok ok ok ok kk ok ok ok k ok ok ok kk ok ok

ok ok ok ok k ok k ok ok ok ok ok ok k ok ok ok ok kK k ok k ok k kK ko k ok ok ok ko k ok k ok Kk ok k ok k ok Kk ok k ok k ok Kk k ok k ok kkk ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok kkkk ok k ok ok ok ok k ok ok
Kok ok ok kK ok ok ok k ok kK ok ok ok kK ok Kokok ok ok kK k ok ok ok ok ok Kk k ok k Kk

kK K K K K K K K K K K K K K K K K FI NAL PARAVETER ESTI MATE kK K K K K K K K K K K K K K K KK

Kok ok ok kK ok ok ok k ok kK ok ok ok kK ok Kokok ok ok kK k ok ok ok ok ok Kk k ok k Kk
ok ok k ko ko k ok ok ko k ok ok ok ok kK k ok k ok k ok Kk ok k ok ok ok ko k ok k ok Kk ok k ok k ok Kk ok k ok k ok k ok k ok k ok ko k ok k ok k ok k ok k ok k ok k ok k ok k ko k ok k ok k ok k ok k ok k ok k ok kk ok ko kkk ok k ok ok ko k ko

THETA - VECTOR OF FI XED EFFECTS  **** %%k kkkkkkkkkx k%%
TH 1 TH 2
5.48E-03 1.40E+00
OMEGA - COV MATRI X FOR RANDOM EFFECTS - ET. ahehohe
ETAL ETA2
ETAL 6. 85E- 06
ETA2 0. 00E+00 2. 86E-01
SI GVA - COV MATRI X FOR RANDOM EFFECTS - EPSILONS ****
EPS1
EPS1 8. 01E+00

Figure 2.8. NONMEM output giving the goodness of fit statistic (the minimum value of the wbjkictc-
tion) and the parameter estimates for the phenobarbital problem.
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R R R R R I I I I I I I I I I I I I I T I T T s T s s
Kk kkkkkkkkkhkkkkk kK Kk kkkkkkhkkhkkkkk kK

kK K R R K K K K K K K K STANDARD ERROR OF ESTI MATE kR K K R K K K K K K K K

Kk kkkkkkkkkhkkkkk kK Kk kkhkkkkkkhkkkkk kK
R R R R I I I I I I I I I I T I T T s s

THETA - VECTOR OF Fl XED EFFECTS  **** %%k k%% % %%k k%% k%% *
TH 1 TH 2
4.86E-04 7.84E-02
OMEGA - COV MATRI X FOR RANDOM EFFECTS - ETAS  *x****x*
ETAL ETA2
ETAL 2.27E-06
ETA2 .. ....... 8. 34E- 02
SIGVA - COV MATRI X FOR RANDOM EFFECTS - EPSILONS ****
EPS1
EPS1 1. 49E+00

Figure 2.9. NONMEM output giving the standard errors of the parameter estimates for the phenobarbital
problem.

Note that nav there are estimates of the variances of the interindividual differences in CL
(OMEGA - ETA1l) and V (OMEGA - EA2), as well as of the residual erraariance
(denoted by SIGMA in NONMEM output when the data are from a populatiain,ag
see Chapters 3 and 4). There are also standard errors for these estimates.

The next-to-last control record asks NONMEM to m#ie same kind of scatterplot as in

the theophylline problem: a plot of the predictions vs the obtiens. Herea prediction

for an indvidual’'s dosenation is based on typical (populatiorglwes of the pharmacoki-

netic parameters (see figure 2.8), rather than the values of the pharmacokinetic parame-
ters for the specific indidual. Theplot is shown in figure 2.10.
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PRED VS. Dv

0. 00E+00 2. 60E+01 5.20E+01  PRED 7. 80E+01 1. 04E+02 1. 30E+02
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5. 70E+01
.
.
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Figure 2.10.A scatterplot of the observed data (DV) vs the predictions with the best fitting model parameters
(PRED). Thdine of identity (intercept = 0; slope = 1) is dma If all points fell on that line, the fitould be
perfect. Herein contrast to figure 2.5, the data arise from yndifferent indviduals. Onecannot tell which

data came from which infant.

Although the fit is fairly good, the points far to the right of the line of identity of figure
2.10 indicate that there are nygoredictions (PRED) that are much higher than their cor
responding observations YIp This is seen from another point of wein the second
scatterplot. Thiscatterplot plots residuals (RES) vs patient weight (from the data item,
WT — see figure 2.6)A residual is the di€rence between an observed concentration
and its prediction (the same prediction used in the scatterplot of figure 2.10). The residu-
als reflect not only lack of fit between obssions and predictions for avgn individual

(the variance SIGMA), but also interindividual variability (the variances comprising
OMEGA). The can be thought of as reflecting the part of the data that the model does
not explain. Ascan be seen from figure 2.11, there is a clear relationship between the
sign and magnitude of the residuals and patient weight. Here, the patients with the
largest weights hae the most ngdive residuals; i.e., their predictions are muchyéar

than their obseations. Thesare the same points that fell on the far right of figure 2.10.

-16-



Chapter 2 - NONMEM Examples

RES VS. Wr
-9. 00E+01 - 6. 60E+01 -4. 20E+01 RES -1. 80E+01 6. 00E+00 3. 00E+01
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.
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. . .
. .
. . .

BUTOEH00. . . o

Figure 2.11.A scatterplot of the residuals (RES) vs patient weight (WT). The pattern suggests thaa-observ
tions are underpredicted in infants withvlaveight, and werpredicted in those with higher weights.

An obvious explanation is that Clearance atuvhe, or both, increase with weight, so
that without weight being taken into account, too high a prediction is being made for a
larger infant and too l@ a prediction is being made for a smaller infant, all other things
(i.e., dose) being equalio e if accounting for weight impves the fit, the run specified

in figure 2.12 can be done.
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$PROBLEM PHENOBARB W TH VIEI GHT | N MODELS FOR CL AND V
$INPUT  ID TIME AMT WI APGR DV
$DATA  PHENO
$SUBROUTI NE ADVANL
$PK
TVCL=THETA( 1) +THETA( 3) * WI
CL=TVCL+ETA( 1)
TWD=THETA( 2) +THETA( 4) * WI
V=TWD+ETA( 2)
. THE FOLLOW NG ARE REQUI RED BY PREDPP
K=CL/ V
s1=v
$ERROR
Y=F+ERR( 1)
$THETA (0, .0027) (0,.70) .0018 .5
$OVEGA . 000007, .3
$SIGQVA 8
$ESTI MATI ON PRI NT=5
$COVARI ANCE
$TABLE I D TIME AMT WI APGR DV
$SCATTER PRED VS DV UNI T
$SCATTER RES VS WI

Figure 2.12. NM-TRAN control records for fitting a model taking into account the effect of patient weight to
the population phenobarbital data.

Now both TVCL and TVVD are linear functions of weight with, in the case of TVCL, for
example, intercept THETA(1), and slope THEB). Bothslope and intercept are "popu-
lation" parameters since theelate weight to typical population values of the pharma-
cokinetic parameterNow we e wty WT is given in every data record: the ablwiated

PK code may need to beatuated at eachvent time. If WT did not changewver time

within ary patient, it could be gien only on the first data record for each patient, but then
slightly more complicated abbreviated code would be needed. The output from running
the input of figure 2.12 is shown in figures 2.13 - 2.16.

ok kk ok ok k ok ok ok ok ok k ok ok ok ok ok k ok k ok kk ko k ok k ok ko k ok k ok ko k ok kk ok ok k ok k ok ko k ok k ok k ok k ok k ok k ok k ok h ok k ok k ok kk ok ok k ok k ok k ko k ok kkk ok kkhk ok ok ok k ko k ok k ok ok ok ok k ok ok

Kok ko ko kR Ak K K kR Kk ko ko kR Rk K K kR A
Kok ko ko kR Ak K K kR M Nl MUM VALUE OF OBJECTI VE FUNCTI ON Kok ko ko kR Kk K K kR A
Kok ko ko kR Ak Kk K kR Kok ko ko kR Kk K Kk kR K
ok ko ko ko Rk Rk Rk Kok R Rk Rk Rk ok R kR ok ok ok kR ok ok ok kR ok Rk ok kR ok Rk ok kR ok Rk ok R kR ko Rk R kR R Rk Rk R kR R Rk Rk K Rk
ok ko ko kR kR Rk Rk Kk kR Rk Rk Kk R kR Rk Rk Rk kR Rk Rk K Rk 609. 134 ok ko ko kR ok Rk Rk Kk kR ok Rk Kk ko kR Rk Rk Rk kR R Rk Rk K Rk
ok ko ko ko Rk Rk Rk Kok R Rk Rk Rk ok R kR ok ok ok kR ok ok ok kR ok Rk ok kR ok Rk ok kR ok Rk ok R kR ko Rk R kR R Rk Rk R kR R Rk Rk K Rk
Kok ko ko kR Ak K K kR Kok ko ko kR Kk K Kk kR
Kok ko ko kR Rk K K kR K FI NAL PARAMETER ESTI MATE Kok ko ko kR Kk K Kk kR
Kok ko ko kR Rk K K kR K Kok ko ko kR Kk K Kk kR

ok kk ok ok k ok ok ok ok ok k ok ok ok k ok k ok k ok kk ko k ok kk ok k ok kk ko k ok k ok ko k ok k ok k ok ok k ok k ok ko k ok k ok k ko k ok k ok k ok k ok k ok k ok kk ko k ok k ok hkk ok kkh ok ok k ok k ok ok k ok k ok ok ok ok k ok ok

THETA - VECTOR OF FI XED EFFECTS  **** %%k kkxk 4k kkhx k%%

TH 1 TH 2 TH 3 TH 4
1.43E-11 1.21E-01 4.77E-03 9.18E-01

OMEGA - COV MATRI X FOR RANDOM EFFECTS - ETAS  ***x*x**
ETAL ETA2

ETAL 1. 36E- 06

ETA2 0. 00E+00 7. 51E-02

SI GVA - COV MATRI X FOR RANDOM EFFECTS - EPSILONS ****
EPS1

EPS1 8. 71E+00

Figure 2.13. The minimum objeeé function \alue and parameter estimates for the phenobarbital data,
using the model of figure 2.12, which takes into account the effect of patient weight.
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R R R R R I I I I I I I I I I I I I I T I T T s T s s

Kk kkkkkkkkkhkkkkk kK Kk kkkkkkhkkhkkkkk kK

kK K R R K K K K K K K K STANDARD ERROR OF ESTI MATE kR K K R K K K K K K K K

Kk kkkkkkkkkhkkkkk kK Kk kkhkkkkkkhkkkkk kK

R R R R I I I I I I I I I I T I T T s s

THETA - VECTOR OF Fl XED EFFECTS  **** %%k k%% % %%k k%% k%% *
TH 1 TH 2 TH 3 TH 4
9.49E-11 1.46E-01 2.24E-04 1.13E-01
OMEGA - COV MATRI X FOR RANDOM EFFECTS - ETAS  *x****x*
ETAL ETA2
ETAL 7.24E-07
ETA2 .. ....... 3. 63E-02

SIGVA - COV MATRI X FOR RANDOM EFFECTS - EPSILONS ****
EPS1
EPS1 1. 71E+00

Figure 2.14.The standard errors of the parameter estimates for the phenobarbital data, using the model of
figure 2.12, which takes into account the effect of patient weight.

Note the imprgement in the minimum objee function value (it drops 108 points), and
the profound decreases in the sizes of the estimates of the interindividual variances; no
that weight is in the model, there is less unexplained interindividuability. As will

be discussed in Chapter 5, the decrease in the ofgjdatiction can be used for a formal
hypothesis test of the appropriateness of the medel (figure 2.12) for the effect of
weight on the pharmacokinetic parameters.

Note also the very small values estimated for TAE]J and for its standard ertoifhe
intercept term of TVCL does not appear to be an important part of the niddslmodel

is refined in Chapter 10, Section 6.2, where it is seen that deleting THETA(1) and
THETA(3) produces a model that fits as well as the model including them.
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PRED VS. Dv
9. 00E+00 1. 78E+01 2. 66E+01 PRED 3. 54E+01 4. 42E+01 5. 30E+01

5UO0EF00. . . o s
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4. 40E+01.

5. 70E+01.

TUOOEH0L. . . o o o

Figure 2.15.A scatterplot of predictions vs observations for the phenobarbital data, using the model of figure
2.12, which takes into account the effect of patient weight. Compare to figure 2.10.

The scatterplots (figures 2.15 and 2.16) confirm that themadel is an impreement:
the group of points far to the right of the line of identitydhdsappeared from the PRED
vs DV plot, and the plot of residuals vs weight no longer shows a pattern.
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RES VS. Wr
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Figure 2.16. A scatterplot of residuals (RES) vs patient weight (WT) for the phenobarbital data, using the
model of figure 2.12, which takes into account the effect of patient weight. Compare to figure 2.11.

4. Owerview

The examples in this chapter illustrate some of the most important and useful features of
NONMEM.

o

[e]

NONMEM can fit both individual and population models.

NONMEM has a menu of pharmacokinetic models from which the one appropriate
to the problem at hand can be chosen.

The user specifies the relationship of pharmacokinetic parameters to independent
variables (such as WT in the phenobarbital example), using "population” parame-
ters that will be estimated.

The user also specifies which parameteny \between individuals, and the form
(model) for this ariability, as vell as the form (model) for the &fences between
observations from an individual and their predictions for this individual.

NONMEM estimates parameters describing both kinds of variability.

NONMEM provides estimates (standard errors) of the precision of its parameter
estimates, including those describing variability.

NONMEM provides a means of deciding whether one model (e.g., that including
weight's dfect on CL and V) fits the data better than another using the minimum
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objectve function value, a goodness-of-fit statistic.

° NONMEM provides (limited) graphics, useful in judging the adeyudche model
currently fit to the data.
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1. What This Chapter is About

In this chapterthe notation and definitions we will use to discuss models fovithdil

data will be presented. The relationship of these models to data will be discussed, and a
distinction between pharmacokinetic structural models (that describe the underlying
shape and form of the data) and statistical error models (that describe the "errors" or dif-
ferences between obsations and structural model predictions) will be ma8everal

error models will be discussed, as will a useful modelling device, the indicator variable.

2. PharmacokineticStructural Models for Individual Data

By individual datawe usually mean data from a single individual (animal or human).
One could also be concerned with data comprised of a pharmacokinetic response at just
one time point from each of a number of induals. Callthis type of data single-
responseopulationdata.This name comes from the fact that data such as these can, of
course, be garded as a particular instance of the more general data type, population
data;i.e., data comprised of orn@ more pharmacokinetic responses at different time
points from a number of individuals sampled from a populatiithough one can dis-

cuss the treatment of single-response population data as population datae toften

treated just as are individual data.

A simple pharmacokinetic model for data from a singleviitllial is the monogonen-
tial ("one-compartment") model:

Aj = De_ktj (31)

This model describes the typical time course of amount of drug in the Bydwnq a
function of initial dose D), time ¢), and gparameter k. As we nay be interested i at
several possible times, we explicitly note this by the subsgripthich indexes a ist of
times,tg, tq, ... N TP P

A way to write a generic form for a structural model, omitting details of its structure, is
yi = f(xj, 9) (3.2)

wherey stands for some "response” (dependaniable) of interest4 in (3.1)), the sym-

bol f stands for the unspecified form of the model (a meporential such as in (3.1)),
which is a function of known quantities, (t; and D in (3.1)), andparameters ¢ (k in
(3.1)). Thequantities in x ar&nown because theare either measured or controlled, and
therefore, are called &l effects,in contrast to effects which are not known and are re-
garded as random (see befo Theparameters in the paramet@ctor ¢ are called fird
effectparameterbecause thequantify the influence of the fixed effects on the dependent
variable. Eachone of an indiidual’s pharmacokinetic parameters is a particular type of
fixed effect parameteWith NONMEM, parameters comprisirgare (usually) fixed ef-
fect parameters,ub these may or may not be an iidual’s pharmacokinetic parameters
(contrast figures 2.1 and 2.6). Here we shall use the sygntmwlthe parameterector
comprised specifically of an inddual’s pharmacokinetic parameters (although there will
be some exception to this).

Aside from the fact that the valuevgi by a $ructural model are usually not thalues
obsered due to measurement error or model misspecification, an amount ofAdofig (
(3.1)) is usually not itself obseaable. Insteadwe may obsem a @ncentration ¢) of
drug. W reed an "observation scaling” model to describe the relationship be#veen
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andC. This might be
Ci=+' (3.3)

where V is another paramet&olume of Distrilution. (We denote the concentration in
model (3.3) by the symbd, to dstinguish it, the model-predicted value, from the actu-
ally observed alue,C. This will soon be discussed further PREDPP assumes that
there is alvays an observation scaling modeldiB.3) that relates an amount of drug (in
some compartment of the body) to the observation, and theref@gsadxpects a param-
eter, Sn that scales (i.e. divides) the predicted amount innfiecompartment. Irthe
example abwe, Sl is smply V. In other xamples, to be discussed laténcan be more
complicated. Ifa value forSnis not specified, it is taken to be Eor the rest of this dis-
cussion, it is corenient to assume that itself includes a scaling parameter (if such is
needed, andven though such a parameter is not usuallyarged as one of an indd-
ual's pharmacokinetic parameters) and thatactually includes observational scaling.
Note, considering the example of (3.3), tkat (D, t), andg = (k, V). Thusx and ¢ of
(3.1) are in general lists of things (vectors), not single things (scalars).

PREDPP implements a number of pharmacokinetic models, such as the one-compartment
model (3.1), (3.3). These will be discussed more fully in Chapter 7. There is no need for
further general discussion of kinetic models, as we assume the readers of this document
are familiar with pharmacokineticsHowever, two modelling features desesviurther
comment, alternate parameterizations and the special paramé&ter,

2.1. Alternative Paameterizations

Recall the phenobarbitakample of Chapter 2For the first run, the input contained,
among other things, some lines of code defining the vari@lesndV, and then the line

K=C/V

This line was needed because PRED®#ets the one-compartment model to be param-
eterized using the parametér the rate constant of elimination, not clearance asid v

ume of distrilution. However, we chose to estimate typical population valuesGarand

V, so we lad to relate these parameters to THERd then relat& to CL andV. This is

an xample of reparametrization of a model so that the pharmacokinetic parameters used
are those of primary interest to the modelerfact, we may use girparameterization we

wish, so long as we are willing to include the reparameterization line(s) that translate our
parameters into those expected by PREDRPhapter 7 discusses the parameters
PREDPP expects for the various models it implemert#nyvever, there is a program
called TRANS which automatically does this translati@ifferent versions of TRANS

exist in the PREDPP Library and correspond to translations of different parameterizations
into that expected by PREDPP.

2.2. TheScale ParameterS

Usually obsenations are concentrations. So, as in model (B3ill usually be set
identical toV. Howeve, Sis not alays simplyV. Some examples should clarify this
point. (Inthe discussion belg we avoid the notationSn and useS, to refer to the scale
term for the amount in the compartment in which concentrations are being measured.)

2.2.1. SDepends on a Known Constant

This almost trivial case occurs when one wishes to match the units of predicted responses
to those of the datal-or example, suppos® is in milligrams, but concentrations are in
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ng/ml. If no scaling is done, the units @fwill be kiloliters (i.e.,V=1 corresponds to
V=1000 liters). To avoid this, one might choose the model

S=V/1000

thereby cowerting the units ofA into micrograms, and since mcgéng/ml, the units of
V become liters. Of course, one could recode oaata, dividing all concentrations by
1000 (or multiplying the dose by 1000) anabid this, but that may not be ogamient.

2.2.2. SDepends on a Parameter

Later in this chapter we will discuss a model used when the data arise foaiffénent
assays (call them assay 1 and assayriuch a case, there may be a systematic (multi-
plicative) bias of one assay reladi o the other If we wish to allav for this possibility

we might need a model such as

OV, if assay isl

S=
V, if assay i

whereh is a nev parameter that measures the proportional bias of the assays (i.e., bias
causes the apparent volume of distribution to be different for data from ahesdays).

The parameteh is not really a pharmacokinetic paramebeit for the purpose of this dis-
cussion it can be included in

2.2.3. SDepends on an Element of x

Later in this chapter we will describe a model useful whem Kinds of responses are
measured, plasma and urine concentratidnghe case of urine concentrations, the pre-
dicted total drug in the urine during a time periodailable from an "output” compart-
ment present in all models implemented by PREDPP; see Chapter 7) woalth e
scaled by the actual urine volume during that time peridds volume would be an ele-
ment ofx, and Swould be set equal to it.

3. StatisticalModel for an Individual’ s Observations

One does not, in factyver obsene the predicted plasma concentration (oy ather pre-
dicted response). What one obsnis a measured value which differs from the pre-
dicted value by some (usually small) amount called a resgit@i(also called intra-indi-
vidual error). We regad this error as a random quantity (see Ww@loWe will want
NONMEM to fit our model to our data, and in so doing, provide us with estimates of the
model parameters. The way NONMEMfit follows the data is determined daty by

what we tell it about the nature of the errors (see Chapté8)rust therefore pnade
NONMEM with another model, an error model.

There are manreasons that the actual obssign may not correspond to the predicted
value (e.g.C as gven by the right side of (3.3)) The structural model may only be
approximate, or the quantities inmay hae keen measured with erra, as is dways
true, pharmacokinetic responses may be measured with some error (assayt ésrtmd.
difficult to model all these sources of error separaselyve sually male the simplifying
assumption that each difference between an observation gmedistion(i.e. each error)

is a randomly occurring humbeiWhen the data are from a single individual, and the
error model is the Addite eror model (see Section 3.1, belg the error is denoted hy
herein, by EA in NONMEM output, and by EX or ERR in NM-TRAN input. (When
data are from a population, and the same error model is used, this error will be denoted
see Chapter 4.) Therefore a model for the jth observatjorpuld be written
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yi = f(Xj,9) +n; (3.4)

Implicit in using the symbap in this way is the assumption that all residual errors come
from probability distributions with mean zero and the same (usually unknawiange.

(The error variance is the mesguarederror) Morecomplicated error modelsvalving

n can be written (see bel). A schematic of model (3.4) is shown for the structural
model of (3.1), (3.3) in figure 3.1. Because this model describes the influence of both
fixed effects X;) andrandom effectsry;), it is called a Mied EffectsModel (hence the
name, NONMEM:NONinear Mixed EffectsModel). Mixed effects models, in general,
may hae nore than one randomfe€t, and more than one type of random effect (Chap-
ter 4); (3.4) is only a particularly simple example.

t

Figure 3.1.C vst for a monoexponential model. The solid linefi&, ¢); the circles are the observed data
points. Anerror is indicated.

Even though errors are unpredictable random quantities, some information about them is
usually assumed, and some can be estimdtadt, it is assumed that the mean error is
zero. Thissimply means that were the truelwes for the parameters gmknown, the

model would hae ro systematic werall bias (e.g., be systematically belor bove the

data points, onverage).

A second aspect of the errane that can be estimated by NONMEM, is its typical size.
Since errors may be posii a negdive, their typical size is not gen by their mean
(which is zero), but by their standardvidgion, the square root of theianance. Onean
always simply cowert the variance into the standard deviation, ands@sely NON-
MEM output gves estimates of the erroraviance. \ith individual data this ariance is
denoted in this text by?, and by OMEGA in NONMEM input and outpufThe standard
deviation (SD) of the error is denotegherein. Theeason that OMEGA, rather than, for
example, OMEGA SQ stands fa® in NONMEM input and output will be discussed in
Section 3.8.(We will see, in Chapter 4, that when the error is symbolized, lmpt 1, its
variance will be denoted? in this tet, and SIGMA, not OMEGA, in NONMEM input
and output.) Here, the parametet quantifies the influence of the randorfeef, 7 on
the observationg;. Itis therefore called a randoeiffectsparameter.
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3.1. TheAdditi ve Error Model

The symboly is alWways used to denote a random quantity whose probability distib

has mean zero andnancew®. Model (3.4) says that the errors themselves can be so
regarded, and since an observation equals its prediction (under the structural model) plus
an errormodel (3.4) is called the Addie error model. This model is illustrated in figure

3.2.

Figure 3.2.C vst for a monoexponential model. The middle linef (, ¢); the outer lines ge the approxi-
mate "enelope” for additve erors. Dont be fooled by the apparent widening of the gap between the upper
and lower curves as time increases: theiwal distance from the middle line to either outer linevisye
where the same.

3.2. TheConstant Coefficient of Variation and Exponential Models

NONMEM allows an error model which can be more complicated than that of @Bnr®.
such more complicatedubuseful model is the Constaoefficientof Variation (CCV),
or Proportionakrror model,

yi = f(xj,0) + £(Xj, @n; = T(X;, 9)(1 + 1) (3.5)

A fractional error is an error expressed as a fraction of the corresponding preditigon.
CCV model says that a fractional error can be written ag am. as a random quantity

with mean zero andaviancew?®. Under this model, theariance of an error itself is pro-
portional to the squared prediction, with being the proportionalityakctor and so is not
constant ver obsenations. Sinceunder this model, the standard deviation of the error
and also ofy, is wf (X, ¢), and since the mean gfis f(X, ¢) (wheng assumes its true
value), the coefficient of variation of is just the constant (the coefficient of ariation

of a random quantity is defined as its standard deviation divided by its mean). This is the
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reason the CCV error model is so named. Also for this reasois, dimensionless, in
contrast to hang units equal to those of the squared observation as with the vadditi
model. Thiserror model is illustrated in figure 3.3.

t

Figure 3.3.C vst for a monogponential model. The middle line i{x, ¢); the outer lines ge the approxi-
mate "emelope" for constant coefficient of variation errors.

The exponentiaérror model is

yj = f(Xj, 9) exp(n) (3.52)

This model is sometimes referred to as the log-normal model, because it it igeaitlditi
logs are taken (and because eta sj is assumed to be normally distributed):

logy; =log f(X;j, @) + (3.5b)

See Chapter 8, Section 3.2 for a discussion of this model.

3.3. CombinedAdditi ve and CCV Error Model

When most observations gbthe CCV model but some obsatwns may be near the
lower limit of detection of an assay model which may be useful is one which is a com-
bination of both the Addie and CCV error models:

yi = f(xj,0) + f(Xj, 901, + n2;. (3.6)

Here there are twtypes ofn’s, n1 and 2. Thefirst has ariancew?; the second has a
possibly different ariance,ws. NONMEM permits seeral types ofs’s. Under this
model, the variance of the error portion of the modeki§(x;, ¢)> + w5. When the pre-
diction is near zero, the variance is approximately constant, namjelyThis is the
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smallest variance possible and corresponds, perhaps, to the limit of assay precision.
When the prediction is considerably greater than zero, the variance is approximately pro-
portional to the squared prediction.

3.4. ThePower Function Model

A model that has both the add#i and the CCV error models as special cases, and
smoothly interpolates between them in other cases is the Power Function model:

yj = f(xj,0) + T(xj,9)"n;. (3.7)

Here f(x, ¢) is raised to thep™ power in the error model, rather than th& power
(Additive eror model; notea® = 1 for ary number,a) or the first paver (CCV model).

The parametep is a fixed effects parametewen though its role in theverall model is

to modify the variance model, not the structural modgith NONMEM all fixed efect
parameters must be elements of the general paranestenr g. If we want the Pwer
Function Model to interpolate between the agiditnd CCV models,p must be con-
strained to lie between 0 and 1. NONMEM allows this (see Chapter 9). While one might
be tempted to combine the Power Function model with the Additbdel, much as the
CCV and Additve nodel were combined afwe, such a combination model can lead to
identifiability difficulties, and for this reason such a combination shoulddédeal.

3.5. Two Different Types of Measurements

Another more complicated error model can arise when more than one type of measure-
ment is made. Suppose, for salf illustration, that the obsemtions are drug concentra-
tions, but that the are measured with tw different assays. If one assay may be more
precise than the othethen this is equilent to saying that one assay has a smalfer

than the otherWe would like to be &le to tale this into account in the analysis (i.e., not

pay as much attention to the less precise ohtiens), and perhaps (if we\seough

data) estimate the reledi recision of the assays as wello do this in the notation we

have introduced, an independerdnable indicating which observations are obtained with
which assay is needed: we call such an independent variable an indicator variable.

3.5.1. Usef an Indicator Variable

Let one of the data items (an elemenkpbe labeledASY, and let ASY; take the value 1

if the assay used foy; was o the first type, and the value O, if it was of the 2nd type.
The \ariable,ASYis an indicator variable, and it allows us to write an adlitipe error
model, sayas

y; = f(x;, @) + ASYn1; + (1 - ASY)n2, (3.8)

Here there are twtypes ofp’s, n1 and n2. Thefirst applies to the first type of assagd

has ariancew?; the second applies to the second type of asadyhas a possibly dét-

ent \ariance,w3. NONMEM permits seeral types ofp’s. Different types ofy’s can be
correlated, and NONMEM can allothis. Havever, this is something we would only

need to consider in the example at hand if the same blood sample were measured by both
assays. Wwill not emphasize this possibility in this introductory guide. (This possibil-

ity also applies to random variables describing unexplained interindividdefedites

with population data; see Chapter 4)

When the assay is done by the first metig@Y will be unity, and (3.8) becomes
yj = f(Xj, @) + nl; (3.8a)
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so that the variance of the errordd. When the assay is done by the second method,
ASYwill be zero, and (3.7) becomes

yj = (X, 9) +n2, (3.8b)
so that the variance of the error is n@v Both w? andw3 are random effect parameters.
An equvaent form of the model that can be implemented easily is

_Of(xj,9) +n1;, if ASY,is1

= ) . 3.8c
Df(xj,qo) +72;, if ASY;isO ( )

Yj

3.6. Two Different Types of Obsewations

The same need for separate scales for different measurements can arise when more than
one type of observation is made. Suppose both plasma concentr&j@nsl (rine con-
centrations Cu) are measured. The structural model @rmight be (3.1), (3.3). If we
assume that urine is collected between each adsemvofC, then the structural model

for Cu;, the drug concentration in the urine collected betweenttjmend timet; might

be

. D
Cuj = fo - e — g7kl (3.9)
J

where f, is the fraction of drug excreted unchanged (a parameter)y@nis the urine
volume collected between tintg ; andt; (a data item)t. Assuming again, for eadt
the example, that we want to use an adelitype error model for the observations, the
problem is that urine concentrations can be orders of magnitgs than plasma con-
centrations, so that, while an additieror model might be appropriate for either type of
obsenration alone, the tartypes of observations mustueadfferent typical error magni-
tudes; i.e., different variance:sz(s).

An indicator \ariable can again be used. Let the indicatoiableTYPbe unity if thej"
obsenation is aC, and 0 if it is aCu. We now need to use it for both the structural and
error models, so that:

y= TYPjCj +(1- TYPj)(fu]- +TYPnl; + (1-TYP))n2; (3.10)
A little thought shows that the indicator variable selects the correct predictiondu)
and the correct error term for each observatign (
An equialent form of the model that can be implemented easily is
[€; +n1;, ifTYPisl
== _ _ 3.10
y S:uj +n2;, if TYP;isO ( 3)
3.7. More Than One Indicator Variable

Of course, there could be three types of assays, or more, and sjmilamtythan tvwo

types of obsemtions. Onaisually needs one less indicator variable than types of things

to be distinguishedSo, if there were three assays, one would defi§¥l and ASY2.

ASY1 would be 1 if the assay were of the first type, and zero otherAS¥& would be

1 if the assay were of the second type, and zero otherwise. The error model for the data

T With all PREDPP pharmacokinetic models there is an output compartment for which the total amount of drug
leaving the system is computed automaticallshe concentration in the urine is then obtained by setting the
scaling parameter for the output compartmenfiio
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would require three types gfs, 71, n2, andn3.
yj = (X}, @) + ASYLjnl; + ASY2jn2; + (1 - ASYLj)(1- ASY2))n3; (3.11)
Equation (3.11) results in the following:
Assay ASYL ASY2 Typeofp var(y;)

1 1 0 nl W}
2 0 1 n2 w3
3 0 0 n3 w3

An equialent form of the model that can be implemented easily is

SF(x,0) + 01, if ASYL; is 1
yj = Of (X, @) +n2;, if ASY2;is1 (3.10a)
Bf(xj,(a) +n3;, if ASY1; is0and ASY2; is 0

3.8. TheGeneral Mixed Effects Model for an Individual

We havejust seenxamples of more complicated error models than the simple Aéditi
model. W here gire a nathematical form for the most general mixed effects model that
is considered within the scope of this document:

yj = f(Xj, 9) + (X, 9)n; (3.12)

whereh is a vector valued function of and parameterg (where the latter is interpreted
broadly to contain parameters suchpad (3.7)), andy is a vector of different diérent
types. Thenotationh' denotes vector transpose. When there is more tham tyye,
there will be seeral w?'s, one for each type. The collection of these is den@ethd is
labeled OMEGA in NONMEM input and outpufhis collection is rgarded as a diago-

nal matrix (diagonal for n@; but see Chapter 4), rather than agetar We will use the
symbol w? and wy interchangeably in this text to denote the (diagonal) element of this
matrix found in positiork, k.
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1. What This Chapter is About

In this chaptermodels for data from (animal or human) populations will be discussed.
These models describe obsaiens from a number of individuals sampled from the pop-
ulation. Thedistinguishing feature of the data to which such models apply is that there is
more than oneobsenation from some (usually most) initiuals. A population model
includes the structural model of Chapter 3, but alsovamedel, which shall be called

the parametemodel,for each indiidual’s kinetic parameters. The parameter model can
have loth fixed and random fefcts. Apopulation model also includes the error model of
Chapter 3.

2. General

Individuals difer, and the types, degrees and causes of theferalites are often what
we want to learn. NONMEM was designed to help us learn these thitgse indrid-
ual differences can be due todik and/or random effects, but yhal manifest them-
sehes by afecting the value of an inddual’s parametersg. That is, first, each indid-
ual is rgaded as having his own particular value @f If the data come from
i =1,... N individuals, then we may rewrite the (not completely) general mixedtef
model, (3.4) fory;, the j™ observation from th&" individual, as

Vi = f(Xj, @) + ¢ (4.1)

Eq (4.1) is nw (part of) a population model because it explicitly recognizes, through the
subscriptj, that the data come from distinct initiuals. Notetoo that we hee written ¢,
rather tham. According to NONMEM coventions, when modeling data fronpapula-

tion, the random effects in the residual errors are denoteq their individual \ariances

by o?, and the collection of the variances by the makiixienoted SIGMA in NONMEM
input and outputWe dso adopt the same ogention here as we did f@@: the k" diago-

nal element of is interchangeably denoteg or oy.

When dealing with population data, the symbhas reserved for random effects influenc-
ing the \ectorsg,, as is low explained. V& can write a general modelybnot yet as gen-
eral a model as we will present later) épr

@ =9(z,0) *+n (4.2)

It is called the paramet@nodel.Here, g is a structural (though non-kinetic) type model
(of which examples will be gen shortly), which is a function of fixed fefcts, z;, and
fixed effects parameterg, Note that since, in general,is a vector,g must be a ector-
valued function, and for the same reasgrs usually a ector This will be discussed
further later All fixed effects, whether tlyeare part of the kinetic structural model, or are
part of the parameter model, are input to NONMEM in a unifoay viFor the purposes
of this discussion, the symbpis used for the particular fixed effectsgnsuch as the in-
dividual’s height, weight, and so forth (this will be discussed further in a momergn
though most oftewp is regarded as time weriant, as is done in most of the discussion in
this document, fixed effects can change with time, and thus kinetic parametersgwithin
can change with time. This will be discussed further in Section 3.4.2.
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3. Structural Parameter Models

The symbol in (4.2) for the fixed effects parameter vecte, it . As mentioned in
Chapter 3, we reseevthe symbolg, in this document, for an inddual’s fixed effect
parameters and use the symBdior a vector ofpopulation (fixed effects and possibly
random effects) parameters.

Recall the phenobarbital example of ChapteiF2&x the second run, the input contained
the line of code

TVCL = THETA(1) + THETA(3)*Wr
Translated into the symbols we are using here, this is
Cli = 6, + B;WT, (4.3)

In (4.3),6, andé; are the first and third elements of the parametetorg, and WT; is an
element ofz (recall that this &lue of weight appears as a data item). The tileie GL

is meant to distinguish this typical populaticalue of clearance from th# individual’s
actual value of clearance. According to this mo@&l, will be the same for antwo
individuals both of whom he the same value of weight. Equation (4.3) defines an ele-
ment (the one associated with clearance) of #wov-\alued functiong. Note that in
(4.3), we use the subscripto stress that this equation applies to ifAeéndividual, hut
there is no confusion when, as in the NM-TRAN input, and in thewoilp, the subscript

is omitted. It should a&ays be understood that all variables and data items used in the
parameter model definition refer to the sameviddial. Mary different models are pos-
sible to describe the dependence of individual parametersashdfects. Havever, cer-

tain model forms are simple, easy to use, angramost casesAn assortment of these
will be discussed briefly next.

3.1. Linear Models

The simplest form thag can take, and the most common, is one that is lineér in
example is (4.3): all elements &fappear as linear coefficients of termgolming data
items. Thedata items themselves can appear nonlineaitiiout affecting the linearity
with respect tog. For example, if clearance is the sum of renal and non-renal compo-
nents, and renal clearance is badkto be poportional to renal function as described
according to a standard formulaaitving the elements af: age (AGE), serum creatinine
(SECR, and weight\(VT), then one might write

Cliet= 6WT (4.4)
1.66-. 011AGE

RF =WT SECR (4.5a)

Clyen = 64RF (4.5b)

Cl = CLpet + Cliyen (4.6)

Clearly, RF is a nonlinear function dbECR for example, and so, thereforeﬁls but Cl
is linear ing, and (4.4 - 4.6) is still considered a linear model. (Do notryvabout the
non-consecwie rumbering of the elements 6f a nodel forCL is being deeloped (an
alternatve © 4.3), and the missing elemergisand&; will appear presently.)
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3.2. Multiplicati ve Models

Multiplicative nmodels are linear models, but on addghmic scale. For example, if
patients cuering a very wide range of weights are studied, metabolic clearance might
vary with weight, but not linearlyend a substitute for (4.4) might be

LCl et = 61 + 6,l0g(WT) (4.4.1)
Clinet = eXALCL e

Note that the logarithm OEL e (LCL,e) is linear in @, but CL e itself is not. Of
course, (4.4.1) can also be written

Clier = HLWT? (4.4.2)

Models (4.4.1) and (4.4.2) are eepiént so &r asCl is concerned, Ut ; of (4.4.2) corre-
sponds to expy) of (4.4.1).

3.3. SaturationModels

A useful model for processes reaching a maximum is a hyperbolic medetéxample,

if a second drug, (whose steady-state plasma concenti@pes,is known and zilable

in the data set), is present in some individuals and it isviedlthat this second drug is an
inhibitor of the metabolism of the study drug, one might wish to use

6,Cpss [
WT%? 443

This model is shown in figure 4.1. The inhibition peessed by the ratio occurring
within the brackts and is a conea hyperbola, asymptoting to a maximum value equal to
8,. Itis identical in form to the familiar Michaelis-Menten model.

6

CL met

WT

91- e2

e3 Cpsso

Figure 4.1. A hyperbolic model for metabolic clearance of drug on the ordinate, as inhibited by another drug
at steady-state concentratidpss on the abscissa.
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3.4. Modelswith Indicator Variables

Indicator variables were discussed in Chapter 3 in connection with the error mbésl.
can be quite useful when modelling individual parametersy @ilgeusually used in a lin-
ear model.For example, if the clinical condition, heart failure, is noted as "present" or
"absent”, one can define an indicatariable, HF which equals O if heart failure is
absent, and 1 if it is present. If metabolic clearance is thought to be affected bypiheart f
ure, one might choose

Cliet = (6, — G,HF)WT (4.4.4)

Here, the non-heartflure cases will hae Climet = 64WT, while the heart-failure cases
will have Cl o = (61 — 8,)WTT.

3.4.1. Combinations

Given the basic building blocks of linganultiplicative and saturation models, these can

be combined in the usual algebraiays (usually by addition) to makmore compl&
models. Br example, one could use (4.4.3), (4.5), and (4.6) as a model.fa non-
additve example arises if plasma and urine concentrations are both observed and
(kinetic) model (3.6) is to be used for the latt&he parametef,, the fraction of drug
excreted unchanged into the urine might be modeled as

- C~I’Ien
° Cl
whereCl,., is given by (@.5) andCl by (4.6) (using ayof the (4.4) variants).

(4.7)

3.4.2. Time Varying z

As mentioned in Section 2, although most of the time the data itéectirad an indrid-
ual's ¢ do not changewer the course of his data, theccasionally do, and PREDPP can
handle this. For example, if an indiidual had heart failure for part of his obs#ion
period, but not the restl ¢, according to (4.4.4) should chang®r, if acute renal dil-
ure occurred during a patiemttbsenation period,Cl,., would change, according to
model (4.5).

PREDPP implements its kinetic model recustsi: given the state of the system at time
(by state we mean the amounts of drug in all the compartments), it updates éneesjlv
the state to that at tintg,,, using the value of (and in general, the value &j at time
tj;; to compute a value ap holding between times andt;,;. The value ofz used to
compute thispis that value found on the data record with tipe. So, in order to hee

@ change appropriately asdoes, one places a value ofvhich is typical for the time
periodt; to tj,; on the data record associated with the time pgint This will not
always be easy since the redat element(s) oz may not be measured at, foraeple,
the midpoint of the time interval (the value at th&pointof the time interal is a good
choice for thetypical value for the interal). If not, one will h&e to use some interpola-
tion method to arvie & the typical walue. Theimportant point is that the values of the
independent variables at timg,; determine the values of the imttlual’s parameters
applying to the entire peridg to ;.

T Heart failure is gpected to decrease metabolic clearance. If it does, using a minus sign in (4.4.4) allows the
more pleasing result thé&p will be estimated as posig. The model is identical to one with a posgtisgn, but

then 8, would probably be rgstive. If 8, were constrained to be nongatve, then the sign chosen in the
model statement would, of course, be important.
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3.5. Structural Kinetic Models

The kinetic models (i.e., the models for responses such as drug concentrations) used
when performing a population analysis do nofedift all from those used for an iwidi-

ual analysis. One still needs a model for the relationshiptofg and x, and this rela-
tionship does not depend on whetpathanges from individual to individual or with time
within an individual.

4. Population Random Effects Models

Under NONMEM corentions, there are twlevds of random effects, angl and ¢ are
the symbols used for the vectors of first and secoved tandom effects, respeatly.
With data from a single individual, only firstvk random eflects are neededdowever,
with data from a population of individuals, both first- and secomeltandom effects are
needed. First-leel effects are needed in the parameter model to help modeplaime
able interindvidual differences ip, and second-ieel effects are needed in the (intraindi-
vidual) error model.For example, in (4.2) there is an element®fs), that is the difer-
ence between the individuahueV, (an element ofp) and V;, the typical value o¥;.
This is a first-lgel random efect. In(4.1) g; is the error betweew; and f(x;, @). This

is a second-kesl random effect.

4.1. Modelsfor | nterindividual Errors

The difference betweeg andg(z, ) is called an interindiidual error. It arises from a
few sources: the functiog may be only approximate, and/omay be measured with-er
ror. It is regaded as a random quantignd it may be modeled in terms gfvariables.
As usual, each of these variables is assumedv@ean 0 and a variance denoteddsy
which may be estimated. This variance describes biological population variability.

The difference betweeyy, and f (x;;, @) is called an intraindiidual error.It has been dis-
cussed at some length in ChapterAthough in that discussion about individual data,
this difference was modeled in termsro¥ariables, in this discussion about population
data, it is modeled in terms efvariables. Eacte variable is assumed to ¥ mean 0
and a variance denoted by which also may be estimated.

Each pair of elements in has a ceariance, and NONMEM can also estimate this,
although often we choose to assume that thari@mce is zero (we made this same
assumption for the different elementsyah Chapter 3, Section 3.5.1).

A covariance between twdements ofy, n, andn.,, sQy, is a measure of statistical asso-
ciation between these swandom wariables. Theicovariance is related to their correla-

tion, pxm (Pxm = Pmi) DY

COM/7ks Mm) = PkmWk Wm (4.8)

(Note that nav that we are suppressing the subsdriph 7, we may, without confusion,
use the subscript position to designate elememns) of

The variances and eariances among the elements mpfare laid out in a c@riance
matrix, calledQ, and labeled OMEGA in NONMEM input and outputhis matrix was
defined in Chapter 3, Section 3.8, but some additional comment here may be Hielpful.
has, for example, 3 elementhas the following form:

w11 Wi W13

W1  Wop  Wo3
W31 W3p W33
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Here, as pndously, wy is another way of writing theaviancew?, and wy, (k # m) is the
covariance between, andn,,.

The elementsv; 1, wys, ws3 are called the diagonalementsof the matrix. If the nondi-
agonal elements (the\@iances) are all zero, i.e. the correlation among all painsedf

ements is zero, the matrix is called a diagonal matrix. TWwerltsiangularelementsof

the matrix are the elements

w11

Wy1 Wy

W31 W3 Ws3
To ecify the matrix only its lower triangular elements need kengiand these are all
NONMEM does gie), since from (4.8) it is clear that for &l m, wy, = Wk

4.1.1. Additive/Multiplicati ve Models and the Exponential Model

Frequentlythe model for an interindividual error is the simple agditine (as in (4.2)),
such as

V = \7 + 1, (4.9)

A feature of (4.9) is that the resulting units & depend on the units of the parameter
(V in this case).For example, this model was used in the thegdiie problem of Chap-
ter 2 (Figure 2.6). The final estimatea is .286(Figure 2.8). Assuming that the units
of V are liters, we interpret this to mean that the standard deviation of V betweed-indi
uals is .53 Liters ( .53 #.286).

Perhapswen more often, a multiplicate nodel equialent to the Constant Coefficient of
Variation (CCV) error model (3.5) is used, such as

V =V +n,) (4.10)

This model is also referred to as the proportional error model.

A feature of (4.10) is that the resulting units &grare independent of the units of the
parameter\{ in this case). When this model is used in the theophylline problem instead
of the addive nodel, so that Figure 2.6 contains the ca8elrVWD* ( 1+ETA(2))
instead ofV=TWWD+ETA( 2) , then NONMEM estimates? to be .146. W interpret this

to mean that the coefficient of variation of V in the population is 38% (\3846).

The exponential model is
V =V exp(,) (4.10a)

During simulation, (Chapter 12, Section 4.8), the exponential and proportional models
give dfferent results. During estimation bthe first-order method, thexgonential
model andoroportional models ge identical results, i.e., NONMEM cannot distinguish
between themDuring estimation by a conditional estimation methdte eponen-

tial and proportionamodels for intefindividual variability gve dfferent results.The
exponential model is preferred for conditional estimation methods. (See NONMEM
Users Guide Part VII, Conditional Estimation Methods.)

4.1.2. OtherModels

Occasionallya nodel for an indridual’s pharmacokinetic parameter mighvalve scal-
ing ann, as in 3.6), or two or moren’s as in (3.10). For example, a study mightvalve
patients in the intengt care unit (ICU) and others on non-acute care units. It might be
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reasonable to suppose that some aspects of the kinetics of ICU patients (e.g., metabolic
clearance of drug) are moranable, due to unmeasured factors (e.g., hepatic function)
that vary greatly among acutely ill patientEven though the variation is, in realigue

to a potentially measurable éid effect (hepatic function), if information on thisefik

effect is not aailable, diferences caused by it must be assigned to random fagjorin (

this case, one might wish to use an indicatorable,ICU (which equals 1 if the patient

is in the ICU, and 0, otherwise), and a model such as

Cliet = Cliet + (1= ICU)7, + ICU R, (4.11)

In addition to model (4.11) we mightve for example,
Clign = CNlren + élren'73 (4.12a)

Cl = Clyen + Cliner (4.12b)

Models (4.11) and (4.12) togethelong with suitable models faEl,e, andCl e, form a
complete model for an individual@l parameterand involve 37’s.

4.1.3. GeneralForm for the Parameter Model

As we hae just seenin (4.10) and in (4.11)-(4.12), an elementrafed not act in a sim-

ple additve way and may act solely on an intermediategiable (e.gCl). Indeed,
there may be more or fewer elementg ithan ing, the elements iy may act in nonlin-

ear ways to influencg, and one element of may influence more than a single element
of ¢. We mow give a nore general form for the parameter model than (4.2) and then an
example illustrating it.

The general form of the parameter model is
@ =9(z,86,n) (4.13)

Here, g is a \ery general function of fixed fekts, z;, fixed efects parameter®, and a
vector of p’s, ;. The dimensions of theeetorsg andn; need not be the same. An indi-
vidual's kinetic parameter may change with time. As explained in Section 1.6, with
NONMEM-PREDPP changes can occur only at discrete time poiflierefore, the
parameter actually can begeeded as being a number of parameters, each one applying
to a different time period. The parametgrin (4.13), being a ector of all the kinetic
parameters for thé" individual, can be garded as encompassing these time-iraterv
specific parameters.

An example utilizing this generality is provided by a model for olaems of both
plasma and urine drug concentrations, similar to the one presemaliphe Ignoring
the details of the structural part of the model, consider the following model

Cliet = Clmet + m
CIren = CIren + 2

Cl =Clpet + Clien (4.14)

f :Clren
° I

V=V +n;
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In this modelg = (V, ClI, f,); the parameterGl,,, andCl,, are rgaded as intermediate
parameters. Whaven = (n1, 72, n13), where bothy; andn, influence botiCl (linearly)
and f, (nonlinearly).

4.2. StatisticalModels for an Individual’ s Obsenvations

Model (4.1) can be generalized by incorporating a modeltiiagse gien in Chapter 3 for
the residual errors, i.e. for the differences betweeryfrand f (x;, @), rather than using
just the simple Additie nodel. A particular instance of such a model mayéhaeveal
types ofe’s, and as mentioned in Section 2, the variances of thissare denoted by
o?s. With a population model thes@anances could change from individual to iridi
ual. With NONMEM, they are considered as constantewoindividuals. Thes’s can co-
vary. A covariance matrixz, like the Q matrix given in Section 4.1, gies the \ariances
and cwariances of thee's, as &ready discussed at the end of ChaptefTBis does not
preclude the magnitudes of the errors from beifectdd by fixed éécts. Amodel such
as (3.8) can still be used. This is shown explicitly by the general madeligithe net
section.

5. ThePopulation Mixed Effects Model

We havenow presented all of the parts needed to fully define a population model. It may
be useful to recap this information by stating the entire general model here:

i = f(Xj, @) + 0 (X, @) (4.15a)
@ = 9(X;, 6, 1) (4.15Db)
coMgj) =Z; covrn;) =Q
&j, € independent fori(j) # (k,I)

ni, Nk independent for # k

&j, N independent for all, j, k,

where hereg; is a \ector dong with x;;, ¢, 8 andz;, and Z andQ are square matrices
with dimensions equal to those gf andy;.

To try to represent the relationship between all thedfiand random effects of a popula-
tion model graphicallyconsider figure 4.2. The model corresponding to this figure is

Yij = \[/)| exd—(Cli/Vit;] + &;
Cl, = 6, + 6,RF, + p* (4.16)
V, =V
var(e;) = 0% var(nd) = o

where theV; are all equal to a constavit i.e. there is no random interingiual variabil-
ity in the volume of distribution, so that for the sak this examplep; is just a scalar.
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W) 0

0, 0

[m]

: !
RF; RF tij time

Figure 4.2. Random and &d effects influence obsation, C;, from the population point of we Open
circle, lower left, is population parameter predicted clearance, closed circle is true clearéfdedividual
which differs from population prediction b;?', chosen randomly from a distribution (upper left) with mean
0 and SDwc,. Similarly, lower right, the obsead C at timet; (open square) differs bg; from the true
value (closed circle) by an errej, chosen independently from a distribution with mean 0 an&rSDrheC
corresponding to the population-based prediction is also shown (upper curve, open circle).
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1. What This Chapter is About

In this chapterwe dscuss the fitting criterion that NONMEM uses, parameter estimates,
and standard error estimate¥/e then discuss o to form confidence intervals for
parameters and do hypothesis tests with NONMEM.

2. ModelFitting Criterion

In principle, all fitting procedures attempt to adjust thtues of the parameters of the
model to gve a 'best fit" of the predictions to the actual obs¢ions. Theset of param-

eters that accomplish this are called the parameter estimates, and are denoted,here as
fz, and 3. Methods differ in ha they define "best". The criterion that NONMEM uses is

a Least Squares (LS) type criterion. The form of this criterion varies as the error model
varies, and as population models with multiple randofacés must be consideredVe

briefly discuss these various criteria next, wedhe reader a feel for what NONMEM is
doing. Adetailed knowledge of the statistical basis for the choice of fitting criterion is
not necessary either to use or interpret NONMEM fits this chaptera fixed efects
parameter will be denoted bypathe distinction between individual fixed effects parame-
ters ) and population fixed effects parameters will not be important here.

2.1. LeastSquares for Individual Data with an Additive Error Model

For the Additve eror model (3.4), the Ordinary Least Squares criterion (OLS) chooses
the estimaté so as to makthe sum of squared (estimated) errors as small as possible.
These estimates cause the prediction, here defiptede an stimate of the mearalue

of y, which is intuitvely appealing. The prediction is obtained by computing tiees

for y under the model with parameters set to their estimated valugssahtb zerot.

2.2. LeastSquares for Individual Data with Other Types of Error Models

The simple OLS criterion just defined becomesficieht and is no longer the "best" one

to use when the error model is other than the Adgiiror model. It treats all estimated

errors as equally important (i.e. a reduction in the magnitude of eitheoasstimated

errors that are of the same magnitude is equadlipable in that either reduction
decreases the sum of squared errors by the same amount), and this results in parameter
estimates that cause all errors tovéhabout the same typical magnitude, as assumed
under the Additie nodel. TheCCV error model, though, says that the typical magnitude

of an error varies monotonically with the magnitude of the (true) prediction lof grin-

ciple, Weighted Least Squares (WLS)eg a fit nore commensurate with the CCV or

other non-Additie @ror model. WLS choosesas that value o minimizing

OwL0) = % w;(y; - yj)z (5.1)

Eachw; is a weight which, ideallys st proportional to the uerse of the variance of;.

In the CCV model this variance is proportionalyﬁo(e\/aluated at the true value @.

Use of such weights will down-weight the importance of estimated squared errors associ-
ated with large &lues ofy and promote the relag mntribution of those associated with
small values ofj.

1 n, not €, since we follav the NONMEM conention and, when discussing individual type data as here; use
to denote the random effects of a singleslléhat appear in the model, those in the residual error model.
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In mary cases, users can supply approximate weights, and the WLS abjteciction

can be used as stated in (5.1). When, as with the CCV model for example, the ideal
weights depend on the trualues of parameters, these true values can be replaced by ini-
tial estimates, and then the WLS objeetfunction as gien in (5.1) can be minimized.
Alternatively, instead of vieing Oy, s as a function o only through the estimated
error's dependence o4, it can be viewed as a function @through both that dependence

and also through the ideal weights’ dependence&nThe entire function can then be
minimized with respect t@. That this creates a problem is most easily seen when the
error model contains a parameter which is not itself a parameter of the structural model,
but which, nonetheless, must beyaaded as an element 6f Such an error model is the
Pawver Function model of (3.7), and the "extra" parametex. iThe WLS objeciie func-

tion with the reciprocal variance gf substituted fow; ist

Oy; - ¥;)° 0
O\%/LS(H) = ZD J 2»4[2)J |:|
g YYi oo
In this case ifp were set to a very lge numberwhile the other parameters ¢hwere
only such as to makdl ¥; >1, then auyjp would be very lage, and the summation
would attain a very small value. (The valuews is irrelevant to the minimization with
respect tog.) Thus,all elements i other thanp would be indeterminate (as long as
they were such that aff were greater than 1); a most unsatisfactory statdafsaf

There is a way to deal with this problem that presethe spirit of least-squares fitting,

and NONMEM uses itln essence, it adds to the WLS objeetiunction a term proper

tional to the sum of the lagithms of the errorariances. Thus penalty is paid for
increasing the error variances without a concomitant decrease in the estimated errors
themseles. Thismodified objectie function is called the Extended Least Squares (ELS)
objectve function. Itis minimized with respect to all parameters of the structural and
error models simultaneously (in the currexamaple,8 andw?, as p can be considered an
element ofg). Notethat the objectie function may be rgative. This has no particular
significance.

(5.2)

2.3. LeastSquares for Population Data

The complications arising from a population model are due entirely to the random
interindvidual effects occurring in the parameter mod&b. deal with this, NONMEM

uses an approximation to the true model. The approximate model is linear in all the ran-
dom efects. or this linearized model, theegtor of mean values for the obsaions

from thei™ individual is the ector of true predictions for these obsgions. Thesere-
dictions are obtained from the model by setting the parameters to their true values and by
setting all the elements of bothands to zero. In other words, these are the true predic-
tions for the mean individual with fixed effects equal to those of'thadividual. For

this linearized model it is also possible to write a formula for dmamce-cwariance

matrix of the obsemtions from thé™ individual. Thismatrix is a function of the indi-
vidual's fixed effects and the population parameters?, and . Finally, the ELS objec-

tive function discussed abe is generalized to be a sunve individuals, rather than
obsenations, and where th& term of the sum wolves a squared error betweenegtor

of observations and an associated vector of predictions, weighted by the reciprocal of the
associated variancegiance matrix for thé™ individual.

T Agan, we call attention to the symbols used for the random effects parameter: trwztermears in the
objective function, (5.2), notr?, because we are discussing individual type data, not population type data.
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3. Parameter Estimates

It is useful to consider hoto estimate parameters that do not appear in the model we use
to fit the data, bt are, instead, functions of them (e.g. the half-life paramieter693/k,

when the rate constant of eliminatikiis the model parameter).

It is always possible, of course, to parameterize the model in the function of intEoest.
example, we hee dready seen (Chapters 2 & 3) that we may use the function (parame-
ter) Cl in the one-compartment model insteackofHoweve, we may be interested in the
values of sgeral alternatve parameterizations (e.g., we may want towrlg clearance,

and half-life). Rather than rerun the same problem witkrakalternatie parameteriza-
tions, we can use the fact that the LS estimate of a function of the parametess by gi

the same function of the LS parameter estimatesmally, if 8' = () is the function of
interest, thené' s=q(d.s). E.g. Letting &' = ty, 6=k, and q(6) =.693, then

f. =.693k.

4. Precision of Parameter Estimates

Clearly it is amost impossible for the estimates to actually be the talees. Thejues-
tion is: hav far are the true values from the estimat@siscuss this question, imagine
replicating the entire experiment (gatheringvrtiata, but kepingx fixed) multiple times.
Also, for simplicity imagine that the model has only one scalar paraygtand that its
true \alue,dr is known. If, after each replication, the estimategas recorded, and a his-
togram of these values is plotted, one might see somethinfigike 5.1A or 5.1B.

A. B.

0 0

Figure 5.1. Two hypothetical histograms of estimates of a single parameter upon replicatiorver agier-
iment. Leftpanel (A): The estimates V& gnall variance (spread) but are biased (the mean of the estimates
differs from the true valueédt); Right panel: The estimatesvealarge variance but are reladly unbiased.

The diference between the estimate and the taleeyéy, obviously differs from repli-
cation to replication. Let this difference be called the estimagioor. We annot knav

the estimation error of grparticular estimate (if we could, we could knthe true alue
itself, by subtraction), it we can hope to estimate the mean error magnitude. Since er
rors can be posite a negdive, a measure of magnitude that is unaffected by sign is de-
sirable. Thisis traditionally the Mean Squared Errdi$E). The MSE can bedctored

into two parts:

MSE = B? + SE? (5.2)

whereB is the bias of the estimates (mean (signed) difference between the estimates and
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the true value) an&E is the standard error of the estimat8&(is the variance of the
estimates). Adlustrated in figure 5.1, th&ISE can be about the same foraypes of
estimates while both their bias aBdt differ. It is very hard to estimate the bias of an
estimator unless the true parameter value is, in factylkknd@ hisis not true of theSE

the standard deviation of the distribution of estimates of a parameter on replication is the
SE no knowledge of the true value of the parameter is required. Iryrstuations, LS
estimators of fixed effects parameters are unbiased, although in nonlinear problems, such
as most pharmacokinetic ones, this cannot be assured.

4.1. Distribution of Parameters vs Distribution of Parameter Estimates

Figure 5.1 illustrates the disttibon of parameter estimates that might result if xgres-

ment were replicated. The bias and spread depend on the estimation method, the design
of the eperiment &, which implicitly includesn) and on the true parametenlues,
including the wariances (and eariances) of the random effects influencigg If, for
example, more observations were obtained in each experiment (more individuals in a
population study), the spread of the estimates (one from each experiment) would decrease
until, in the limit, if an infinite number of observations were obtained in equrienent,

evey estimate would be the same (equal to the true value plus the bias of the estimator).
Thus, the distribtion of the estimate tells us nothing about biology or measurement error
but only about theprecisionof the estimate itself.

In contrast,Q and Z tell us about unglained (or random) interindividualaxiability
(biology) or error magnitude (biology plus measurement error), not abauptecisely
we knaw these things.No matter har mary obsenations we make, interindividuahi-
ability will remain the same size (but thariability of our estimate of its size will
decrease), as will the measurement error variability of a particular instrument.

It is very important not to confuse variability (e.g., betweenviddals) in a model
parameter with variability in the estimate of that paramdespite thedct that the terms

we use to describe both variabilities are similEinus an element af, say 71 has avari-

ance wq, while the estimate ab,4, @, dso has avariancegiven by the square of the
standard error fof,;. Indeed, the use of the term "standard error" rather than "standard
deviation" to name a measure of the spread in the disioib of the parametegstimate
rather than in the parameter helps call attention to the distinction between thégsetv

of things.

4.2. Confidencdnterval for a Single Parameter

Acknowledging that ay particular estimate from grparticular experiment is unlikely to

equal the true parameter value implies that we should be interested indlingstimates

of parameters as well as (instead of?) point estimates. An interval estimate of a parame-
ter is usually a range of values for the paramefiten centered at the point estimate,
such that the range contains the true parameteewith a specified probabilityThe
probability chosen is often 95%, in which case the interval estimate is called the 95%
Confidence Interval (CI).

A Cl is often based only on the parameter estimate anfktsin the next sections we
discuss three questions about such Cls a little furifileHow to estimate theSE from a
single set of data (we cannot replicate our experimeny riiares and construct a his-
togram as in figure 5.1). (ii) @n an estimate ofSE, how to use that number to compute
a (95% confidence) interval with 95% chance of containing the true pararakier \(ii)
Given an estimate of SE, how to compute a confidence interval for a function of the
parameter.
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4.2.1. Estimatinga Parameter’'s Sandard Error

Remarkablythe SE of a parameter estimate can be estimated using only the data from a
single periment. Theadea is that the datavg ws estimates of theariances of all ran-

dom effects in our model, from which we can estimate #nability in future data (if we

were to replicate thexperiment). Thats, the SE of the estimates on replication depends
only on gquantities we either kwoor haveestimates of: the, the number ofy observed

(n), and the variances of all random effects.

It is a little bgrond the scope of this discussion teegihe method by which NONMEM
actually estimates th8E of a parameter estimate;aever, examples of hw this can be
done are found in gnstatistical textbook on gression. NONMEMpresents the esti-
mated standard error for each parameter of the model (including the ranibots ef
parametersQ andZ) as part of its output.

4.2.2. Relatingthe Confidence Intewval to the SE

Statistical theory tells us not only Wwdo compute theSE of a parameter estimateytb

also that for a LS estimate (and mianther kinds of estimates), the shape of the distrib

tion of the estimates is approximately Normal if the data set is large enough. This means
that we may use percentiles of the Normal digtidn, to compute confidence intatv
bounds (whem is small, the distribution is often used instead; this is discussed in statis-
tics texts). Ingeneral, a 100(2)% confidence interval for a single paramgtesay is
computed a# * Z,_,,SE HereZ,_,, denotes the % a/2 percentile of the Normal dis-
tribution. Aspreviously noteda is often chosen to be .05, in which casés approxi-
mately 2.

4.2.3. AConfidence Intewval for a Function of a Single Parameter

As discussed alve, one can reparameterize the model in terms of thepagameterand
NONMEM will then estimate its standard errdf re-running the fit presents a problem,
there is a simple &y to compute a confidence interval for a functijaof a single param-
eter If the lover and upper bounds of a 10Q()% confidence interval fo# are denoted
b, and b, respectiely, then a 100()% confidence interval foq(d) has lower and
upper boundsj(b)) and q(b,), respectiely. This confidence interval, ever, is not nec-
essarily centered a(6).

4.3. Multiple Parameters

4.3.1. Correlation of Parameter Estimates

A truly new feature introduced by multiple parameters is the phenomenon of correlation
among parameter estimateSONMEM outputs a correlation matrix for the parameter
estimates. Thdi, j) element of the matrix is the correlation between the ith and jth
parameter estimated\ larmge correlation (e.gz . 95) means that the conditional distrib

tion of the ith estimate, gén a fixed value of the jth estimate, depends considerably on
this fixed \alue. Sometimesach parameter estimate of a pair that is highly correlated
has a large standard erromeaning that neither parameter can be well-estimatdnis
problem may be caused by data that do not distinguish among the parameters very well,
while a simpler model, or a i#rent design, or more data might permit more precise esti-
mates of each.

As a simple example, imagine a straight line fit to just paints, both at the samealue
of x: neither slope nor intercept can be estimated at all as long as the other iwmnkno
but fixing either one (simplifying the model) determines the oBeth parameters could
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be estimated by observing another point at some other valygrobre data), ordtill

using just 2 points, by placing these points at tifferent values ok (modifying the
design). Thuswhen standard errors are large, it is useful to examine the correlation
matrix of parameter estimates to see, in particilaaome simplification of the model
may help.

4.3.2. Confidencdnter vals for a Function of Seeral Parameters

There is an approximate formula for computing a standard, endmhence a confidence
intenal for a function of seeral parameters (e.g., a confidence irdéfer half-life when

the estimated parameters &eandV). It uses the standard errors of the parameter esti-
mates and the correlations between the parameter estinrbiesver, discussion of this
formula is beyond the scope of this introduction. If a confidence aittawa function of
several parameters is desired, it is often moreveaient to re-fit the data with the model
reparameterized to include the function as an explicit parameter.

5. HypothesisTesting

Before going into details, a note of caution is in order about hypothesis testing in general.
The logic of hypothesis testing is that one sets ugpathesis about a parametevalue,

called the nulhypothesisand asks if the data are sufficiently in conflict with it to call it
into question. If the are, one rejects the nullypothesis. Haever, logically, if they are

not, one has simply failed to reject the null hypothesis; one does not necessariyfha
ficient data to accept itAn extreme example will maktis clear Let the null gpothe-

sis be ap assertion at all about the state of natu@ather no evidence bearing on the
guestion. Clearlythe evidence (which isoid) is insufficient to reject the nuliypothesis,

but just as clearlyin this case the evidence provides no support for it either.

In less extreme cases there is a way tov\falure to reject as lending some support to
the null hypothesis, but the matter is problematic. It is sdmeless problematic to use

a onfidence interval to quantify support for a nupbthesis. Anull hypothesis is an
assertion that a parametet’ue value is found among a set of ndlues. A confidence
interval puts reasonable bounds on the possible values of a para@e¢ecan then say
that the evidence (the data from which the parameter estimateviedjieloessupport a

null hypothesis (about the value of the parameter) if the allleg are included in the in-
tenval and that the evidence fully support the null hypothesis if all nonnull values lie out-
side. Anexample will help mak this clear.

Consider that mean drug clearance in adults varies linearly with the weight of theé-indi
ual to aclinically significant dgree. Brmally, this can be put as a statement about a
regression coefficient in a model such as

Cl = 91 + 92(WT_ 70), (53)

The null hypothesis might be that is close to zero, i.ethat it is not so different from

zero as to be clinically significanTo make this precise, suppose that we Wnihat mean
clearance for a 70 kg person (i.8;) is éout 100 ml/min.If 8, were .20 ml/min/kg or

less, a 50 kg increment (decrement) in weight from 70 kg would be associated with less
than a 10% change in total clearanddis is clinically insignificant, so the appropriate

null values forg, might be 0.0 to .20, assuming, of course, thatysiphl lower bound

for the parameter is zero. (More usually in statistical discussions a set of null values con-
sists of a single numhexg. 0.) If the confidence intea/for 8, only includes null glues

(e.g., itis .10 to .15), one might then safely conclude that weight, if it yasfant at all,

has noclinically significant efect, and that the data fully support the nylpbthesis. If
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the confidence interval includes nulllves and others (e.g., it is 0.0 to .60), oreild/
conclude that there is some support for the nyiothesis, but that there is also some
support for rejecting itIn this case the data are insufficient toallmutright acceptance

or rejection. If the confidence interval includes no null values (e.g., it is .80 to 1.3), one
would reject the null hypothesis and conclude that weight has a clinically significant (lin-
ear) effect on clearance.

For these reasons, we urge caution when performyppthesis tests and suggest that
confidence intervals are often more usefNbne the less, the popularity ofgothesis
tests requires that thde dne, and we ne describe tw methods for so doing, the first
somewhat more approximate and less general than the second, but easier to do.

5.1. HypothesisTesting Using the SE

A straight-forward way to test a null hypothesis about thig of a parameter is to use a
confidence interval for this purpose. In othesrds, if the confidence intervak@udes

the null values, then the nul{pothesis is rejected. As described in Section 4.2.2, such a
confidence inte is based on the estimated standard eifbis method generalizes to a
hypothesis about the values ofvael parameters simultaneoushut this is beyond the
scope of this introduction.

5.2. HypothesisTesting Using the Likelihood Ratio

An approach that irolves the extra &rt of re-fitting the data has the advantage of being
less approximate than the one that uses a confidence interval based on fhigisSE.
method is the so-called Likelihood Ratio Test.

The basic idea is to compare directly the goodness of fit (as indicated by the minimum
vaue of the &tended least squares objgetfunction) obtained between using a model in
which the parameter is fixl to the hypothesized value (tteelucedmodel) and a model

in which the parameter must be estimated figthenodel).

5.2.1. Definition— Full/Reduced Models

A model is a reduced model of a full model if it is identical to the full modetet that
one or more parameters of the latteveheen fixed to hypothesizedes (usually 0).
Consider the examples:

E.g. #1. Valid Full/Reduced Pair:
Full model: Cl = ; + 8,WT
Reduced modet| = 6,

E.g. #2. Ivdid Full/Reduced Pair:
Full model: Cl = 6;WT
Reduced modelCl = 6;

In example #1, fixingg, to 0 produces the reduced model, while xaraple #2, no
parameter of the full model can bedikto a particular value to yield the "reduced”
model. Itwill always be true that if the models are set up corretté/number of param-

eters that must be estimated will be greater in the full model than in the reduced model.
Note that this is not so for example #2.

5.2.2. Reduced/FulModels Express the Null/Alternatve Hypotheses

The reduced model expresses ttidl hypothesisthe full model expresses afternative
hypothesis In example #1 abee, the null hypothesis is "typical value of clearance is
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independent of weight", and the altermatis "typical value of clearance depends linearly
on weight."

Note an important point here: the altermathypothesis representsparticular alterna-

tive, and the lilkelihood ratio test using it will most sengdly reject the null ipothesis

only whenthis particular alternate folds. Ifthe full model were that "the typicahle

of clearance is wersely proportional to weight" (so that as weight increases, the typical
vaue of clearance decreases, a situation which rarely holds), the likelihood ratio test
using the alternate we have stated would not be particularly sensitio rejecting the

null hypothesis, and we mighaif to do so. In contrast, we might succeed in rejecting
the null hypothesis if we used some other alteveatiodel closer to the truth.

5.2.3. TheLikelihood Ratio Test

Pat of the NONMEM output is the "Minimum Value of the ObjgetiFunction” (see
Chapter 2). Denote this By If NONMEM's gproximate model were the true model,
then| would be minus twice the maximum logarithm of the likelihood of the data (for
those readers unfamiliar with likelihoods, and curious as to whutalee we suggest
consulting a statistics xthook). Statisticatheory tells us that the difference in minus
twice the maximum log likelihoods between a full and reduced model can be referenced
to a known distribtion. Thusto perform the Likelihood Ratio Test, one proceeds as fol-
lows.

Letl; be the minimum alue of the objecte function from the fit to the full model, and
let |, be the corresponding quantity from the fit to the reduced model. Fit both models
separately yielding); andl,, and form the statistic,

c?=I, -

This statistic is approximately distributed chi-squaé) (with q degree of freedom,
whereq is the number of parameters whose values are fixed in the reduced Fodel.
a-level test, compar€? to x%_,(q), the 100(1&) percentile of they? distribution.

In particular when exactly one parameter of the full model is fixed in the reduced model,
a decrease of 3.84 in the minimum value of the objecfunction is significant at
p <.05.

If NONMEM’s gproximate model (linear in the randonfeets) were the true model,
and in addition,f were linear in the fixed ffcts, thenC?/q would be (approximately)
distributed according to thd= distribution with g, and n- p degrees of freedom
(F(gq,n- p)). SincegF(q,n- p) is equal to xy2(q) only whenn is "large”, and is greater
otherwise, it is more consextwe b referenceC? to qF(g, n— p) in all instances, een
when f is nonlinear.

6. ChoosingAmong Models

An idea related to hypothesis testing is this: whaeed with alternate explanations
(models) for some data, Wwadoes one use the data to determine which model(s) is (are)
most plausibleAVhen one of the models is a reduced sub-model of the atitethere is
somea priori reason to prefer the reduced model to the altemmatien the Lilelihood

Ratio test can be used to test whether this a priori preference must be rejected (at the
level). However, when one gies the matter some thought, there is usually livthgective
reason to prefer one modelep another on a priori grounds-or example, although pos-
sibly more cowmenient, a monagonential model is, if anything, less likely on biological
grounds than a biexponential.
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Not only may there not be a clearpriori probability favaring one contending model

over another but the tw models may not form a full and reduced model.phirsuch cir
cumstances, one must rely on some goodness-of-fit criterion to distinguish between the
models. Considechoosing between just bmmodels (the ideas to be discussed readily
generalize to more than two), denoted moAeand modelB. If the number of free
parameters in modd (p,) is the same as that & (pg), then here is a reasonable crite-
rion: favar the model with the better fit. Note that there ispreelue associated with this
statement; no hypothesis is being tested.

Unfortunately if p, # pg one cannot simply compalg andlz and choose the one with
the smaller &lue. Thereason is best understood wha&rand B are a full and reduced
model pair The full model willalwaysfit the data better (i.e., i@ a snallerl) as it has

more free parameters to adjust its shape to the dditéle the same is notwabys true for

ary pair of non-linear models with different numbers of parameters, it is often true: the
model with the greater number of parameters will fit \zergidata set better than the
model with fewer parameter&fet the larger (more parameters) model may not really be
better; it mayin fact, fit an entirely ne data set worse than the simpler model if its better
fit to the original data was simply becausexpleited the flexibility of its extra parame-
ter(s) to better fit some random aspect of that data.

Based on the abe intuitive agument, it seems that one should penalize the larger model
in some vay before comparing the Bkhoods. Thidntuition is formally realized in the
Akaike Information Criterion (AIC) which says that one should comp@t@ =1, —Ig +

2(pa — pg), and choose modd if AIC is >0, and modeA if AIC is <0. The second
term penalizes modé\ if p, > pg, and vice ersa. Whemp, = pg, the AIC reduces to

the comparison df, andl g described previously.
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1. What This Chapter is About

This chapter tells Mo to create data for analysis by NONMEM-PREDR#Ptells hav to
describe the data using DA and $INPUT records. The requirements for formatting

the data for NONMEM-PREDPP are somewhat more stringent than are the requirements
for formatting the data for NM-TRAN. The Data Preprocessor is a component of NM-
TRAN which modifies the data so that it becomes formatted appropriately for NON-
MEM-PREDPP.

2. DataSets for NONMEM

2.1. DataRecords

A data set for NONMEM analysis consists of a series of records ("lines" in the terminol-
ogy of editing programs)Each record must consist of a fixed number of data items and
each must hae the same format. Figure 6.1 showsMmich a data set may be pictured.

In data base terminologthis is a "flat" structure.

Data Data Data Data
item item item item
#1 #2 #3 #n

Record #1

Record #2

Record #3

Figure 6.1. A NONMEM input data set. Each data record is a row; each type of data item is fierandif
column.

NONMEM imposes no limit on the number of records in the datalseloes not (nor

does PREDPP or NM-TRAN) sort the data records before processing them, so the data
records must already be in the correct sequeNENMEM itself cannot be instructed to
delete or drop records from the data sat,dee the DROP and IGNORE options of the
$DATA record, bela.

2.2. Dataltems

NONMEM reads records from the data set with a FORTRAN FORMzecification,
and so each data item must ocgcadixed number of character positionfata items are
always numbers However, if no particular number is appropriate for ¥@i data item on
a gven record, the data item is called a rdditaitem; it may be g¥en the numerical &l-

ue 0 or the nonnumerical value ".", or left blardero’s were used in the first twines of
the Theophylline example of Chapter 2, which appeared as follows:

2 320. 0. 0.

2 0. .27 1.71
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The Data Preprocessor allows each value in the data set toy ardyas maw character
positions as it needs, so long as the data items are separated by blanks (spaces) or com-
mas. Hhb characters may also be used as separatory iértheatored as explicit charac-
ters, e.g., ASCII 011, although this is platform-dependent and should be tested carefully
When there are no commas or tabs, thlees"." or Omustbe used to hold the place of a
null data item. The twlines abwe could hare been entered as follows:

2 320. 0. O.

2,,.27,1.71
(Note the use in the second line of adjacent commas ",," to denote a null data item.)

The contents of the data items must be purely numeric; i.e., charalcies guch as, W,
M or F may not be recorded. Instead, numeric codes such as 0 or 1 must be used.

With NONMEM VI, the number of data items per data recordvengdy wnstant PD in
file SIZES. The deifult value is20. With NONMEM 7.1, the default value is 50Vith
NONMEM 7.2, there is no limit on the number of data items per data record. Hithe y
in SIZES is not sufficient, a larger value may be specified on the $SIZES record.

2.3. Clinical Data and Data Corversion

Clinical data often has a "hierarchical” file structure, with (say) mecord formats: a
patient record, containing fixed information about a patient (ID nunseerage, prior
history of smoking or drug use, etc), followed by one or more visit records, containing
doses and physical observations during the course of the stigly records may not
even contain the same number of items as patient records, werttmsame formatThe
hierarcly is shown schematically in figure 6.2.

Patient record
Visit record
Visit record

Patient record
Visit record
Visit record

Figure 6.2.A hierarchical data filePaient and visit records ke dfferent formats.

NONMEM cannot accept such dat&or NONMEM, the (fixed) information on the
"patient” record must be copied onteesy "visit" record, and the "patient” records must

be eliminated.This is the uses’ responsibility and is typically done in a one-time data
corversion step using the system editor and/or a specially written computer proigram.

an indvidual's data is to be deleted because he did not complete the study or had an
adwerse outcome, it should be done at this time. In addition, numeric codes should be
substituted for alphabetic code€linical data sometimes includes multi-digit, non-con-
secutve mtient identification numbers drawn from some patient identification system.
Such patient identification numbers can be used with NONMEM as the identification data
item described in Section 6.However, it is preferable to append to each patisrhta
records numbers from the sequence 1, 2, 3, ..., for use as the ID data item. This will
malke it easier to read a scatterplot which includes ID along one of the axes (e.g., residual
vs ID).

When there is a large amount of data, we strongly suggest that a small amount of data
(from one or tw individuals) be prepared for NONMEM-PREDPP analysis and a run in
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which only tables and scatterplots are output be made to check that the data is correctly
prepared before a great deal of labor is expended on the remainder.

3. DataSets for PREDPP

When PREDPP is used with NONMEM, the data must meet additional requirements.
First, PREDPP is concerned with time-ordergehts such as dosevents, which intro-

duce drug into the system at particular times, and oasenverents, which report obser
vations taken at particular time®REDPP insists that theseerts be recorded on sepa-
rate records.That is, dosing information cannot be recorded on the same record as an
obsered walue. SecondPREDPP requires that the time of eagbné be recorded on
each data record, and that the/gibal sequence of the data records be the same as their
sequence in time(E.g., if a dose \ent immediately precedes an observati@ené in

time, then the dosevent record must immediately precede the observatienteecord.)
Again, neither PREDPP nor the Data Preprocessor will physically sort or resequence the
data records.

4. The$DATA Record

The $DATA record describes the characteristics of tktereal data file to be processed

by NONMEM. NONMEM is not a data base management system and does not store a
data set between runs; once a file has been prepared for NONMEM, it must be re-read
each time it is to be analyzedhe first character string appearing afterA$R is the

name of the file containing the data. Since it is to be used in ZRAR OPEN state-

ment, this name may not include embedded special characters such as slashes (/ or \),
commas, semi-colons, parentheses, equal signs or spaces unless it is surrounded by single
guotes ' or double quotes ". TRkname may contain 80 characters. (If a file is to be
opened by NONMEM rather than by NM-TRAN, thBlename may not contain
embedded spaces, and may contain at most 71 chara&dfr@RTRAN format specifi-

cation suitable to read the data may fwllihe file name; this is optional and can be sup-
plied by the Data Preprocessdihe choice is discussed more fully in Section 10.4 of this
chapter.

Certain options may be specified if desired. Among these are:

RECORDS=n
This tells the number of records to be read from the data file. If omitted, the records
are read to the end-of-file or to a NONMEM FINISH record (Users Guide'Hg
RECORDS option may be used to limit NONMEM processing to the initial portion
of the file and is useful during the early stages of debugging.

RECORDS=label
"Label" is a data item labelThe data records for the problem will start at the place
where the file is positioned before data records are read and include all contiguous
data records having the same value for the data item. In partibeldD label may
be wused (or alternatly, the option may be coded RECORDS=IR,
RECORDS=INDREC, or RECORDS=INDIVIDUALRECORD) to obtain the data
for a single individual.

IR,INDREC,INDIVIDUALRECORD.

NOREWIND|REWIND
With the first problem specification in a control stream, the file is positioned at its
initial point so that the first record in the file is uséthe options REWIND and
NOREWIND apply only with a $BTA record in a subsequent problem
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specification.

REWIND: Reposition the file at the start.

NOREWIND: Leae the file at its current position so that thextniecord in the file

is read. Used when the $BTA record with the previous problem specification
included the RECORDS option so that NM-TRAN did not read to a physical end-
of-file. Thisis the default.

LRECL=n
This tells the length of the ghical data records. It is required if the operating sys-
tem associates a fixed physical record length widhyedisk file and considers it a
fatal I/O error if a READ command requests more characters than the records con-
tain. If this is true of your operating system, the operating system will issue an
error message when you first run NM-TRAN without the LRECL option in the
$DATA record.

WIDE
This requests that the NONMEM data set produced by NM-TRAWyal contain
single-line records, and that these recordsy include at least one space between
data items.Such a data set can be further processed by other progfaimes.
default is NOVIDE, in which case NM-TRAN limits the records to 80 characters
by creating multi-line records and/or eliminating spaces between data items if nec-
essary It may not be used if a FORTRAN format specification is preséraiso
provides an extra character for relatimes computed by the Data Preprocessor.

NULL=c
This requests that the NONMEM data set produced by NM-TRAN contain the char
acter c in place of null data itemBor example, NULL=0 requests that all null data
items be replaced by 0. The syntax NULL="c’ and NULL="c" is also permitted.
The deéult is NULL="". It may not be used if a FORTRAN format specification is
present.

IGNORE=c
This instructs NM-TRAN to ignore data records having character c in the first char
acter position ("column 1") of the recordlhis allows the use of "comment"
records in the NM-TRAN data sefhe syntax IGNORE="c’ and IGNORE="c" is
also permitted. It may be useden if a FORTRAN format specification is present.
The character @ has a special meaning. It signifies tlgadaaa record containing
an alphabetic character (or special characters @ or #) as its first non-blank character
(not just in column 1) should be ignored. Alphabetic characters are the letters A-Z
and a-z.Thus, a table file produced by NONMEM in an earlier run can be used as
an NM-TRAN data setAny header lines included in this table can be dropped by
specifying IGNORE=@.
When the IGNORE option is omitted,yarecords containing the character # in col-
umn 1 are ignored.

IGNORE=(list), ACCEPT=(list)
This form of the IGNORE option allows records to be dropped based oaltresyv
of data items. For example,
| GNORE=( CEN. EQ 1, AGE. GT. 60) .
Records having GEN equal to 1 oGE greater than 60 are dropped. All others are
accepted. ThACCEPT option allows records to be accepted based onathesv
of data items.FORTRAN logical operators .EQ., .NE., .GT., .GE.T..LLE. may
be used, as well as FORTRAN 90 logical operators/=5=,>, >=, <, <=
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Special operators .NEN. and .EQN. request that character strings Jsetexbrio
numeric prior to being compared (hm73). See Guide VIII for more information.

LAST20=nn
"nn" is a 2 digit number that specifies the highest 2-digit year that is assumed to be
in the 21st. century.e., that represents 20nn rather than 19nn. See Section 10.1.5
below.

TRANSLATE
The translate option must be followed by parentheses enclosing a list of one or
more translate specifications. For example,

$DATA fil ename TRANSLATE(TI ME/ 24,11/ 24)

Translate specificatiofl ME/ 24 causes the value of TIME to bevidied by 24,
whether or not day-time translation occurs (i.e., whether or notveliaties are
being computed). This has thdesft of changing the unit of TIME from hours to
days. Similarly translate specificatiohl / 24 causes the value of Il (interdose
intenal) to be diided by 24 whether or not ":" appears ity dinvalue. Wth NON-
MEM 7.3, ary value may be gen for dividing time and Il values, and yapreci-
sion may be requested. See Section 10.1.4xbelo

5. The$INPUT Record

This record describes Wwamary data items there are on each data record, the order of the
data items, and tells what the labels of the data items are.

5.1. Dataltem Labels

A data item label is one to four letters (A-Z) or numerals (0\M@)th NONMEM 7 a

label consists of 1-24 letters (A-Z), numerals (0-9), and the charactgiThé length 24

is specified by constant SD in SIZES)

The first character must be a lett@hese labels are the ones which will be used in other
records (such as $PK or $STPERPLOT), and will appear in NONMEM cutput. The

order of the data items on the data records is not important, but must be the same on all
data records in the data set. In both thangples of Chapter 2, the ID data items hap-
pened to be the first ones in the data records, andMtgafa items happened to be the

last ones. This order was arbitrary.

5.2. Reseved Labels and Synonyms

Certain data item labels are reserved in that ithentify data items which are recognized
specifically by NONMEM, PREDRPr NM-TRAN. Thedata items thelabel are them-
selves called NONMEM, PREDP& NM-TRAN data items, respeudly.

. Resened NONMEM data item labels are: ID, L2VDand MDV. They are dis-
cussed in Section 6 of this chapter and in Section 4.2 of Chapteidtitional
resened NONMEM data item labels are: MRG_, RAW _, and RPT _. See Guide
VIII for a discussion of these items.

. Resened PREDPP data item labels are: TIME, EVID, ANRRTE, SS, II, ADDL,
CMT, PCMT, CALL, and CONT They are discussed in Section 7 of this chapter
and in Section 2.4 of Chapter 12Vith NONMEM 7.2, additional reseed
PREDPP data items are thetra EVID labels, XVID1, XVID2, XVID3, XVID4,
and XVID5. See Guide VIl for a discussion of these items.
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. Resened NM-TRAN data item labels are:ADE, DAT1, DAT2, DAT3, and L1.
DATE, DAT1, DAT2, and [AT3 ae discussed in Section 10.1 of this chapter; L1 is
discussed in Section 4.2 of Chapter 12.

If you do not want to use the resedvlabel, you can supply twabels: the reserved label
and a "synoym". Eitherlabel can be used in subsequent recordisphly the synoym
will appear in NONMEM outputFor example,

$1 NPUT PNO=I D, CONC=DV, DOSE=AMT, T, . . . .
The first three data items arevg the labels PNO, CONC, and DOSE. These labels are
synoryms for the NONMEM data items ID andviand for the PREDPP data item AMT
The last data item is\ggn the label WT and is not a reserved data item; it isxamele
of fixed effect ("concomitant") data

When $PK and $ERBR records are present, certain labels may not be used at all as data
item labels. These are: the labels for the basic and additional PK parameters for the phar
macokinetic model, as listed in Appendices 1 and 2 (e.g., fo/AND and TRANS2:

CL, V, S1, S2, F1, F0), and specific labels for the arguments of the PK and ERROR sub-
routines: IDEFIREV, N, GG, IRGG, HH, and G.

5.3. Dropping Data Items via DROP

If no format specification is included on the $INPUT record, then another yaynon
DROPR may be used with gndata item. DROP may be used as a synonym more than
once. ltidentifies data items to be dropped (i.e. eliminated) from the NM-TRAN data set
by the Data Preprocessor while constructing the NONMEM dataT$es. provides a

way to limit the number of data items in the NONMEM data set and to eliminate non-
numeric data items.

6. NONMEM Data Iltems

6.1. DV Data Item

There must alays be a Dependenariable dataitem labeled V. This is a value of an
obsenation. Therecan be only one Y0 data item per data record. The position of the
DV data item (and the ones described Wlis not important. However, its position
must be the same on all records.

6.2. ID Data Item for Population Data

When the data is from a population, NONMEM expects the Identificdttaitem, la-

beled ID, and expects the data to bganized into tvo or nore "individual records”An
individual recordis a group of contiguous data recordsihg the same value for the ID
data item and presumably containing data from the samédudl. 1D data item alues

need not be consecurtj increasing, unique, nor begin with E.g., 3, 5, 6, 10, 3, etc. is a
possible sequence of Ilales. Notahe two instances of 3 as ID data iteralves. As

long as these twinstances are separated by different ID data item values (e.g. 5, 6, 10),
they represent different individuals.

6.3. MDV data item

If there are records in an input data set which do not conghiles of observations, then
NONMEM needs to be informed of thiadt. Thisis done using the Missingependent
Variabledataitem labeled MD/. The values of MY are:
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0 The DV data item of the data record contains a value of an ddutsamy Therecord
is referred to as an observati@tord.

1 The DV data item of the data record doest contain a value of an observation.

NONMEM 7 limits the number of obseation records per individual record to 2500
change this limit, see Users Guide IWith NONMEM 7.3, there is no limit on the num-
ber of observation records.

When PREDPP is used, the Data Preprocessor is able to recognize which records contain
obsered \alues and which do not, and it can supply theMdata item if it is not
already present in the data set, i.e. if the labeMMDes not occur in the SINPUT record.
(When PREDPP is not used, the Data Preprocessor cannot do this.)

7. PREDPPData Items

7.1. TIME Data Iltem

PREDPP will in general need the

Time dataitem, labeled TIME. With NONMEM 7.4, the value of TIME may be ge |
tive. With earlier versions of NONMEM, the value of TIME must be nogsiee.
Within an individual record, values of TIME may not decred&ceptions exist for re-

set and reset-dosevemts; see Section 7.3.) The units are optional (e.g., minutes or
hours), but should be consistent with other units used in the prodleenTIME of the

first event record may be zero or non-zerdf non-zero, then PREDPP in effect subtracts
this value from all other TIMEalues within the same individual record, so that PREDPP
always works with relatie ime values.) TheData Preprocessor permits TIME to be e
pressed as clock time (e.g., 8:30, representing the time, half-past 8 o’clock). Such times
are cownerted by the Data Preprocessor into regatimes. Detailsare given in Section

10.1 belav.

7.2. AMT, RATE, SS, II: Dose-related Data Items

Doses are described using one or more of these four data items, depending on the kind of
dose. Adetailed discussion of these data items and of dose records in general is deferred
to Section 8 belw.

7.3. EVID Data Item

When PREDPP is used, all data records are also caketrecordsEvery event record
must contain an Entldentificationdataitem identifying the kind of eent described by
the record, and labeled EVIDThe values of EVID and the Bvkinds of eent records
are:

0  Obsenation event. Thisrecord contains an observed value (in thé data item).
Dose-related data items such as RATE and AMT must be 0.

1 Dose @ent. Thisrecord describes a dose. The contents of tffed&ta item are
ignored.

2  Other eyent. Thisrecord is used for a variety of purposes. It can be used to obtain
a predicted value at a point in time at which no actual observation or dest e
took place; it can be used to turn a compartmenbrabn at a pint in time; it can
be used to mark a time at which a change in a physiological data item (e.g. weight)
occurs (as well as ¢ the nev value of the data item)Dose-related datdaems
must be 0. The contents of th& Data item are ignored.
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3  Reset gent. Thisrecord is used to reset the kinetic system at some point in time,
without actually starting a meindividual record: time is set twhatevertime
appears in thevent record, the amounts in each compartment are set to zero, prior
doses are cancelled, and the dn#tditus of each compartment is set to its initial
status. ltis in all other respects identical to an otheend type record. It is typi-
cally used within an individual record, when the individual had a course of drug
treatment, followed by a wash-out period, followed by another course of drug treat-
ment. Itshould appear prior to the start of the second course.

4  Reset-dosewvent. Thisrecord combines EVID types 3 (reset) and 1 (dosést
the system is reset, and then a dose is introdutéslin all other respects identical
to an ordinary dosevent type record.

If only dose and observatiowent records are present in the NM-TRAN data set, and if
EVID is not already present in the data set (i.e. EVID does not appear in the INPUT
record), then EVID will be supplied automatically by the Data Preproce$hiy is what

was done in the examples of Chapter 2. If other or reset typat @ecords are present in

the data set, then the $SINPUT record must include the EVID data item, and the data set
must include the appropriate values for EVIDatbinthe data records.

7.4. CMT and PCMT Data ltems

The Compartmendataitem (CMT) and PredictiorcCompartmentiataitem (PCMT) are

similar. Both contain the number of a compartment in the model. (Compartments and
compartment numbers are discussed in Chapter 7 and Appendix 1, as are default com-
partments. limay help to look at Chapter 7 and Appendix 1 at this time.) If CMT or
PCMT is not defined in the data set (i.e., not listed in the $SINPUT record), or had-the v

ue 0 on a gien event record, the appropriate default compartment is used, except as noted
below. This is what was done in the examples of Chaptértz meaning of the twdata

items depends on the particular kind oérg record.

. Obsenation event: CMT specifies the compartment from which the predictddey
of the observation is obtained. PCMT is ignored. When CMT specifies the output
compartment, it is allowed to Y@ a regdive sgn (e.g., with the One-compartment
model, CMT may be -2). This signals tladter the prediction is computed the out-
put compartment is to be turned off, i.e. the amount in the compartment is to be set
to zero. The amount remains zero until the compartment is subsequently turned on.
This is quite useful with urine observations; see Section ®\vbielo

. Dose @ent: CMT specifies the compartment into which the dose is introduleel.
compartment is turned on if it was previouslf dCMT specifies the compartment
for which a predicted observation is computddhis predicted value is not associ-
ated with an observation, but it can be useful because it will appear in tables or scat-
terplots.

. Other event: A positive value of CMT specifies that the compartment is to be turned
on if it is off. A negdive value of CMT specifies that the compartment is to be
turned of if it is on. (If CMT is 0, no compartment is turned on of.)ofPCMT is
the same as for doseeats.

. Reset gent: CMT is ignored. PCMT is the same as for dossnes.
. Reset-dosevent;: CMT and PCMT are the same as for dosmes.

T This is also permitted with output-type compartments; see Chapter 12, Section 2.8.
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7.5. CALL Data Item

The Calldataitem (CALL) is used to force a call to either or both of the PK and BRR
subroutines with thevent record when such a call would not normally occurcall to

the PK or ER®R subroutine causes the code specified by the $PK or $ERROR records,
respectiely, to be eecuted with the eent record. This is discussed in Chapters 7 ($PK)
and 8 ($ERRR).) Whennot defined in the data set, CALL is assumed to bev8yal

The values are:

0 No forced call; PREDPP takes its normal action.
1 Force a call to ERROR.

2 Force a call to PK.

3 Force a call to both PK and ERROR.

10 Force a call to AMVAN9. May be combined with otheralues. E.g.the \alue 12
means "Force a call to PK and to Y¥®N9".

8. DescribingDoses to PREDPP

Doses are described using one or more of the data items discussedAedietailed dis-
cussion of the actual kinds of doses that PREDPP recognizeswddlioSection 8.2,
including a precise definition of what is meant by the term "steady-state dose" (Section
8.2.3). Adata item that is not needed to describe the kinds of doses used in the study
need not be defined in the data set; it will in effeaiags have the value 0. Only AMT

(Dose amount) as used in the examples of Chapter 2, kamgple. Thevalues of dose-
related data items should be 0 for non-dogmts and for those doseemts to which

they are not releant.

8.1. Dose-elated Data ltems
AMT data item

The Amountdataitem (AMT) gives the amount of a bolus dose or of an infusion of finite
duration. Thisamount should be a posi rumber.

RATE data item
The Ratedataitem (RATE) gives the rate of an infusionThis rate should be a posii

number (Negative values are discussed in Chapter 12, Section 2.3.)
SS data item

The Steady-statéataitem (SS) can ta& four values.

0  This record does not describe a steady-state dose.

1 This record describes a steady-state ddfsthis is not the firsteent record for the
individual, then the system is first reset as if by a res#tt @ecord (except that the
on/off status of the compartments is unchanged from what it was prior toéhe e
record and the time on theeat record must not be less than the time on the-pre
ous @ent record). The compartment amounts are then computed using steady-state
kinetic formulas.

2 This record describes a steady-state ddde.reset of the kinetic system occurs.
Compartment amounts are computed using steady-state kinetic formulas and are
then added to the amounts already present atvime #me. The use of SS=2 will
be discussed further in Section 8.2.7, elo

3  This record describes a steady-state dose. It is exaaly l#feady-state dose with
SS data item = 1, except that existing compartment amounts anedtidesi ae
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retained and used as initial estimatdhe computed steady-statevés replace
these compartment amounts and \diitres. Thisvalue of SS may be specified
only with SS6 and SS9 (the General Nonlinear Models).

Il data item
The Interdoséntervaldataitem labeled Il gves the time between implied doses (see Sec-
tion 8.2.3 and Chapter 12, Section 2.Fpr a deady-state infusion, it should be Bor

other steady-state doses, it should be a pesitimber whose units are the same as the
TIME data item.

8.2. Different Kinds of Doses

Any of the doses described here may be introduced intc@npartment of the model
except the output compartment. Examples arergbelow that are fragments of data
records, identifying the data items of interest and showing their contents on the dose
record. Theunits of various data items are presumed to be appropriate for some actual
data.

8.2.1. Instantaneoud$Bolus Doses

All the examples in Chapter 2violve instantaneous bolus doses, which we shall refer to
simply as bolus doses. (There is also such a thing as a "zero-order bolus dose", see Chap-
ter 12, Section 2.3.)These are dose records having AMT>0, RATE=0 a®8=0.
(Recall that if RAE and SS are not defined on the $INPUT record;, déhe efectively
0.) If the $PK record computes a biadability fraction parameter for the compartment
into which the dose is introduced, then the contents of the AMT data item is multiplied
by the current value of this parameter before the amount is added to the compaftment.
bolus dose enters the dose compartment immediately; the predicted (scaled) amount in
the dose compartment, if displayed in a table or scatterplot, will include the dose.
Example:

TI ME AMT

4. 10.
This is a dose of 10 to be added to the default dose compartment at time 4.

A bolus dose to the central compartment might be interpreted as an IV bolus dose; to the
depot it might be an oral tablet; to a peripheral compartment it might be an intra-muscular
injection.

8.2.2. Infusions

Infusions are doses Viag AMT>0 and RAE>0. Theduration of the infusion is com-
puted by PREDPP bywding the AMT by the RAE. Aswith bolus doses, AMT is first
multiplied by the bio®ailability parameter for the dose compartment, if.aifhere is no
explicit "end of infusion" record.Drug amounts in the system cannot be affected in a
detectable way at the time an infusion begins byydang introduced by the infusion; the
predicted (scaled) amount in the dose compartment, if displayed in a table or scatterplot,
will not include the dose. Infusions mayedlap. Thatis, subsequent dose records may
start nev infusions before old onesvefinished. Itis not an error if an infusios’dura-

tion is so large as toxeend beyond the time of the laseat record for the individual; the
remainder of the drug is ignored reset or reset-doseeant, or a steady-state doseet

with SS=1, will also terminate gnnfusions in progress.

Example:
TI ME AMI RATE
4. 10. 2.
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The duration of the infusion will be computed as 10./2., and so the infusion, wiicls be
at time 4, will terminate at time 9. (=4.+5.).

An infusion to the central compartment might be interpreted as an IV infusion; to the
depot it might be a sustained release tablet; to a peripheral compartment it might be an
implant or skin patch which releases drug at ankne@onstant rate. It is possible for
NONMEM-PREDPP to estimate the input rate of a constant-rate drugergiediystem

(see Chapter 12, Section 2.3).

8.2.3. Steady-Stat®oses

A steady-state dose can b@aaled as the last one of a series of doses justtix one
specified in the dosevent record, which hae keen gven at a eqular interdose intead

since time—oo, and such that thehaveled to a steady-state periodic pattern of drug
amounts in the system by the time this last dose has been administeeedoses of

similar kind that precede it are called impliddses because their existence is not de-
scribed by separate dose records in the data set, but rather is implied by the description of
the single steady-state dodRy stipulating that a dose is a steady-state dose, the user in-
structs PREDPP to update the drug amounts in the system at the time the d@seais gi

using steady-state kinetic formulas. This caretédss computational time than using
separate dose records to describe the implied doses and using transient kinetic formulas
to advance the system from one dose time to tke (as well as requiring fewer dose
records). Thdormulas used to compute the steady-state amounts at the time the steady-
state dose is introduced use tladues of the basic and additional pharmacokinetic param-
eters in effect at this time; arvalues in dect at earlier times are ignoredloreover,

when using a steady-state dose, the user is assuming that under reasdunablefithe
pharmacokinetic parameters, steady-state is in féetteely reached by the time the

dose is introduced; PREDPP does not check this assumption. The output compartment
must be dfwhen a steady state dose record is encountered in the data set.

(The Model Event Time (MTIME) feature described in Chapter 12 does not apply dlring
steady-state computations. The Absorption lag (ALAG) feature described in Chapter 12
does apply See Guide VI, Chapter,\WNotes 3 and 4.)

8.2.4. Steady-Statevith Multiple Bolus Doses

These are dosevents having AMT>0, RATE=0, SS=1, and 11>0. The Il data item (inter
dose interval) tells @ mary time units apart the doses wergegi. Aswith non-steady-
state bolus doses, AMT is first multiplied by the beilability parameter for the dose
compartment, if an

Figure 6.3 shows o drug levels vary with time. The concentration-time profilegsio
each interdose interval look the same since, in principle, there iidfimite number of
implied doses.
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L Predicted level at time
E | “of steady-state dose event
\%
E I
L

| | | —

| | | | St eady-st ate

| | | i nterdose |evels

It 3l It 2| It | It t+l
i} -

TIME

Figure 6.3. Steady-state with multiple bolus doses. The doseeis @i ime t. The interdose interval is I.
Steady-state \els can be predicted between times t and t+1.

Example:
TIME AMI SS ||
8 10. 1 12

Here, an infinite number of bolus doses, 10 units each, are assumed edragien 12

hours apart, with the last of thesesagi at ime 8AM, at which time steady-state is
reached. Théact that TIME is 8 has no effect on the computed amounts, but is important
in relation to the records that folo Steady-state Mels can be predicted at yatime
between the time on the dose record (8) and the end of the succeeding interdaae interv
(12) (provided there are no further doses introdudedng this intenal). If another
(steady-state anon-steady-stajedose just like the steady-state one is introduced at time
20, then predictions in the interdose in&riollowing this time will also be steady-state
levels.

8.2.5. Steady-Statevith Multiple Infusions

These are dosevents having AMT>0, RAE>0, SS=1, and 1I>0. Each suckest
describes the last of a series of regularly spaced infusions, all of the same amount and
rate. Aswith a non-steady-state infusion, the duration of each infusionven diy
AMT/RATE. Thebioavailability fraction applies to each infusion of the series.

Figure 6.4 shows hodrug levels vary with time. The concentration-time profilegsio

each interdose interval look the same since, in principle, there iidimite number of
implied doses.
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L Predicted level at tine
E ~ of steady-state dose event
\%
E
L

| | | e
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| | | | interdose |evels

t-3l t-21 t-| t t+l
- | | | | -

TIME

Figure 6.4. Steady-state with multiple infusioriBhe dose is gen at ime t. The interdose interval is I.
Steady-state \@ls can be predicted between times t and t+I.

Example:

TI ME AMI RATE SS | |

16 10. 5. 1 6

Here, infusions, eac0 units and of duration 2 (=10/5), are assumed e been gven
6 hours apart, with the last of these started at time 4PM, at which time steady-state is
reached. Theaily dose times were 4 AM, 10 AM, 4 PM, and 10 PAgain, the alue
of TIME has no dtct on the computed amounts but is important in relation to the
records that folle. Steady-state hels can be predicted between times 16 (4 PM) and 22
(10 PM) (provided there are no further doses introddcethg this interval).

8.2.6. Steady-Statavith Constant Infusion

These are dosevents having AMT=0, RATE>0, SS=1, and 1I=0. Such &en consists
of infusion with the stated rate, starting at tirm, and endingat the time on the dose
event record. Biosmailability fractions do not apply to these doses.

Figure 6.5 shows hodrug levels vary with time.

Predicted level at time
| “of steady-state dose event

rm<mr

t-3I t-2| t-| t t+]
- | | | | -

Figure 6.5. Steady-state with constant infusion. Steady-stelecln be predicted only at time t.

Example:
TI ME RATE SS
16 2. 1

Here, a steady-state infusion at rate 2 is specified as ending at A Bighdy-state leel
can be predicted only at this time.
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8.2.7. Multiple Steady-State Doses

Doses with SS=2 are exactlydikbbses with SS=1Doses with SS=2 are similar to non-
steady-state doses in that compartment amounts are computea depe: Firstcom-

partment amounts are computed at the time on the deserecord based on the prior

dosing history of the system. Second, steady-state amounts are computed from the dos-
ing information on the record and added to the existing compartment amounts. Thus, if
the kinetics are lineathis results in an application of the superposition principle wherein

the amounts in the system resulting from doses described bywoseezords preceding

the time of the steady-state dose are superposed on the (steady-state) amounts in the sys-
tem resulting from the steady-state dose and the implied doses.

As with ary steady-state dose, the steady-state amounts are obtained using the values of
the pharmacokinetic parameters computed from the information on the steady-state dose
record. Inthe case that SS=2, though, if these values differ from those computed from
the information on the pvous dose record(s), then the compartment amounts at the time

in the steady-state dose record are not truly steady-state amounts, and the computed
steady-state l&ls are not valid predictionsPREDPP will not detect this erroie
emphasize that superposition is only valid with linear kinetic systems; all the kinetic sys-
tems (ADVANS) discussed in this text are linear.

SS=2 records can be used to aehithe specification of complicated dosingjiraens.
For example, Figure 6.6 shows Wwalrug levels vary with time when tw different doses
are alternatedln this illustration, tvo seady-state doses are specified, each with-inter
dose interal | and with time between the tvgeady-state doses equal to |R2ven more
comple patterns are possible.

Predicted level at tinme
| | of steady-state dose event

~l— P

I I
| | St eady-state
| | interdose | evels

:
7
s

t-3l t-21 t-| ¥ t+l

Figure 6.6. Multiple steady-state dos€Bvo separate steady-state doses avengi As pictured, thg are
each bolus doses, but yheo not have  be. Thefirst dose eent record is at time tThe second dosevent
record is at time t+1/2They each hae interdose interval I. Steady-statedls can be predicted between
times t+1/2 and and t+l.

Example:
TIME AMI SS ||
8 10. 1 24

20 15. 2 24
This describes the following dosing regimen: a dose of 10 wsty enorning at 8 AM
and a dose of 15 unitvexy evening at 8 PM (20 hours is 12 hours past 8). Note that
steady-state is not truly established uafiler the second dose record;yaobservation
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events interposed between theawdose records will reflect only the first steady-state
dosage (i.e., 10 unitwvery 8 AM). Another way to achie the same steady-state is by
the following:
Example:
TIME AMT SS |1

20 10. 1 12

20 5. 2 24
This describes doses of 10 uniteny 12 hours, the last of which isvgh at 8 PM (.e. at
8 AM and 8 PM daily), plus additional doses of 5 units at 8 PM dailyboth examples,
the steady-statevels can be predicted from time 20 hours to time 32 hours.

8.2.8. CombiningNon-Steady-State Doses with Steady-State Doses

Non-steady-state dose records may appear before, among, or after steady-state dose
records. Such dose record may occleforea deady-state dose record to reflect a tran-
sient dose gien among a series of regular doses leading to steady-state/hich is not

a part of this seriesE.g., a patient who has been maintained at steady-state takdsaan e
dose by mistad shortly before his appointmentA non-steady-state dose record may
occurafter a geady-state dose record in order to continue the pattern of dosesllibe
steady-state doseOrdinarily, geady-state kels can only be predicted betwegn the

time on the steady-state dose record, tanthe sum ot; and the interdose inteas If it

is not only necessary to compute a steady-state prediction betwaedt,, but also after

t,, then there must also occur one or more non-steady-state dose redgrtis+ak, etc.

with doses just lig the steady-state dose. (The "additional doses" data item, labeled
ADDL, is especially useful for this purpose; see Chapter 12, Section 2.4.)

Example:
TIME AMI SS ||
8 10. 1 24

20 15. 2 24

32 10. 0 O

44 15. 0 O
Here, the last tav records continue the steady-state pattern of the first Steady-state
levels may be predicted between times 20 and 56.

Similarly, a deady-state constant infusion may be extended with a non-steady-state infu-
sion. Inthe example bele, geady-state lels can be predicted from time 0 to time 100.
TI ME RATE AMI SS
0 30 0. 1
0O 30 3000. O

9. TheOutput Compartment: Urine Collections and Obsewations

In this section we sho how wine collections and obsextions of urine concentration,
C,, can be described. The first-time reader may prefer to return to this section after read-
ing Section 4.3.3 of Chapter 7. As axample, consider the one-compartment model
with first-order absorption (AZAN2). Thesequence ofvents is:

6:00 AM A bolus dose of 100 isgen.

8:00 AM A urine collection is started.

9:30 AM C, and urine volume (UVOL) are measured andw oalection is started.

11:45 AM C,, C,, and urine volume are measured.

The $INPUT record is:
$INPUT ID TIME EVID UVOL DV CMI AMT
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The data records appear as follows:
ID TIME EVID WWOL DV CMI  AMT

1 6.00 1 0 0 1 100
1 8.00 2 0 0 3 0
1 9.50 0 75 .058 -3 0
1 9.50 2 0 0 3 0
111.75 0 100 .O067 -3 0
111.75 0 100 5.80 2 0

Notice that urine collections start with an other typenerecord (EVID=2) whose CMT
contains the number of the output compartment, the effect of which is to turn this com-
partment on at 8AM, i.e. to begin accounting for the amount of drug appearing in this
compartment from 8AM. Because other typerg records are included, the EVID data
item mustbe present in the data. The CMT data item must be present veatlirecords

since it is needed to refer to the output compartment in at least one r€awedmust be
taken to use correct values for the CMT data itemauléfvalues used when this data
item is not present are not redat in this case. The WDvalue on the obseation record

at 9:30 is the measurdg],. Because the value of CMT isgative, the output compart-
ment is also turned bét 9:30. Sincehe collection is to continue, the compartment must
be explicitly turned on ain (the fourth record). Note that UVOL is recorded on both
obsenation records at time 11:45. Strictly speaking, it need only be recorded on the sec-
ond C, obsenation). Thispoint is discussed further in Chapter 7, Section 4.3&e |

also Chapter 12, Section 7, for a modification to this data file for output-type compart-
ments.

10. TheData Preprocessor

This section discusses in more detail the ways in which the Data Preprocessor can modify
data, and discusses when a format specification should be included inAfi¥e &idord.

10.1. Day-timeTranslation

10.1.1. TIME Data Item

Sometimes the data contains clock times hh:mm (e.g., the time 1:30 PM is recorded as
13:30). Wth NONMEM 7.3, clock times may also include the seconds hh:mrifitssse

times must be caerted to decimal-a&lued times (e.g., 13.5). The Data Preprocessor can
perform this task when it is processing unformatted dafdhin an indvidual record, the

Data Preprocessor replaces the TIME value in the first data record with 0, and then
replaces subsequent records’ TIME values with the veldtine (i.e., the number of
hours elapsed since the first recor@he TIME value is also reset to O on a reset
(EVID=3) or reset-dose (EVID=4) record.) Here is an example of veldthe calcula-

tion:
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Contents of original file: Contents of new file:
1D TI ME I D TI VE
1 9:15 1 0. 00
1 9: 30 1 0.25
1 10 1 0.75
1 14: 40 1 5.42
1 32.5 1 23.25
2 8 2 0. 00
2 8.0 2 0. 00
2 44: 50 2 36.83
2 58 2 50.00

The presence of the colon ":" in the TIME data item of at least one record of the data
causes the Data Preprocessor tovexrall the TIME values to elapsedliues. Elapsed
times are also called relagitimes.Note that recorded data (lines 5, 8, and 9 of the origi-
nal file) spanned more than one daye user had to add 24 to the TIM&uwes on each

day subsequent to the first to communicate the correct times to the Data Preprocessor.

10.1.2. DATE Data Item

Here is another way the aldata could hee been recorded, using a data item called
DATE whose value is 1 for the first & for the second daynd so on. This alles
TIME values to be recorded more naturally using values in the range 0-24.

Contents of original file: Contents of new file:
I D DATE TI VE | D DATE TI VE
1 1 9:15 1 1 0. 00
1 1 9: 30 1 1 0. 25
1 1 10 1 1 0.75
1 1 14: 40 1 1 5.42
1 2 8.5 1 2 23.25
2 1 8 2 1 0. 00
2 1 8.0 2 1 0. 00
2 2 20: 50 2 2 36.83
2 3 10 2 3 50.00

The DATE data item is of significance only to the Data Preprocessor; NONMEM-
PREDPP will not mak use of it. Even if there are no ":" characters among the TIME
values, the gistence of a BTE data item will cause the Data Preprocessor to replace
TIME values by relatie imes.

10.1.3. CalendarDates
The Datedataitem (DATE) can also be used to record calendar dates in month-day-year

format. Ary aphabetic character (e.g., / or -) can be used to separate the components.
Here is a third way the same example could be recorded:
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Contents of original file: Contents of new file:
ID DATE=DROCP TI ME I D TI ME
1 10- 1- 86 9:15 1 0. 00
1 10- 1- 86 9: 30 1 0. 25
1 10- 1- 86 10 1 0.75
1 10- 1- 86 14: 40 1 5.42
1 10-2-86 8.5 1 23.25
2 10-12 8 2 0. 00
2 10-12 8.0 2 0. 00
2 10- 13 20: 50 2 36. 83
2 10- 14 10 2 50. 00

This example illustrates mfeatures. Firstwhen calendar dates are used, tihg B item

should be specified as ADE=DROP", so that the data item is omitted from thes data

file (see Section 5.3). Otherwise, the alphabetic characters which separate the compo-
nents will cause read errors when NONMEM reads the data. Second, thalyeaisv
optional; only month and date were actually need®dithin a single individual record,
however, @ther all dates should specify a year none should.)

Data labels BT1, DAT2, and [AT3 ae also recognized by the Data Preprocessor and
can be used instead oADE. Thelabel given to the Date data item describes its format:
DATE monthday year

DAT1 daymonth year

DAT2 yearmonth day

DAT3 yearday month

If only one of the three components is present, it is assumed to be the dayt. Ifenly tw
components are present, {hege assumed to be month and day (withTE and DAT 2)

or day and month (with BI'l and DAT3). Theyear may be omitted orgn as 1, 2 3,

or 4 digits.

10.1.4. Conerting Hours to Days and More General Corversions

The units of the relate TIME values resulting from the Data Preprocessday-time
translation are hours. If the correct units for relatime should be days, then the
TRANSLATE option of the $BTA record may be used to request that hours to be con-
verted to days.For example,

$DATA fil ename TRANSLATE( TI ME/ 24)
or
$DATA fil ename TRANSLATE( TI ME/ 24. 000)

With the formervalues of TIME hae wo dgnificant digits, e.g., xxxx.xx.With the lat-
ter, they havethree significant digits, e.g., XXXX.XXX.

With NONMEM 7.3, more general cegrsions are possibleAny value may be gen for
dividing time and Il values, and aprecision may be requested. Examples are:

$DATA fil ename TRANSLATE( TI ME/ 1. 0000)
or

$DATA fil ename TRANSLATE(TI ME/ 1/ 4)
for formatting times in FBTA with 4 digits to the right of the decimal. Anotheswenple
is

T In this casenly, the Date data item may be zero ogaive. Day -1 means one day prior to day O.
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$DATA fil ename TRANSLATE(I1/0. 01/ 6)
which divides Il values by 0.01, and writes 6 digits to the right of the decimal for the Il
data item. See Guide VIII for more information.

10.1.5. TheYear 2000 - LAST20

The user may supply 4 digit years starting (e.g.) "19" and "20", and such dates are pro-
cessed correctly (Three digit years "000"-"999" are permitted, but would represent
exactly those years, and should not normally be used.) If the year is omitted, it is
assumed to be a non-leap yearproblem arises when the year supplied, but has only 1

or 2 digits. Such years are assumed by default to be in thes190@iis is not a correct
assumption, te errors may be made by the Data Preprocessor when computingerelati
times. First,1900 was not a leap yedwut 2000 is a leap yearHence, if consecuwe

dates in a data file are 02-28-00 and 03-01-00 (signifying February 28 and March 1,
2000), an elapsed time of 24 hours, rather than 48 hours, is computed. Second, if consec-
utive dates hege years 99 and 00, the computed elapsed timegdinme and an error mes-

sage is generated.

With NONMEM V and later versions there is a constant LAST20. The value of LAST20

is a 2 digit number nn that specifies the highest 2-digit year that is assumed to be in the
21st. centuryi.e., to represent 20nn rather than 19for example, withLAST20=50,

then 1 and 2 digit years are interpreted as follows:

00-50 represents 2000-2050
51-99 represents 1951-1999

The elapsed time between 02-28-00 and 03-01-00 is calculated to be 48 hours, and the
elapsed time calculated between the years 99 (1999) and 00 (2000) v positi

There are tw ways that a value for LAST20 can be specified.

First, when NM-TRAN is installed, aalue is gien to cmnstant LAST20 in iGlobal.f90

(in the resource directory): DATA LAST20

The default alue of this constant in the distribution medium is 50. Please ask your sys-
tem support department if $henodified the LAST20 constant when NM-TRANaw
installed.

Regadless of what value was assigned to the LAST20 constant in TrGlobal.f90, there is

an option LAST20 of the $8I'A record that may be used to specify the value of the con-
stant for the current rur-or example:

$DATA fil ename LAST20=50
This insures that all 1 and 2 digit years are interpreted a® #@00-2050; 1951-1999).

10.1.6. LeapYear Warning - LYWARN

There may be to drcumstances such that 1 or 2 digit years are recorded as 00, 01, ...
(equivalently, 0, 1, ...). First,these may represent the years 2000, 2001 tchey may
represent years 0, 1, etc., of a stu@yppose the latter is the case, and that none of the
years of the study was a leap yed@hen if LAST20 is set to a value greater than -1, the
year 0 is assumed incorrectly to be the leap year 2000, and elapsed times may be com-
puted incorrectly The Data Preprocessor issues a warning message under tiénfpllo
circumstances:

1) Theyear is recorded as "00" or "0",

2) Thevalue of LAST20 is greater than -1 by default (so that the year is understood to
be 2000), and
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3) ThelLAST20 option of the $BTA record vas not used to modify LAST20 for this

run.
The warning message is as follows:
(DATA WARNI NG 3) RECORD 3, DATA ITEM 3: 01-01-00

THE YEAR IS ASSUMED TO BE 2000 (A LEAP YEAR). IF THI S IS | NCORRECT, USE
$DATA’ S LAST20 OPTI ON TO OVERRI DE THE DEFAULT VALUE OF LAST20 I N NMIRAN S
ABLOCK, OR CHANGE THE DEFAULT: 50

Suppose theseatning messages are appropriate, that is, year "00" (or "0") should not be
a leap year The LAST20 option of the $BTA record may be used to specify that such
years are in the 1909for the current data set:

$DATA fil ename LAST20=-1

A constant YWARN is defined in NM-TRANS ABLOCK module. The default value of
LYWARN is 1 ("data warning message 3 enabled"). If the valu&/@ARN is setto O
("data warning message 3 disabled") and NM-TRAN is recompiled, then aheng
message is suppressed for all runs.

10.2. Interdoselnterval (1) Conversion

When the input data is unformatted and PREDPP is being used, the Interdose (i}erv
data item is checked for values containing a colonAr)y such value is assumed to sig-
nal a clock time hh:mmThe minutes portion is cggarted to a decimal number contain-
ing as mayp decimal places as digits in the origin&.g., the value ":30" is replaced by
".50". This corversion is performed whether or not day-time translation is also being
done.

10.3. Dataltems Generated by the Data Preprocessor

When the data is from a single individual, the Data Preprocessor will almeagsajen-

erate an ID data itemilt does this whether or not PREDPP is used. This is done
because, when the data is from a single individual, the ID data item megirtakry
special non-constant values for NONMENIhe generated ID data item iven the label

"ID." (i.e., ID surrounded by dots)lf this data item is to be shown in\aNONMEM

output (e.g., in a table), it must be referred to on subsequent NM-TRAN records by this
label.

When PREDPP is used, the Data Preprocessor willyal generate the required EVID
data item if it is not already listed on the $INPUT recdjthis was discussed in Section
7.3 abwe.)

When PREDPP is used, the Data Preprocessor widlyal generate the MD (Missing
Dependent Variable) data item if it is not already listed on the $SINPUT record.

These data items are generated by the Data Preprocessor whether or not a format specifi-
cation was coded on the $INPUT recorthey are appended to the end of each data
record.

10.4. WhenMust a Format Specification be Included or Omitted?

When coding the $BTA record, you will need to decide whether to include a FR&N
format specification describing the data file or to omit it and let the Data Preprocessor
construct it. Here are some guidelines in making this decision.

T Section 4.2 of Chapter 12 discusses the L1 data item, which is useddotpi&-TRAN from generating an
Identification data item for individual data.
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A format specification ieequiredwhen:

Some data values are left blank on some data records, withauog hiae value O or
. (or a pair of commas) to hold the place of the missing value.

Some data values are adjacent on some data recordsgréhaot separated by a
space or a comma.

The data records span multipleygltal records; that is, the character / is needed in
the format specification(The Data Preprocessor may generate such a format speci-
fication for the NONMEM data set; we are speaking here of the NM-TRAN data
set.) TheNOOPEN option of $BTA is used. |

A format specification shoulibtbe present when:
The $INPUT record includes DROP as a data item label or synonym.
Day-time translation is desired.
Il conversion is desired.
Commas are used to separate the data items.

The data &lues are not lined up into columns with uniform width, so that no format
specification can be written to describe the file.

The IGNORE/ACCEPT option of $&TA is used to drop records from the data set.

Many data files do not fall in either cafery. A format specification is optional for such
files.

NM-TRAN performs more checks on the data file when there is no format specification.
Some features of NM-TRAN are the same with or without a format specification.

Comment records may be used.

NM-TRAN appends EVID, M, .ID., as needed.

NM-TRAN checks for blank records, and the BLANKOK option of8f&. may be used.
NM-TRAN gives a warning for unusual characters in the data file.

NM-TRAN counts records and supplies the count in FCON.

10.5. SkippingData Items

It is always possible to omit (skip) data items that are not of interest forea BiON-
MEM run. When a format specification is codedptthings must be done: first, replace
the data itens ecification by an "X" specification (e.g., replace F8.0 by 8X) and sec-
ond, delete the data itesnlabel from the $INPUT recordWhen no format specification

is coded, all that need be done is to replace the data ikemel in the $INPUT record by
DROP (or include DROP as a synonym).
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1. What This Chapter is About

This chapter tells o to write a $SUBROUTINE record and Wao write a simple $PK
record for both individual and population daféhis chapter is meant to be read in paral-
lel with Chapters 3 and 4.

2. The$SUBROUTINE Record

The $SUBROUTINE record describes which pharmacokinetic model is to be used.
Recall that NONMEM calls a subroutine named PRED to compute the predadted v
The user must choose to use hind®RED subroutine or to use the PREDPP package.
In this text it is assumed that the PREDPP package is chosen.

2.1. Choosingan ADVAN Subroutine: Standard Pharmacokinetic Models

The PREDPP Library includes subroutines which are pre-preprogrammed, each for a spe-
cific pharmacokinetic model. There:
ADVANL1 (One Compartment Linear Model)
ADVAN2 (One Compartment Linear Model with First Order Absorption)
ADVANS3 (Two Compartment Linear Model)
ADVAN4 (Two Compartment Linear Model with First Order Absorption)
ADVAN10 (One Compartment Model with Michaelis-Menten Elimination)
ADVANL11 (Three Compartment Linear Model)
ADVAN12 (Three Compartment Linear Model with First Order Absorption)
PREDPP calls only one subroutine, Y¥N; the different names abe ae external
names distinguishing different instances of theVAN routine in the PREDPP Library
The name 'AIVAN’ is used because the routine advances (i.e. updates the state of) the
kinetic system from one point in time to thexneThereare additional ANAN routines
in the Library which implement more general types of pharmacokinetic models; see
Chapter 12, Section 2.2. Each of the\VWN's can be used for either inddual or popu-
lation data. The (external) name of the ABN to be wsed is coded on the $SUBRJ-
TINE record; this also implies that PREDPP is to be ugedan example, the folaing
record specifies the One Compartment Linear Model:
$SUBROUTI NE ADVANL

The ADVAN'’s ae described in Appendix 1. Tyehare certain features.

1. Thecompartments are numberedhese numbers are used inotplaces. First,
they are used in the CMT and PCMT data items to describe specific compartments.
Second, the compartment number n is part of the name of PK parameters such as
compartment scale (Sn), as discussedvbelo

2.  Eachmodel has a dafilt observationcompartmentwhich for each of the abe
ADVAN'’s happens to be the central compartment. If e@nterecord contains an
obsenation (i.e. is an observatiowent record), the prediction associated with that
record will be the scaled drug amount in this compartment, unless the CMT data
item on the record specifiesféifently The prediction associated with a non-obser
vational event record will again be the scaled drug amount in this compartment, un-
less the PCMT data item on the record specifies differently.

3. Eachmodel has a datilt dosecompartmentUnless specified ddrently by the
CMT data item, it is understood that a dose is input into this compartiétii.
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ADVAN1, ADVAN3, and AD/AN10, this is the central compartmenwith AD-

VAN2 and AD/AN4, a drug depot compartment is part of the model and is the de-
fault dose compartmentln these cases, if a dose is to go directly into the central
compartment, its compartment number (2) must be present in the CMT data item of
the dose recordNote that it is neer required that there be doses into the depot
compartment. Ira gudy involving mixed oral and IV doses, for example, some pa-
tients may recge aly IV doses. All dosewent records for such patients willvea

the value 2 in the CMT data item.

4. Eachmodel has an output compartmeithe amount of drug in this compartment
is the accumulated amount of drug eliminated from the system and typically repre-
sents the amount of drug which accumulates in the ufihés compartment is spe-
cial. It may not receie a ase. Itis initially off, and it remains &f(so that the
amount therein remains zero) until it is explicitly turned on by an other tygoe e
record which has the output compartmemtimber in the CMT data itemit is
computed by "mass balance", as falfo Betweenary two points in time, it
increases by an amount equal to the amount of drug in the other compartments at
the first point in time, plus the amount added via doses betweendhiengvpoints,
less the amount remaining in the other compartments at the second point in time.
(This difference is multiplied by an output fraction (FO) paramétdtO is com-
puted by the PK routine.) The output compartment can be turrfefl.ef its
amount reset to zero)f the compartment is interpreted as a urine compartment,
this is equiaent to "emptying" the compartment. This is done by puttinghdya-
tive of its number in the CMT data item of an other type or olasienv event
record.t

On event records, the output compartment is referred to by the compartment num-
ber given in Appendix 1. A PK parameter which refers to the output compartment
may use either this number or 0 (zerd@hus, FO and F2 both denote the output
fraction for ADVANL; similarly, SO and S4 both denote the scale for Y¥oN4's
output compartment. SC denotes the scale fprAddVAN’s central compartment.

5.  Eachmodel has a set of basic (required) pharmacokinetic (PK) parameters, which
are the microconstants used to compute the amounts of drug via the kinetic equa-
tions for the modelEach one also has a set of additional (optional) PK parameters,
including compartment scales (Sn), hiatability fractions (Fn), and output frac-
tion (FO). Compartment scales are typically used tova@bmmounts to concentra-
tions, but thg also can be used for other purpos&soavailability fractions multi-
ply dose amounts. The output fraction is describedabo

6. Eachmodels hasic and additional pharmacokinetic parameters must be computed
for it by a subroutine named PK. The error model must be described by a subrou-
tine named ERBR. $PKand $ER®R abbreviated code provide an easy way to
specify the essential computations that must occur in these subroutines.

2.2. Choosinga TRANS Subroutine: Alternative Paameterizations

As discussed in Chapter 3, we may prefer to use pharmacokinetic parameters in our PK
routine other than the microconstants used by PREBPPendix 2 shows seral com-
monly-used parameterizations. The PREDPP package includes a family of subroutines
called TRANS routines which are pre-programmed to translate (reparameterize) from
these commonly used parameterizations to the ones expected by PRERFRRAdIX 2

T This is also permitted with output-type compartments; see Chapter 12, Section 2.8. |
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also gves the TRANS routine for each alternagi parameterization. Asvith ADVAN,

TRANS is the name of the routine. The namegrgin Appendix 2 are instances of
external subroutine names used in the PREDPP LibrHng first member of theamily,
TRANS1, simply translates a set of microconstants into these same microconstants and
must be included in the NONMEM load module in lieu of the others when the $PK
abbreviated code computes the microconstants.

The user must describe on the $SUBKRTINE record which TRANS routine is to be
used. Ier example, the following record requests the One Compartment Linear Model
parameterized (in the PK routine) in terms of clearance and volume.

$SUBROUTI NE ADVANL, TRANS2
When a TRANS other than TRANSL1 is used, only the altefm@trameters listed in col-
umn 1 need be assigned values in the $PK alatbeel code. In this example, these are
CL, V, and KA.

Note that TRANSL1 is the defilt. Thatis, if no TRANS routine is listed on the $SUB-
ROUTINE record, it is assumed that TRANSL1 is intend&dis is the case in thexam-
ples of Chapter 2 Alternative parameterizations using TRANS1 are discussed later in
this chapter in Section 4.2.

3. $PK Abbreviated Code

$PK abbreviated code consists of a block of $#tementspne per line, which look

much like FORTRAN statements. In fact, there a subset of FORRAN: simple assign-

ment statements, certain kinds of conditional (IF) statements, and certain kinds of CALL,
WRITE, PRINT RETURN, OPEN, CLOSE, REWIND statemeniBhe $PK abbnaated

code must be preceded by a record containing the characters "$PK". This record and the
abbreviated code constitute the $/Ri€ord.

$PK statements must include assignment statements giving a valuerytdbasic PK
parameter for the gén ADVAN and TRANS combination, as listed in Appendix 1 (when
TRANSL is used) or column 1 of Appendix 2 (when dedént TRANS is used)They
may also include assignment statements givislges to one or more of the additional
PK parameters.

3.1. Syntax

We assume the readers of this document are familiar with writingTFRZR assignment

and conditional statements. If not, theamples in this and the following chapter should
give alequate guidanceFORTRAN statement numbers are not used, and the statements
may start in ay column. Aswith all NM-TRAN records, blank lines are permitted, and
all text following a semi-colon (;) is ignored and may be used for comm&Q@KRTRAN

95 continuation lines are permittedin ampersand (&) is used at the end of a line to be
continued.

The statements are built using the following: elements of the AH&Tay (e.g.,
THETA(1)); constants; names of input data items appearing on the $INPUT record;
names of pndously-assigned variables; FORTRAN library functions SQROG,
LOG10, EXR SIN, COS, ABS, TAN, ASIN, ACOS, BN, INT, MIN, MAX, and

MOD; NONMEM functions GAMLN and PHIt; arithmetic operators +, -, *, /, **; and
arithmetical and logical expressions using all of thevabdn addition, statements may
include representations for random variables such as ETA(1) and EPS(3). Input data

T PHI gives the value of the cumulag dstribution function. GAMLN gives an &curate eauation of the log-
rithm of the gamma function.
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items hae te values appearing on the currevieng record, and thus these values may
change from onevent record to the n¢. A userdefined ariable name follows the usual
FORTRAN rules (1-6 letters and digits, starting with a letter) and may not be subscripted.
It is defined ("declared") by being assignedatug (i.e., by appearing to the left of = in

an assignment statement).

Nested parentheses and nested IF statements ameall® pair of parentheses enclos-
ing a subscript may be nested within another pair of parenthAesibscripts must be
constants (e.g. THEA{1)). The statements arevduated sequentiallyin the order in
which they appear.

All variables, constants, and expressions eakiged using floating-point (not irger)
arithmetic. Singleor double precision function names and constants may be used inter
changeably.

3.2. Whenare $PK Statements Evaluated?

$PK statements are normallyakiated with gery event record for both population and
individual data. This enables the amounts in the compartments to be updategenom e
time to eent time using current values of the data items. This may be more frequent than
is necessaryln the theophylline example of Chapter 2, no data item is used in the $PK
statements. Ithe phenobarbitalxample, the data item used, W3 constant within an
individual's data. Inthese cases, it is sufficient, and it cavesaticeable amounts of run

time, to @auate the $PK statements once per vitlial record. PREDPP can be
instructed that the set o¥ent records with which the $PK statements aaduated are to

be limited in some way (see Chapter 12, Section 2.7). The CALL data item can be used
to force the statements to besleated with ag event records.

Certain advanced forms of dosing (additional and lagged doses; see Chapter 12, Sections
2.4 and 2.5) introduce doses at times which do not necessarily coincide wighean

record. PREDPRoes not normallywaluate the $PK statements at such times,dan

be instructed to do so (See Chapter 12, Section RI6)lel esent time parameters can be

used to instruct PREDPP twoaluate the $PK statements at specified times (See Chapter
12, Section 2.7).

3.3. Time Varying PK parameters

The state of the kinetic system at @egi event time is obtained using PK parametaf-v

ues computed with the data items on thenerecord. Using these parametatues the
system is advanced to theeat time from the lastwent time. Population models some-
times use data items which change value within individual records and tleussgito

PK parameters whose values change within individual records. In Chapter 4, Section
3.1.6, it is pointed out that it is desirable for tteue of such a data item on theemat

record to be that value holding at the midpoint of the ialdpetween the currenvent

time and the last previouyant time, since the system is advancedr ahis intenal

using the PK parameters determined with this value.

If the data item changes too rapidly for th&due to fairly represent the data itenecthe
entire time period, it is possible to swide the interval into smaller inteads. Eent
records with EVID=2 (other typevent records) can be introduced for this purpoBer.
example, between taconsecutie event records ; andr ., with event timest; andt,4,
one might introduce tavnew aher type gent recordsk; andR,, with event timesT; and
T,, into the data setThe value of the data item iR, will be used to compute the PK
parameters used to advance the systeentbe intenal t; to T; and should be thealue
of the data item holding at the midpoint of this inggrvSimilarly the value of the data
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item in R, will be used to compute the PK parameters used taradvthe systemver
the intenal T, to T, and should be the value of the data item holding at the midpoint of
this interval, and so on.

4. $PK Statements for Individual Data

4.1. Basicand Additional Parameters

With individual data, the parameters to be estimated are (usually) thédiadis FK
parameters, and therefore, elements sehould be associated with these PK parameters.
(NONMEM estimates the elements of thevector) By an indvidual’'s PK parameters,
we mean here the basic PK parameters and, pgssilbhe additional PK parameters
(e.g. a biowailability fraction, or volume of distribution when the latter is not a basic PK
parameter). @ illustrate, in the theophyllinexample of Chapter 1 there occur these $PK
statements

$PK

KA=THETA( 1)

K=THETA( 2)
The parameters KA and K are the basic PK parameters folAAR2 and TRANSL1 (the
default TRANS routine). They are used to compute the amounts in the compartments.
Typically, howeve, the observations are concentratioms.scale parameter is used to
corvert the amount into a concentratioifhus, in the theophylline example we see tw
additional $PK statements:

V=THETA( 3)

S2=Vv

Here, V is a user-definedasiable standing for the volume of distribution of the central
compartment. Iis neither a basic nor additional paramet€he parameter S2 is the
scale parameter for the central compartment; upaididg the amount in that compart-
ment by S2, the concentration resulfdn observation is usually predicted by an amount
for a compartment divided by that compartmertale parameter). In fact, theseotw
statements could be replaced by the single statement

S2=THETA( 3)

However, it may be helpful to the user to distinguish in his code between the calculation
of the central volume itself and the calculation of the scale parameter.

There is no particular need for certain element® td be associated with certain PK
parameters. Inhe abee example, the roles of; and 8, could hae been reersed.
NONMEM's @ vector may contain more orvier elements than there are PK parameters,
depending on he these parameters are modeled.

PK parameters must bemicitly modeled, usually in terms of parameters to be esti-
mated and useatefined data items; the user communicates this model with the $PK state-
ments. Ifa certain parametes’value is known griori (say S2 has the knownalue 500),
there are seeral ways the value can be incorporated into the $PK statem€&hésfol-
lowing examples shw how it can be done via a constant, via a fixed elemeaf afid via
a (differently-named) data item:
1. S2=500
2. $THETA .6 9. (500 FI XED)
$PK
S2=THETA( 3)
Here, rather than be estimat@d,is constrained to the value 500. This is discussed
in Chapter 9.
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3. $INPUT ... VO ..
$PK
S2=vaL
Here, VOL is assumed to v@&the value 500 on the data records. When the data is
from a population, this third technique allows a unigakeie of VOL to be supplied
for each individual.

4.2. Alternative Paameterizations using $PK Statements

It is possible to use an alternatiparameterization while still using TRANS1. The repa-
rameterization is performed within the $PK statements by explicitly computing the
microconstants from the alternadi parameters. Suclreparameterization” statements
are gven in column 2 of Appendix 2.They must follow the assignment statements that
give the alternatie parameters their values, as in the phenobarbital example of Chapter 2.

The advantage of using $PK statements to reparameterize, rather than using a TRANS
subroutine, is that the NONMEM-PREDPP load module will therays consist of the

same set of subroutines for aai choice of AD/AN, which simplifies the job of creat-

ing and running it. It will also run slightlyakter We assume in this document that this
approach is taken.

Other parameterizations are possible besides the ones in Apperfeixk &ample, with
ADVANL1 and TRANS1, one might code:

CL=THETA( 1)

K=THETA( 2)

V=CL/ K

S1=Vv

The ability to express a large variety of modeling possibilities with NONMEM-PREDPP
provides great freedom and Aibility, but as alvays with flexible modeling capability
certain pitfalls arise. Suppose, foxaenple, that with a one compartment system the
compartment amount, rather than the concentration is aukermith ADVAN1 and
TRANSLI the statements

CL=THETA( 1)

V=THETA( 2)

K=CL/ V
will lead to difficulty because only the ratio &f to 8, affects the amount in the compart-
ment, and therefore, the data do notval® and 8, to be separately estimated@he
statements should read:

K=THETA( 1)

It is important to remember that only those elemen® which affect the predictions of
obsenrations will be estimated by NONMEM. Here is some problematic code using
ADVAN1 with TRANS1:

K=THETA( 1)

V=THETA( 2)

CL=THETA( 3)

Si=v
Once agin, NONMEM will be unable to produce separate estimates of all elememts of
The kinetics of a simple one compartment system cannot be determined by three indepen-
dent parametersWith TRANS1, PREDPP itself does not "know" about the relationship
K=CL/V which defines a dependgnamong the parameters. Indeed, the parameters CL
and V are both garded as user-definegnables. Thevalue of 63 has no effect on the
prediction. Wre it not for thedct that S1 is set equal tothle value o®, would have o
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effect on the prediction eitheWith TRANS2 this code is also incorrect for essentially
the same reason. Here, K iggagled as a user-defined variable, and the relationship
CL=K*V is not "known" to PREDPP (PREDPP does kmothat CL/V is the rate con-
stant of elimination, but it does not recognize theiable K as denoting this rate con-
stant, and); has no effect on the prediction.)

4.3. ScaleParameters

Scale parameters are mentioned in Section Prkdicted compartment amounts are
divided by them and are thus eerted to predicted concentrationghey are only
needed for those compartments whose concentrations are directly ecbhséhith
ADVANZ3, for example, the peripheral compartmeitale S2 does not need to be com-
puted eplicitly if there are no observatiorvents giving measured values of concentra-
tions in the peripheral compartmerRredicted values for this compartment may still be
plotted against time, for example, but theatigs need not be scaled drug amounts; the
(unscaled) amount alone is sufficient towghtbe shape of the cugv (Thevarious \ol-

ume parameters shown in Appendix 2 must be modeled whgratheused as basic
parameters, but tlgeneed not be assigned aalues to compartment scale parameters.)
Any scale parameter which is not modeled by $PK statements is assumed to be 1 (i.e.,
predicted values arevedys amounts).

4.3.1. Scalingoy a Known Constant

In Chapter 3, Section 2.2.1, the units of V were changed from Kkiloliters to liters using the
model:

S=V/1000

This can be coded in a $PK statement similar to thg itvappears here, except that the
compartment number must be specified:

S1=V/ 1000
Basic PK parameters may also be rescaled in this manner.

4.3.2. Scalingoy a Parameter: Conditional Statements and Indicator Variables
In Chapter 3, Section 2.2.2, the following model appeared:

OV, if assay isl

S= . .
V, if assay i

There are tw ways this can be coded in $PK statemenrtse assaydata item can be
tested directlyor an ndicator variable can be usedn indicator variable is aariable
whose value is 0 or 1lt may be identified with an input data item, or it may be a-user
defined variable in the $PK statemenfsr example, supposeaviable ASY is to be used
as an indicatorariable. Ifsome input data item is\@gn value 1 when assay 1 was used
and value 0 when assay 2 was used, then this data item could simply be named ASY on
the $INPUT record. Suppose,ever, that the assay number itself (1 or 2) was recorded
in the data and that we Y& ramed the data item ANUM on the $INPUT recoie
must compute the user-defineariable ASY for use as an indicatariable. Therare
two ways this can be done: using a logical IF and using a block IF.
1. ASY=1
IF (ANUM EQ 2) ASY=0
Here, ASY is "provisionally" gien the value 1. Thealue is changed to O if the
data indicates assay 2.
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2. IF (ANUM EQ 1) THEN
ASY=1
ELSE
ASY=0
ENDI F

The choice between these forms of IF is purely a matter of dtide. let us assume that
the compartment to be scaled is compartment 2, anchtisato be identified withgs.
The parameter S2 canwde mded unconditionally:

S2=ASY* V+( 1- ASY) * THETA( 5) *V

Alternatively, ANUM can be tested and ASYaded altogether:

1.  s2=v
IF (ANUM EQ 2) S2=THETA(5)*V

2. IF (ANUM EQ 1) THEN
S2=V
ELSE
S2=THETA(5) *V
ENDI F

4.3.3. Scalingoy a Data Item

If observations of urine concentrati@y are included in the data (see e.g. Chapter 6, Sec-
tion 9), it is necessary to provide urine volume as a scale for the output compartment.
Presumablythis volume varies between urine obsgions and is recorded in the data
records. Suppoghis data item is called UVOL in the SINPUT record. (The nanaengi
to the data item has no special significancg; mme could be chosenAn additional
$PK statement is necessary:

S0=UvOL

UVOL need be recorded on only those observatiente to which it applies, although it
does no harm to record it on otheemt records.For example, it may well happen that

both plasma and urine responses are measured at the same time, so that there are tw
obsenation e/ent records with the samealie of TIME, one for each compartment
obsered at that time.As described in Section 3.2 ale $PK statements are normally
evduated with gery event record. Consider for example, the sample data belo
Assume that the Central compartment is compartment 2 and the output compartment is
compartment 3. (Note the use of -3 to signify that compartment 3 is to be tufaédrof
the observation timeThe compartment will remain fofintil the time another urine col-
lection bgins, as indicated with an other type record; see Chapter 6, Sectiofilhéy.

1. or 2. will produce the correct value of SO:

1. RecordUVOL on the gent record to which it appliesThe order of the records
does not matter.
TI ME UVOL DV cMr
10. O 5.80 2
10. 100 .067 -3

2. RecordUVOL on all event records héng the same value of TIME. The order of
the records does not matter.
TI ME UVOL DV CcMr
10. 100 5.80 2
10. 100 .067 -3
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The following will not produce the correct value of SO unless PREDPP is instructed to
evduate the $PK statements only once for each distinct value of TIME:

TI ME ULWVOL DV cMr
10. 100 5.80 2
10. O . 067 -3

4.4, Bioavailability Fraction Parameters

PK parameters of the form Fn, where n is the number of a compartment into which a dose
may be introduced, are bimability fractions. If a dose record specifies a dose for
compartment n, the dose amountepi on he a&ent record is multiplied by the value of

Fn computed from the $PK statementalgated with this record, and this product is the
dose amount introduced into the systeffor example, F1 multiplies the amount of dose
which is to be added to compartmentAny Fn which is not computed by $PK state-
ments is assumed to be 1 (i.e., the dose is 10@f}alsle).

As an example, supposedwdifferent preparations of the same drug are administered,
and it is assumed that théiffer only in their biogailability. The indicator variable (or

data item) PREP has value 1 for the first preparation and 0 for the séldomdatio of

the bioaailability of the second preparation to that of the first preparation is identified
with 8. Usually, the method of drug administration permits this ratio to be estimaied, b

not the separate biealabilities. Without loss of generalifyhe bioaailability of the first
preparation can be taken to be 1. Assuming the drug enters compartment 1 of the model,
there are three ways this can be coded:

1.  F1=PREP+(1- PREP) * THETA( 6)

2.  Fi=1
| F (PREP. EQ 0) F1=THETA(6)

3. | F (PREP. EQ 0) THEN
F1=THETA( 6)
ELSE
F1=1
ENDI F

Again, the choice is a matter of style.

Once a dose is introduced into the dose compartmengiitsd® distribute into the other
compartments. Whether not the original dose ag 100% wailable, it is assumed that

none of the dose appearing in the dose compartment, and in other compartments after the
dose is introduced, is further reduced due to Jatability effects. PREDPRcannot

model "bioaailability effects" between compartments.

4.5. OutputFraction

The Output Fraction parametdf0, is an optional additional PK parameter ofrg
model. Asdiscussed in Section 2 al® every model contains an output compartment.
If this compartment has been turned on prior to theack from timet;_; to timet;,
then the amount of drug lost from the system during this iattera elimination is multi-
plied by FO and added to the prior contents of the output compartment. If the $PK state-
ments do not include an assignment statement giving a value to FO, @rigade 1 (i.e.,
100% of the drug excreted goes to the output compartment). In model (4.Xanaple
of the use of FO is gén. Assumingthat the variables CLREN (renal clearance) and CL
(total clearance) & been calculated with earlier $PK statements, the statement
FO=CLREN CL
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can be used to compute FO.

5. $PK Statements for Population Data

With population data, the structural models for the PK parameters tend to be more com-
plicated than with individual data. In addition, the influence of interindividual random
effects needs to be described. These wilblive dfferences in the $PK statementst b

the same $SUBROUTINE record and the same/ARN and TRANS subroutines are
used, and the same general requirements aachpes of the earlier sections of this
chapter still mostly applyln this section, the models of Chapter 4 are implemented via
$PK statementsMany of these models could be implemented in a variety of ways; an
experienced programmer may prefer to code them differently.

With population data, we must distinguish between the typical value of a PK parameter in
the population and the value of that parameter forvengindividual, the indvidual’s

vaue. Thetypical value is computed by a structural modebiving only fixed efects.

We havechosen to denote it with the use of a tilde: €. The indvidual’s value is
computed by a model including random interindividudé@t (represented by random
variables) and is denoted without a tilde: e@)., There is no tilde character in the FOR-
TRAN character set, and with NM-TRAN we do not need to distinguish typical and indi-
vidual values. Havever, for purposes of clarityn dl the examples which folle we will

include the letters TV (Typicalalue) at the start of those variable names which we think
of as having a tilde (e.g., TVCL). This is a matter of style.

5.1. Structural Part of Parameter Models

In models such as (4.3), the subscrijstdicates that the model applies to tHeindivid-
ual. Asnoted in Chapter 4, the subscript is not needed and, indeed, is not used in $PK
statements.

5.1.1. LinearModels

Models (4.4), (4.5a), (4.5b) and (4.6) can be coded gsapear Assuming that W,T
AGE, and SECR are input data items ovehd&een calculated with earlier $PK state-
ments, the code is:

TVCLMETHETA( 1) *WI

RF=WI* (1. 66- . 011* AGE) / SECR

TVCLR=THETA( 4) * RF

TVCL=TVCLM+TVCLR

5.1.2. Multiplicative Models

Model (4.4.1) can be coded as follows:
TVLCLM=THETA( 1) +THETA( 2) * LOG( WI)
TVCLM=EXP( TVLCLM

Model (4.4.2) can also be coded as it appears:
TVCLMETHETA( 1) * WI* * THETA( 2)

5.1.3. SaturationModels

Model (4.4.3) presents a problerBubscripted variables that can appear in $PK state-
ments are f&; naturally they include THER and (as seen below) BT The variable

CPSS cannot be subscripted, and a variable name such as CPSS2 (rather than CPSS(2))
must be used fd€pss. The model can be coded exactly as it appears:
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TVCLM=WT* ( THETA( 1) - THETA( 2) * CPSS2/ ( THETA( 3) +CPSS2) )

5.1.4. Modelswith Indicator Variables

When dealing with typical values, indicator variables (Gitiables) can be used inter
changeably with conditional (IF) statements, as we laready seen. Model (4.4.4) can
be coded in a variety of ways,dwf which are:

1.  TVCLMe( THETA( 1) - THETA( 2) * HF) * WT

2. IF (HF.EQ0) THEN
TVCLM:=THETA( 1) * WF
ELSE
TVCLM=( THETA( 1) - THETA( 2) ) * WF
ENDI F

5.2. Population Random Effect Models

Random wariablesn are used in the models for interividiual errors. (With population
models, randomariabless are used in the models for intraimidiual errors; see Chapter

4, Section 2.) In $PK statementsytaee denoted by ETA(1), ETA(2), et&ven if there

is only once such variable it must still be subscripted. It is the presence of one or more
such wariables that indicates to NM-TRAN that the data is from a population. Just as
there is no particular need for cert@irlements to be identified with certain PK parame-
ters, there is no particular need for certaiglements to be associated with certaivari-

ables, and anassociation need not be one-to-one. The following models are both valid:

1.  CL=THETA(1)+ETA(1)
V=THETA( 2) +ETA( 2)

2.  CL=THETA(1) +ETA(2)
V=THETA( 2) +ETA( 1)

However, it will be easier to keep things straight if the first model is used.
Here are three different ways of coding a model for an indivislvalue of clearance:

1. TVCL=THETA(1)
CL=TVCL+ETA( 1)

2.  CL=THETA(1)
CL=CL+ETA(1)

3. CL=THETA( 1) +ETA( 1)

We pefer the first vy because it clearly distinguishes the model for the typalalev
from the model for the indidual’'s value. Wth ary of the three ways for coding the
model the typical &lue of the parameter can be computed aswslloTher variables are
set to 0, and the parameter is computddy variable whose value depends pwvari-
ables is called a randovariable.

Random variables are called trugte variables in the first edition of this guide. This is
because, in principle, a randorariable can assume an inidiual’s true value under the
model. Sucha variable is in contrast to ariable which assumes only a typical value for
the population.

An individual's true value is neer actually known, although an estimate of it can be
obtained. Se€hapter 12, Sections 4.11-4.13.
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5.3. Modelsfor | nterindividual Errors

Here we she how to express the most commonly used models for interindividual errors
with $PK statements. In addition, all the error models described in Chapter 8 may also be
used in $PK statements.

5.3.1. Additive/Multiplicati ve Models

This is the error model of (4.9):
K=TVK+ETA( 1)
This is the error model of (4.10):
K=TVK* (1+ETA( 1))
This model can also be coded as:
K=TVK+TVK* ETA( 1)
Here, the variable TVK has been "multiplied through”. The choice is a matter of style.

5.3.2. OtherModels

The model (4.11) may be coded as written.
CLM=TVCLM#( 1- 1 CU) * ETA( 1) +l CU* ETA( 2)

It may also be coded with an IF statement.
IF (1CU.EQ0) THEN
CLM=TVCLM+ETA( 1)
ELSE
CLM=TVCLM+ETA( 2)
ENDI F
The choice is a matter of style.

Note that, under the parameterizationgegiin Appendices 1 and 2, CLM is neither a
basic nor an additional PK parametgat its model imolves any variable. Thisis legiti-

mate: ag variable can be defined in terms ofravariable. Havever, just as withg’s, the
values assigned to the variables must somehoaffect the predictions of obsextions.
Otherwise, the ariance of some variable cannot be estimated, and consequemiye

of the variances of these variables can be estim®essumablywithin the $PK state-
ments, CLM is used to compute CL, and (either within the $PK statements or within the
TRANS routine) CL is used to compute K.

5.4. Restrictionson Random Variables

This section discusses the use of randaneables in some depth and may be skipped by
the casual readefThe remarks here apply to all randowrigbles: both the EX vari-
ables of this chapter and the ERR/EPS variables of Chapter 8.

In general, EA variables can be useddilany aher variables.

Any variable whose value is affected by anABfariable is a random variable, whether
the ETA variable occurs explicitly in the definingmression for the random variable or
whether another random variable occurs in thigression. Br example, consider the
following:

TVCLM=THETA( 2) * WP

CLMETVCLM-ETA( 2)

RF=WI'* (1. 66- . 011* AGE) / SECR

TVCLR=THETA( 4) * RF

CLR=TVCLR+ETA( 1)

CL=CLM+CLR
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CL is a random variable, because it is computed from randorables. Iltdepends on
bothn, andn,.

Random variables may be changed and may be assigned conditirgégt to the fol-
lowing restrictions.

A random variable may not appear anywhere within a nested if structure.

A random wariable defined in the $PK block may not be redefined in the SERR
block.

As an example of the first restriction, suppose in the model (4.11) it is alseethétiat,
for ICU patients, age affects CLMT'he following code expresses the model, but is not
permitted:
IF (1CU. EQ1) THEN
| F (AGE. GE. 50) THEN
TVCLM=THETA( 1)
ELSE
TVCLMETHETA( 2)
ENDI F
CLM=TVCLMHETA( 1)
ELSE
TVCLM=THETA( 3)
CLM=TVCLMHETA( 2)
ENDI F

An alternate code follows, in which the calculation of TVCLM (whictoines a nested
IF) precedes the calculation of CLM (which does not require a nested tig.code is
permitted.

IF (1CU. EQ 1) THEN
| F (AGE. GT.50) THEN
TVCL=THETA( 1)
ELSE
TVCL=THETA( 2)
ENDI F
ELSE
TVCL=THETA( 3)
ENDI F
IF (1CU.EQ 1) THEN
CL=TVCL+ETA( 1)
ELSE
CL=TVCL+ETA( 2)
ENDI F

Indentations are used in the abande for clarity but have ro afect on NM-TRANS
processing of the abbreviated code.
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1. What This Chapter is About

This chapter tells ho to write a simple $ERROR record for PREDPFhis chapter is
meant to be read in parallel with Chapters 3 and 4.

2. $ERROR Abbreviated Code

$ERROR abbreviated code consists of a block of $BRRtatementspne per line.The
$ERROR abbreviated code must be preceded by a record containing the characters "$ER-
ROR". Thisrecord and the abbreviated code constitute the $ERRCIRA.

$ERROR statements describe the error model for PREDIPIRse statements arery
similar for individual data and for population data fact, by making use ofaviables
called ERR variables, the $ERROR statements are identical for both kinds of data.

2.1. Syntax

The syntax of a $SERROR record is very similar to that of a $PK recoedain difer-
ences will be mentioned here.

There must be an assignment statement givingiuweuwo a special (reserved) variable Y

Y is a random variable representing the randariable y (the modeled obsation). Y

is usually defined in terms of a special (reserved) varighldiEh represents the predic-
tion for Y. When the data are from a population, F is a randanalve. Wth individual

data, EA variables may be used in the definition of With population data, EP Sax-
ables may be used in the definition of Where are also special random variables called
ERR variables. Thevariable ERR(l) is the same as ETA(l) or EPS(l), depending on
whether the data are individual or population, respegti For the purpose of giving a
general discussion, applying equally to both individual and population data, ERR will be
used in all the examples in this chaptét is also useful to use ERR in $ERROR state-
ments as a practical matteéBometimes the same data is analyzed from both the popula-
tion and the individual point of we By using ERR wariables, changes to the NM-TRAN
input file are minimized.) An ERRaviable (as with EA and EPS variables) must
always include a subscript (e.g., ERR(1)ye when there is only one such variable in
the model.

Variables computed within $PK statements may be used in §ERRatementsbut not
vice versa.

2.2. Whenare $ERROR Statements Evaluated?

$ERROR statements are normallyakiated with gery event record. This may be more
frequent than is necessafyREDPP can be instructed that the setweherecords with
which the $ERROR statements axgleated is to be limited to only observatiovests,

once per individual record, or once per problem. Such limitation does not apply to the
Simulation Step (Chapter 12, Section 4.8Yith the additre (3.4) and constant cdef

cient of \ariation (3.5) error models, and with the exponential error model, NM-TRAN
instructs PREDPP tovduate the $SERROR statements only once per problagain,

the CALL data item can be used to foreeleation of the $ERROR statements wittyan
event records.
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3. Error Models

The following sections sk how the error models of Chapter 3 are expressed using
$ERROR statements.

3.1. TheAdditi ve Error Model

This is the error model (3.4):
Y=F+ERR( 1)
Both examples in Chapter 2 use this error model.

3.2. TheConstant Coefficient of Variation and Exponential Models

This is the CCV error model (3.5):
Y=F* (1+ERR( 1) )
This error model can also be coded as:
Y=F+F* ERR( 1)
Here, the variable F has been "multiplied through". The choice is a matter of style.

This is the exponential error model (3.5a):
Y=F* EXP( ERR(1) )

When the $ERROR statements consist solely of one of these statements ¢intlan
forms), the output from PREDPP will include the message:

ERROR IN LOG Y | S MODELED

This is done because during data analysis NONMEM cannot distinguish between the
CCV error modely = f + f& and the exponential error modgk f exp(e), for which
log(y) = log(f) + £t. By using the latter model and modelling the error in ypgéther

than iny, NM-TRAN enables PREDPP to actdean improvement in run time.

3.3. CombinedAdditi ve and CCV Error Model

This is the error model (3.6):
Y=F+F* ERR( 1) +ERR( 2)

3.4. ThePower Model

This is the error model (3.7):
Y=F+F** P* ERR( 1)
The \ariable P must be assigned a value before its usee.alpois typically identified
with an element of so that it can be estimated in the fitting process. Let us assume that
6, is chosen for this purpose. Then an alteueatdding is:
Y=F+F** THETA( 4) * ERR( 1)

3.5. Two Different Types of Measurements

We have already seen hwo an indicator variable, e.g., ASYan be used in $PK state-
ments for a variety of purposes. The same technique is used inCFERRtements.
Consider model (3.8) where the variable ASY has the value 1 or 0, corresponding to
assay 1 or assay 2. ASY is a data record item. Then the error model (3.8) is coded:
Y=F+ASY* ERR( 1) +( 1- ASY) * ERR( 2)

This model can also be coded ivaal ways, the choice of which is a matter of style.

1) I F (ASY. EQ 1) THEN
Y=F+ERR( 1)

T During Simulation, NONMEM does distinguish between the CCV and exponential error models.
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ELSE
Y=F+ERR( 2)
ENDI F

2) I F (ASY. EQ 1) Y=F+ERR(1)
I F (ASY. NE. 1) Y=F+ERR(2)

3) Y=F+ERR( 2)
I F (ASY. EQ 1) Y=F+ERR(1)

3.6. Two Different Types of Obsewations

In Chapter 3, Section 3.6, an example ig&giin which there are tar kinds of obsera-
tions, plasmaQ) and urine C,). With PREDPPmeasurements from different compart-
ments of the model are recorded in th¥ Bata item of different observatiorvent
records. TheCMT data item identifies the compartment from which the prediction asso-
ciated with the went record is to be obtained. When the $ERROR statementsahne e
ated for a gien event record, the variable F contains the prediction from the compartment
specified for thatvent record. All that need be done is to select the correct error model,
depending on the compartment. Suppose, for example, tH#A NP is used, so that the
central compartment is compartment 2 and the output (urine) compartment is compart-
ment 3. Then the error model (3.10) can be coded:

TYP=0

IF (CMI.EQ2) TYP=1

Y=F+TYP* ERR( 1) +( 1- TYP) * ERR( 2)

This model can also be coded ivaal ways, one of which is shown here:
| F (CMT. EQ 2) THEN
Y=F+ERR( 1)
ELSE
Y=F+ERR( 2)
ENDI F

3.7. More than One Indicator Variable

In Chapter 3, Section 3.7, an example iggiin which there are three kinds of observ
tions. Supposthat there are tovdata items, ASY1 and ASY2. ASY1lis 1 if assay 1 is
used and 0 otherwise. ASY2 is 1 if assay 2 is used and O otherwise. This is the error
model (3.11):

Y=F+ASY1* ERR( 1) +ASY2* ERR( 2) +( 1- ASY1) * ( 1- ASY2) * ERR( 3)
This model can also be coded ivaal ways, one of which is shown here:

Y=F+ERR( 3)

| F (ASY1. EQ 1) Y=F+ERR(1)

I F (ASY2. EQ 1) Y=F+ERR(2)
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1. What This Chapter is About

This chapter tells o to give initial estimates to NONMEM parameters ($THEA,
$OMEGA, $SIGMA records); he to tell NONMEM what tasks to perform (SESTIMA-
TION, $CO/ARIANCE records); and o to tell NONMEM what additional output to
produce ($TABLE, $SCATTERPLDrecords).

2. Providing Initial Estimates For 8: The $THETA Record

This record provides an initial estimate (and, optiongpvides lower and upper
bounds) for eery element of NONMEM'® vector.

2.1. Poviding Initial Estimates For Elements Ofé

The $THER record contains a list ofalues, separated by spaces or commas, which are
the initial estimates for th&s used in the $PK and $ERROR statements. The position of
a value in the list corresponds to its position (subscript) ingtivector. For example,
consider the following statement:

$THETA 1.7 .102 29.
This says that the initial estimate @y is 1.7, the initial estimate fd, is .102, and the
initial estimate forg; is 29. Some users of NONMEM prefer to code each value on a
separate line so that thean include comments to themselves describing the significance
of theg’s. The abee record could hee keen coded as follows:

$THETA 1.7 ; RATE CONSTANT OF ABSORPTI ON
.102 ; RATE CONSTANT OF ELI M NATI ON
19. ; VOLUME OF DI STRI BUTI ON

This is a matter of style.

2.2. Providing Constraints for Elements ofo

When NONMEM is told to estimate the parameters (Section 4.1, the Estimation Step,
belaw), it varies the elements éfto find values which cause the model to fit the olaserv
tions best. The values on the $THEfecord are the initial estimates&for this search.
When only an initial estimate is provided, NONMEM is free to chogepasitive a neg

ative value for that element &f. We then say that thé element isunconstrainedwhich
means that its lower bound (lower limit)+so and its upper bound (upper limit) tso.

When finite bounds are desired, the initial estimate and its bounds must be enclosed in
parentheses and specified in the ordewdlpinitial, upper). When the upper bound
neednt be finite, the initial estimate and itswer bound are enclosed in parentheses and
specified in the order (heer, initial). Notethat when no estimation is performed, upper
and lower bounds ka ro efect.

In the theophylline example of Chapter 2, fgample, ngative 6 values are pisiologi-
cally impossible.Eaché element was gen a lower bound of 0, which constrained it to
be non-ngdive:

$THETA (0, 1.7) (0, .102) (0O, 29.)

It is possible to mix constrained and unconstra#&dhis was done in Chapter 2, figure
2.12:
$THETA (0,.0027) (0,.70) .0018 .5
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An upper bound ofroo may be stated explicitly using thalue 1000000 or the word
I NFI NI TY. Similarly, a lower bound of-co may be stated explicitly as1000000 or
-INFINITY.

2.3. FixingElements ofg

When estimation is performed, it is sometimes desirable to hold one or more elements of
6 to a constantalue. Oneexample is when a full model is reduced to a simpler model,
as discussed in Chapter 5, Section 2.1; usually this is done by holding semeent to
0. Infact, the \alue 0 may not be used as an initial estimate for an elemeéntidess
this element is fixed to thisalue. A& element is held constant by inserting therav
FIXED after the initial estimate.For example, the following statement alle 8, and 65
to vary but holdsé, to the value .102:

$THETA 1.7 .102 FIXED 29.

Paentheses may be used to mdlie statement easier to read:

$THETA 1.7 (.102 FI XED) 29.

If the lower, initial, and upper values for an elementdre identical, the element @fis
understood to be fixedyen if the word FIXED does not appear.

2.4. How to Obtain Initial Estimates for 6

When estimating parameters, good initial estimate® fane sometimes importanPoor

initial estimates may occasionally cause the NONMEM run te ¢agessie anounts of
computer time, to produce parameter estimates that are not physiologically reasonable, or
to fail to produce anparameter estimates at afkor some drugs and models, initial esti-
mates forg can be obtained from published literature describing prior studies with the
drug. For some studies, very accurate values mas llmen obtained by prior runs with
NONMEM or other rgression programs. Highly accurate values should be perturbed
(modified) by about 10% before being used as initial estimates in a NONMEMInim.

tial estimates that are too close to what may be the actual final estimates will cause prob-
lems in a NONMEM run; see Chapter 13.) Sometimesieher, there is little guidance

in choosing initial estimates for some elementg.of

One approach with population data, where there is a reasonable amount of data for each
individual, is as follavs. Itis often easier to guess at appropriate parametaey for
individual data than for population data. So, first estimate eachidodl’'s parameter

values using only the data from the widiual. Themean walues of the indiduals’
parameter estimates can then be used as the initial parameter estimates in the population
analysis. Resultsom individual runs can also be used to obtain initial estimates for ele-
ments ofQ andZ; see belw.

Another approach is simply to let NONMEM find an initial estim@NMEM has an
automatic strategy for so doing; see Chapter 12, Section 4.4.

3. Providing Initial Estimates for Q and Z: the $OMEGA and $SIGMA Records
Recall thatQ andZ are variance/o@riance matrices for the following random variables:

Individual Model
Q (OMEGA) for n (Random Intraindividual Variability)

Population Model
Q (OMEGA) for n (Random Interindividual Variability)
2 (SIGMA) for ¢ (Random Intraindividual Variability)
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In all the examples in this documef,andZ arediagonalmatrices, in which cariance
elements such as;, (which is covn, n7,)) are assumed to be zero. NONMEM also
allows full variance/cwariance matrices; this is pend the scope of this text, but see
Chapter 12, Section 4.1.

Initial estimates for theariances must be provided to NONMEM via the $SOMEGA and
$SIGMA records. Initial estimates all model paameters(6, Q, and Z) must be pro-

vided even if estimation is not requested. $OMEGA and $SIGMA records each contain a
list of values, separated by spaces or commas, which are the estimates for the correspond-
ing variances. Asn the $THETR record, the position of a value in the list corresponds to

the position (subscript) of the corresponding variance (along the diagonal) in the matrix.

3.1. $OMEGA Record With Individual Data

With individual data,; variables are used in $ERROR records, wherg tne called
either ERR or EA. For example, in the theophylline problem of Chapter 2 (figure 2.1)
there appear the records:

$ERROR

Y=F+ERR( 1)

$OVEGA 1.2

Here, ERR(1) corresponds tg, and the initial estimate for itsaviance is 1.2: i.e.,
Qll = wf = Var(l]l) =1.2.

3.2. $OMEGA Record With Population Data

With population datay variables are used in $PK statemerfter example, in the pheno-
barbital problem of Chapter 2 (figure 2.6) there appear the lines:

CL=TVCL+ETA( 1)

V=TWD+ETA( 2)

$OVEGA . 0000055, .04
The $OMEGA record says that the initial estimate for the variangeief5.5x10°°, and
of n, is .04: i.e.,Qq; = w? = var(n,) =5.5x10° and Q,, = w3 = var(n,) =.04. Some
users of NONMEM prefer to code each value on a separate line so thaathimclude
comments:

$OVEGA .0000005 ; VARIANCE IN CL

.04 ; VAR ANCE IN V

3.3. The$SIGMA Record

This record is used only with population data, and is similar to the $SOMEGA reltord.
gives the initial estimates of the variances of theariables used in the $ERROR state-
ments, where theare called either ERR or EP3.0r example, in Figure 2.6, there also
appears the records:

$ERRCR

Y=F+ERR( 1)

$SIGVA 25

Here, ERR(1) corresponds tq, and the initial estimate for itsaviance is 25: i.e.,
le = 0']2_ = Val’(fl) = 25.

3.4. Fixing Elements ofQ or £

It is sometimes desirable to hold one or more elemerfilsarfZ to constant &lue(s). In
the population xeample of Chapter 2 it is possible to ignore interindividual variability in
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CL by fixingn, to 0t. The variance of anpor ¢ variable is held constant by inserting the
word FIXED afterthe initial estimate:

$OVEGA 0 FI XED . 0225
Paentheses may be used to mdlie statement easier to read:

$OVEGA (0 FIXED) .0225
As with g, the value 0 may not be used as an initial estimate fpelament ofQ or =
unless the element is fixed to this value.

3.5. How to Obtain Initial Estimates for Q and =

The initial estimates for the variances will depend on the particular (interindividual and/or
intraindividual) error models chosen. The estimates do neg kabe grticularly accu-

rate, although values which are much too small can caugrilitiés for NONMEM. In
general, it is better tover-estimate the variances rather than to under-estimate them.
with initial estimates fo, initial estimates can sometimes be obtained from published
literature or from prior runs with NONMEM or other regression programs.

Initial estimates can also be obtained by an approach which we illustratexasitiples
for both intraindividual and interindividual error models. The standard deviation of a
physiological quantity is generally some fractioof its typical valué: gy = rt.

For the additve nodel:
y=f+e¢

oy=0, =11
var, = g2 = (rt)? = r?t?

Some ambiguityasts about what we mean by "the typical value" .oFgr the purpose

of obtaining an initial estimate of the variance, we need not be too particular about this.
For the theophylline example (Figure 2.1), we may choose the mean of theenbwd+v
ues as the typicalalue. Thisvaue is approximately 5.4Assuming 20% errori.e.

r =.2, theno? = (. 2x5. 47 = 1. 2. Similarly, in the first phenobarbital example (Figure
2.6), the mean of the observations is approximatelyA&fain assuming 20% errahen

r =.2 ando? = (. 2x25) = 25. For that samexample, the typical value of CL was esti-
mated according to the model for the param@®@CL=THETA( 1) . We wsed the initial
estimate of 8;, .0047, as the typical value of CL, and assumed 50% error:
Q;; = (.5x. 0047¢ = 5.5x10°°. The model for V iSTWD=THETA( 2) . Agan, we used

the initial estimate ofg,, .99, as the typical value of,\but assumed 20% error:
Q,, = (. 2x. 9)? = .04. Notefinally that in the second phenobarbital example (Figure
2.12), we used as initial estimates afiance the final estimates obtained from the first
example (understanding that these estimates could bend@mh&arge due to some of the
variability being explained in this example by a systematic influence of weight).

For the constant coefficient of variation model:

y=f+fe

T One could also re-write the $PK statements to eliminate ETA(1) in the model for CL, which also requires that
ETA(2) in the model for V be re-numbered asAET). It is easier to modify only SOMEGA.
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If we identify t with the value of f (whater it may be), we hee:
var, =r?

In other words, using the CCV model, we do not need to estimate the typical value of the
variable. For example, assuming 20% erraar, = .2 = . 04.

As with 6, it is possible for NONMEM itself to obtain initial estimates®@fand auto-
matically; see Chapter 12, Section 4.4.

4. SpecifyingOptional Tasks

Two main tasks of NONMEM, the Estimation Step and thea@iance Step, are optional
and must be specifically requested by including the $ESTIN and $COMARI-
ANCE records.To kip the Estimation Step, simply omit the $ESTIM®N record. To
skip the Cweariance Step, simply omit the $S#RIANCE record.

In every run NONMEM computes and prints the value of the objedtinction and the
final parameter estimates. The values printed are based on the final parameter estimates if
the Estimation Step is requested, and are based on the initial estimates if it is not.

4.1. Requestinghe Estimation Step: the $ESTIMATION Record

In the Estimation Step, NONMEM performs a search to obtain those valde§2ptnd
(for population studies which give the lowest value of the objeati function. Theout-
put of this step is the pages whose titles at@NITORING OF SEARCH!, "MINIMUM
VALUE OF OBJECTIVE FUNCTION, and 'FINAL PARAMETER ESTIMATE". This step is
requested by the presence of the following statement:

$ESTI MATI ON
There are seral options, which are described in the NONMEM Users Guide, Part IV
The most frequently used ones are as follows.

METHOD=0
NONMEM always sets etas to 0 during the computation of the olgedinction.
Also calledthe "first order (FO) method." This is the delt. Itmay also be coded
asMETHOD=ZERQ

METHOD=1

NONMEM uses conditional estimates for the etas duting computation of the
objectve function. METHOD-=1is also calledthe "first order conditionadsti-
mation (FOCE) method.'It may also be coded ag&THOD=CONDITIONAL. When

the optionINTERACTION is also present, the method is called the "FOCE with
INTERACTION method". It is recommended for continuous variables unless the
data are very sparsd.hese methods are discussed in Guide VII, Conditional Esti-
mation Methods.

SIGDIGITS=n
By default, the search continues until the estimates of all elemeat<hfand =
have een determined to at least 3 significant figures. Because only 3 significant
digits are used to print parameter estimates in the output, and for other reasons as
well, this amount of accurgds often suficient. Hovever, the SIGDIGITS option
can be used to request a different number (n) of significant digits.
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MAXEVAL=n
The Estimation Step wbhys runs with a specific limit on the number of objesti
function evaluations alleved during the search, as a protection against infinite loops
and ecessvely long runs. The default maximum is computed according to the
number of parameters being estimatddhe MAXEVALS option can be used to
request a different number (n) for the maximum number of functigoagions.

PRINT=n
As the Estimation Step progresses, byad#fit prints intermediate output summa-
rizing the progress of the search. The search proceeds in stages, called iterations.
At the end of certain iterations a summarization is printed which consists aflthe v
ues of the objeate function, its gradient vector with respect to the parameters, and
the parameter values themssdy Bydefault, this summarization is only printed for
the first and last iterationsThe PRINT option can be used to request a number (n)
such that starting from the first iteration, only n-1 iterations are skipped before
another summarization is printedt.

An example of the use of these options is:

$EST SI G=6, MAX=900, PRI =5

In addition to the first and last iterations, summarizations are priaeeg Bth iteration.
Notice that abbngations of the record and option names were used; this is a matter of
style.

4.2. Requestinghe Covariance Step: the $CO/ARIANCE Record

In the Cwariance Step, NONMEM obtains information on the precision of the parameter
estimates obtained in the Estimation St@e output of this step are pages with titles
"STANDARD ERROR OF ESTIMAE", "COVARIANCE MATRIX OF ESTIMATE", "CORRELATION
MATRIX OF ESTIMATE", and 'INVERSE CO/ARIANCE MATRIX OF ESTIMATE". This step is
requested by the presence of the following record:

$COVARI ANCE
There are seeral options, which are discussed in NONMEM Users Guidet, . The
Covariance Step cannot be requested by itself; the Estimation Step must precede itf.

5. SpecifyingOptional Output

$TABLE and $SCATERPLOT records are used to request NONMEM steps which gen-
erate additional output. If one of these records is omitted, NONMEM does not produce
the corresponding additional outpulables and scatterplots are generaéidr all other

tasks hee keen performed. This faicts the values displayed for PRED, RES, and
WRES. Ifthe Estimation Step isot run, then thenitial estimates of the parameters are
used to compute these quantities. If the Estimation iStam, then thdinal parameter
estimates are used. Residuals (RES) and weighted residuals (WRES) are defined in
Chapter 11, Section 4.4.2.

The UNCONDITIONAL option of the $TABLE and $STAERPLOT records requests

that output of this type be generatedreif the Estimation Step terminates unsuccess-
fully, and is the dedult. TheCONDITIONAL option of these records requests that out-
put of this type be generated only if the Estimation Step terminates successfully.

T The PRINT option can also be used to suppress intermediate printout altdgettiés should usually not be
done because the information is often alie. Se&€hapter 10, Section 4.

I The Estimation Step may be omitted when the run is continued from a prior run using a Model Specification
input file; see Chapter 12, Section 4.3, and Chapter 13, Section 3.2.
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5.1. Requestinghe Table Step: the $TABLE Record

The values of B, PRED, RES, and WRES arenalys printed in eery table. Other data
items to be printed should be listed on the record. The data items are printed in the order
in which the are listed. This does not a o be the same order as in the data file, nor
does gery data item hae © be isted. For example, the following record appears in
Chapter 2, figure 2.12:

$TABLE I D TIME AMI WI APGR

Figure 10.10 in Chapter 10 shows a portion of the resulting output.

It is possible for the lines of a table to be sorted into a different order than that of the orig-
inal input file; this is discussed in the NONMEM Users Guide, Part IV.

More than one table can be printefl.separate $ABLE record is used to request each
one.

5.2. RequestingScatterplots: the $SCATTERPLOT Record

Chapter 2 contained mamxamples of $SCATERPLOT records and the resulting out-
put. Herefor example, are the records from figure 2.6:

$SCATTERPLOT PRED VS DV UNIT

$SCATTERPLOT  RES VS WI
The word UNIT requests a unit-slope line, which is the line PRED=Egures 2.10 and
2.11 shw the resulting output.

Similarly, the word ORDO can be used to request a zero line on the ordinate axis.

It is possible to generateveeal scatterplots with a single record, by using a list of data
item names:
$SCATTERPLOT  ( PRED, RES, WRES) VS WI
This produces three scatterplots, and has the same effect as the three records:
$SCATTERPLOT PRED VS WI
$SCATTERPLOT RES VS WI
$SCATTERPLOT WRES VS WI

Sometimes it is desirable to partition a scatterplot into a number of separate scatterplots.
For example, if the data contain both plasma and urine observations, it would be better to
separate the scatterplot of PRED v¥. iDto one scatterplot where th&/alues are the
plasma obseations, and another one where thé \Ealues are the urine obsations. D
do this, it is necessary to specify a partitioning data item, in this case, the CMT data item,
which gies the compartment number of the obsdion. Thefollowing record could be
used.

$SCATTERPLOT PRED VS DV BY CMI UNI T
This will produce separate scatterplots: one with plasma daiigers (CMT=1 if
ADVANL1 is used), and one with urine observations (CMT=2 iVAD1 is used).

Two partitioning items can also be specified:

$SCATTERPLOT PRED VS DV BY CMI SEX UNI' T
One scatterplot is produced for each unigombinationof values of the te partitioning
data items.

6. Placemeniand Order of Records

Two main rules control the placement and order of records within a NM-TRAN control
file:

The $INPUT record must appdagforeary records which contain data item names
($PK, $ERROR, $TABLE, $SCATTERPLOT)
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The $SUBROUTINE, $PK, and $ERMR records should appear in the indicated
ordet but do not hae © be ®nsecutie.

The records $BTA, $THETA, SOMEGA, $SIGMA, $ESTIMATION, $COARIANCE,
$TABLE, and $SCATERPLOT can be placed anywhere among the control records, in
ary order Howeve, NONMEM always performs its tasks in a fixed order:

Estimation Step

Covariance Step

Table Step

Scatterplot Step
Thus, @en if the $TABLE record precedes the $ESTIMATION record, thtues of
PRED, RES, and WRES in the table will be based on the final parameter estimates.

7. INCLUDE records
One or more records of the form
| NCLUDE fil enanme n

may appear anywhere among the NM-TRAN control records. The characters INCLUDE
may be upperor lower-case. "n"is an optional intger, and gives the number of copies
(default is 1).

NM-TRAN opens the named file and reads it to end-of-filae contents of the named
file may be apy portion of an NM-TRAN control stream, e.g., NM-TRAN control records
and/or abbreviated code. After reaching end-of-fileth& number otopies is greater
than 1, NM-TRAN rewinds the file and re-reads it the specified number of tifxfes.
reaching end-of-file on the final (or only) goNM-TRAN resumes reading the original
control stream after the include record.

There may be more than one INCLUDE record, buy thay not be nested. That is, an
included file may not contain INCLUDE records.

For example,

$PROBLEM Model "a" with data set 27, proportional error
I NCLUDE dat a27. def

I NCLUDE nodel a. def

$ERROR Y=F+F*ERR( 1)

$THETA 1.3 4

$OVEGA . 04

$SI GVA 1

$ESTI MATI ON

The file data27.def contains the $INPUT andA$R records.
The file modela.def contains the $SUBROUTINE record and $PK block.
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1. What This Chapter is About

This chapter describes NONME®I'autput in detail. Each page of a NONMEM-
PREDPP output file is shown and discussed.

The input file to NM-TRAN is that of figure 2.12, which is reproduced here as figure 10.1
for corvenience.

1 $PROBLEM PHENOBARB W TH WEI GHT | N MODELS FOR CL AND V
$I NPUT ID TIME AMT WI' APGR DV

3 $DATA | NDATA

4 $SUBROUTI NE ADVANI

5 $PK

6 TVCL=THETA( 1) +THETA( 3) * WI
7 CL=TVCL+ETA( 1)

8 TVWD=THETA( 2) +THETA( 4) * Wl
9 V=TWD+ETA( 2)

10 . THE FOLLOW NG ARE REQUI RED BY PREDPP
11 K=CL/ V

12 S1=V

13 $ERROR

14 Y=F+ERR( 1)

15 $THETA (0, .0027) (0,.70) .0018 .5
16 $OVEGA . 000007, .3

17 $SIGVA 8

18 $ESTI MATI ON PRI NT=5

19 $COVARI ANCE

20  $TABLE ID TIME AMI WI APGR DV

21 $SCATTER PRED VS DV UNIT

22 $SCATTER RES VS WI

Figure 10.1. The NM-TRAN input file (same as figure 2.12). The line numbers on the left are not actually
part of the file.

2. NONMEM Describes its Inputs

The first page of NONMEM autput is shown in figure 10.2n this page, NONMEM
repeats ("echos") the instructions it wasgegiin the control file and describes the data
file. Thefirst page of the output should be checked carefitpblems in a NONMEM
run can often be traced to errors in the problem specificafionexample, alvays check
that the initial parameter estimates were entered correctly.
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1 NONLI NEAR M XED EFFECTS MODEL PROGRAM ( NONMVEM) DOUBLE PRECI SI ON NONVEM VERSION |V LEVEL 1.0
2 DEVELOPED AND PROGRAMMED BY STUART BEAL AND LEW S SHEI NER
3

4 PROBLEM NO. 1

5 PHENOBARB W TH WEI GHT | N MODELS FOR CL AND V

6

7 DATA CHECKOUT RUN: NO

8 DATA SET LOCATED ON UNI T NO.: 2

9THIS UNIT TO BE REWOUND: NO

10 NO. OF DATA RECS | N DATA SET: 744

11 NO. OF DATA I TEMS | N DATA SET: 8

121D DATA I TEM | S DATA | TEM NO. : 1

13 DEP VARI ABLE | S DATA | TEM NO. : 6

14 MDV DATA ITEM IS DATA ITEMNO.: 8

15
16 | NDI CES PASSED TO SUBROUTI NE PRED ARE:
17 7 2 3 0 0 0 0 O O

18 0 O

19

20 LABELS FOR DATA | TEMS ARE:

21 1D TI ME AMT Wr APGR Dv EVI D MV
22

23 FORMAT FOR DATA IS
24 (6E6. 0, 2F2. 0)
25

26 TOT. NO. OF OBS RECS: 155

27 TOT. NO. CF | NDI VI DUALS: 59

28

29 LENGTH OF THETA: 4

30

31 OMEGA HAS SI MPLE DI AGONAL FORM W TH DI MENSI ON: 2
32

33 SIGVA HAS SI MPLE DI AGONAL FORM W TH DI MENSI ON: 1
34
35 I NI TI AL ESTI MATE OF THETA:

36 LOWER BOUND I'NITI AL EST UPPER BOUND
37 0. 0000E+00 0. 2700E- 02 0. 1000E+07
38 0. 0000E+00 0. 7000E+00 0. 1000E+07
39 - 0. 1000E+07 0. 1800E- 02 0. 1000E+07
40 - 0. 1000E+07 0. 5000E+00 0. 1000E+07
41

42 | NI TI AL ESTI MATE OF QOVEGA:

43 0. 7000E- 05

44 0. 0000E+00 0. 3000E+00

45

46 | NI TI AL ESTI MATE OF SI GVA:

47 0. 8000E+01

48

49 ESTI MATI ON STEP OM TTED: NO
50 NO. OF FUNCT. EVALS. ALLOVED: 360
51 NO. OF SIG FI GURES REQUI RED: 3
52 | NTERVEDI ATE PRI NTOUT: YES
53 MSF QUTPUT: NO
54

55 COVARI ANCE STEP OM TTED: NO

56 El GENVLS. PRI NTED: NO

57 SPECI AL COMPUTATI ON:  NO

58

59 TABLES STEP OM TTED: NO

60 NO. OF TABLES: 1

61 TABLES PRI NTED: YES

62

63 USER- CHOSEN DATA | TEMS FOR TABLE 1,
64 | N THE ORDER THEY WLL APPEAR | N THE TABLE, ARE:
65 ID TI ME AMT wr APGR
66

67 SCATTERPLOT STEP OM TTED: NO

68 NO. OF PAIRS OF | TEM5 GENERATI NG

69 FAM LI ES OF SCATTERPLOTS: 2

70

711 TEMS TO BE SCATTERED ARE: DV PRED
72 UNI'T SLOPE LI NE | NCLUDED

73 | TEMS TO BE SCATTERED ARE: Wr RES

'r:ei%lcj)rr(ta 10.2. The first page of the output repdrhe line numbers on the left are not actually part of the

Line 5 is an identification line for the output report. The contents of th©©BBRM
record are shown here.

Line 7 indicates that this is not a data checkout run. (Data checkout mode is discussed in
Chapter 12 Section 4.10Dines 8 through 27 describe the input data file. Lines 10 and
11 describe the numbers ofw® and columns in the input file, as shown in figure 6.1.
Specifically line 10 shows he mary data records were read according to the FRRN

format specification gen in line 24. Line 11 describes the number of data items per
record, which is the number of data items listed in the $INPUT record, edisatnvere
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dropped by the Data Preprocesgus ary that it added (see Chapter @)ines 12, 13,

and 14 describe the locations of those data items of interest to NONMEM itself (i.e.
NONMEM data items).Lines 16 through 18 are discussed in Section 3. Line &% gi

the labels for all the data item$he first six labels are those of the data items specified in
the $SINPUT record and the nextaWEVID, MDV) are those of tw data items added to

the data set by the Data Preproces$dONMEM itself supplies labels PRED, RES, and
WRES for the prediction, residual, and weighted residual data items.) In the terminology
of Chapter 4 (e.g. (4.15a)), ID, TIME, AMWT, and APGR are the elementsxyfDV is

y; PRED is f (evaluated for the typical individual in the population). Line 24 shows the
format used to read each data record. In this example, the foasagemerated by the
Data Preprocessor and describes the data file after processing by the Data Preprocessor
Line 26 gies the number of observation recordsne 27 gves the number of indidual
records; that is, one less than the number of times that the ID data item changed value.

Lines 29 through 47 describe the contents of the $THETA, $OMEGA and $SIGMA
records. Firstthe number of elements 6f Q andZ are gven (lines 29, 31 and 33), then
their initial estimates are displayedh lines 38-41, notice the values 0.1000e+07 and
-0.1000e+07. Thesare NONMEMS way of expressing thealues+oo and-co; i.e., of
describinggs which are unbounded on one or both sides. Another FORTRAN system
may display these numbers differently (e.g., 1.0000e+06), but the absolute value will
always be 1,000,000. In lines 43 and 44, notice that Hr@arnces from the SOMEGA
record appear along the diagonal of dematrix, and that the Bfliagonal element
cov(nq,17) is zero. Line31 states that NONMEM understaridgo be diagonal; the Bf
diagonal element(s) are automatically fixed at zero.

The remaining lines of figure 10.2 describe the tasks that NONMEM will perfoimes

49 through 53 describe the $ESTIVI®ON record. Lines 50 through 53 shahe
defaults (set by NM-TRAN) for &rious options, all of which could v& been specified
explicitly on the $ESTIMATION record. In line 50 for example, NONMEM displays the
maximum number of times it willveluate the objectie function during the Estimation
Step (this number can be slightlyceeded). Thealue 360 vas supplied by NM-TRAN.

It is a function of the sizes &f Q, andZ. Line 51 displays the desired number of signifi-
cant digits in the final parameter estimate; taki® 3 is the default number requested by
NM-TRAN.

Lines 55 through 59 describe the $@&IRIANCE record, giving the default options cho-
sen by NM-TRAN.

Lines 59 through 61 describe theABLE record. Lines 67 through 73 describe the
$SCATTERPLQ records.

3. PREDPPDescribes Its Inputs

The next tvo pages are produced by PREDPP and will not appear if $PRED statements
(or a user-written PRED subroutine) are us@®@REDPP uses these pages to repeat
("echo") the instructions it waswgn in the control file, and to identify the AIAN and
TRANS routines chosen by the usdihe first page of PREDP#tutput is shown in fig-

ure 10.3.

In its first page of output, PREDPP describes the features of the pharmacokinetic model
and its parameterization encoded into theVAD and TRANS routines specified on the
$SUBROUTINE record. The information displayed here includes the kind of informa-
tion summarized in Appendices 1 and & the particular output of Figure 10.3 no

T When a format specification is supplied on the\$® record, and no data items are dropped or added by the
Data Preprocessahe original format specification is used unchanged and appears here.

-97-



Chapter 10 - Reading the Output

1 DOUBLE PRECI SI ON PRED VERSION I'll LEVEL 1.0
2

3 ONE COVPARTMENT MODEL ( ADVANL)

4

5 MAXI MUM NO. OF BASI C PK PARAMETERS: 2

6

7 BASI C PK PARAMVETERS ( AFTER TRANSLATI ON) :
8 ELI M NATI ON RATE (K) IS BASI C PK PARAMETER NO.: 1
9

10
11 COMPARTMENT ATTRI BUTES

12 COWT. NO FUNCTION I NI TI AL ON OFF DOSE DEFAULT DEFAULT
13 STATUS ALLOVED ALLOVNED FOR DOSE  FOR OBS.
14 1 CENTRAL ON NO YES YES YES
15 2 QUTPUT OFF YES NO NO NO

Figurvts 10.3. The first page of PREDPRutput. Theline numbers on the left are not actually part of the
report.

information concerning an alternate parameterization appears because TRANS1 w
specified. Thanformation concerning basic parameters and compartments is displayed
in a format similar to that used in NONMEM Users Guide, Part VI, which is the complete
reference for PREDPP.

Lines 5 and 8 describe the basic PK parameters, which in this example is the single
microconstant K. If a translator other than TRANS1 had been requested, an additional
line would appear describing the translation. E.g., with TRANS2, this line would read:
TRANSLATOR W LL CONVERT PARAMETERS CLEARANCE (CL) AND VOLUME (V) to K

Lines 10 through 14 describe the compartment ateg Een though the output com-
partment is neéer turned on by the data of thigample, its attributes are described here
because it is part of the model.

The information presented so far describes the model for computing drug anfearrds.
given choice of ADVAN and TRANS, the contents of this page are completelydfix
PREDPPs scond page of output describes user choices related tovire ADVAN
routine, including choices for the scale parameters (and thus, to the model for computing
concentrations). Thigage is shown in figure 10.4.

1 ADDI TI ONAL PK PARAMETERS - ASSI GNMENT OF ROMNS I N GG

2 COWPT. NO. I NDI CES
3 SCALE Bl CAVAI L. ZERO- ORDER  ZERO- CRDER  ABSCRB
4 FRACTI ON RATE DURATI ON LAG
5 1 3 * * * *
6 2 * - - -
7 - PARAMETER | S NOT ALLONED FOR THI S MODEL
8 * PARAMETER IS NOT SUPPLI ED BY PK SUBRQUTI NE;
9 W LL DEFAULT TO ONE | F APPLI CABLE
10

11 DATA | TEM | NDI CES USED BY PRED ARE:

12 EVENT | D DATA | TEM | S DATA | TEM NO. :
13 TIME DATA I TEM | S DATA | TEM NO. :

14 DOSE AMOUNT DATA | TEM IS DATA | TEM NO. :

wnN~N

17 PK SUBRQUTI NE CALLED W TH EVERY EVENT RECORD.

18 PK SUBRQUTI NE NOT CALLED AT ADDI TI ONAL DOSE OR LAGGED DOSE TI MES.
19

20 DURI NG SI MULATI ON, ERROR SUBROUTI NE CALLED W TH EVERY EVENT RECORD.
21 OTHERW SE, ERROR SUBRCUTI NE CALLED ONCE IN THI S PROBLEM

Figurcte 10.4. The second page of PREBRBtput. Theline numbers on the left are not actually part of the
report.

Lines 2 through 9 describe the additional PK parameters that are computed by the $PK
statements (or PK subroutine). In line 5, the position marked with "3" corresponds to the
scale parameter for compartment number 1. Thus, we ket the $PK statements con-
tained an assignment statement for S1. From the prior page we can see that compartment
number 1 is the central compartment. The value "3" isvantomber within GG, an array

used for communication between PREDPP and the PK subroitiitb.the use of NM-

TRAN and $PK statements,wanumbers are of no interest to the us@fith a useiwrit-

ten PK subroutine, it is important to check their correctness. Positiongdanaith "*"

-08-



Chapter 10 - Reading the Output

correspond to additional PK parameters that are allowed by the model but that are not
assigned a value by $PK statements; an example is F1, theilaioidity fraction for
compartment 1. Positions marked with "-" correspond to additional parameters that may
not be computed; for instance, dose-related parameters are not allowed for the output
compartment, because (as shown on the preceding page) this compartment camaot recei
doses.

Lines 11 through 14 describe the locations in the input data record of those data items of
interest to PREDPP (PREDPP data items). (NM-TRAN causes the locations of these
data items in the data set to be passed by NONMEM to PREBRidicated in lines 15
through 17 of figure 10.2. NONMEM is not concerned with the significance of these data
items.) Notehat data item 7, Event ID, was appended by the Data Preprocessor.

Line 17 reflects the fact that, by default, $PK statementsvalgaged with gery event
recordt. Laggednd additional doses are discussed in Chapter 12, Sections 2.4 and 2.5.
They are not used in this example.

Line 21 reflects the fact that the $ERROR statements describe the simple error model
(3.4). Thismodel uses no data items and no elementwlfiatsoger (directly or indi-

rectly). NM-TRAN has instructed PREDPP that the SERROR statements negdue e

ated only once at the ¢i@ning of the problem. Line 20 indicates that, should the Simu-
lation Step be implemented, PREDPP will digrd this limitation and esluate the
$ERROR statements withvery event record, so that randomly-generated values of intra-
individual error can be applied aveey observation went. (This example does not
involve smulation, but the PK and ERPR routines which implement the $PK and
$ERROR statements are capable of supporting all NONMEM tasks, including simula-
tion.)

Finally, note that the $PK and $ERMR models (figure 10.1, lines 5-14) are not docu-
mented in the NONMEM-PREDPP output.is a good idea to attach a printed gap

the NM-TRAN input records to the corresponding NONMEM output. MS/DOS batch
file nmfe73.bat and Unix C-shell script nmfe73 (supplied with NONMEM) do this auto-
matically.

4. DiagnosticOutput from the Estimation Step

The next page of output, figure 10.5, is produced during the running of the Estimation
Step.

4.1. IntermediateOutput from the Estimation Step

Lines 1 through 42 are referred to as the intermediate output. Lines 4 through 7 gi
numbers summarizing the O-th iteration, which are based on the initial parameter esti-
mates. Line4 shows the initial value of the objew# function. Thevalue following

"NO. OF FUNC. EVALS." is the number of objedifunction @auations which were
needed during the iteration. Line 5¢s the cumulatre rumber of function ealuations
including this and all prior iteration summaries.

Line 6 gves the unconstrainegdaramete(UCP) estimates. Theearch is carried out in a
different parameter space. Tparameters are transformed to unconstrained parameters
(UCP). Inthe transformation process a scaling occurs sottigtinitial estimate of each

of the UCP is 0.1. Thus, in line 6, all parameters are .1 at the 0-th iterBtitameters

T In this example, the $PK statements (lines 5 through 12 of the input file, figure Y@It¢ ianly WT, which
is constant for each inddual. Itis possible to limit thewvent records with which the $PK statements aabue
ated to the firstvent record of each individual, in order to reduce run time. This decision is left to the user.

-99-



Chapter 10 - Reading the Output

1 MONI TORI NG OF SEARCH:

2

3

4 | TERATI ON NO. : 0 OBJECTI VE VALUE: 0.6757E+03 NO. OF FUNC. EVALS.: 8
5 CUMULATI VE NO. OF FUNC. EVALS.: 8

6 PARAMETER: 0. 1000E+00 0. 1000E+00 0. 1000E+00 0. 1000E+00 0. 1000E+00 0. 1000E+00 0. 1000E+00
7 GRADI ENT: - 0. 7986E+03 -0. 1594E+04 -0. 4294E+03 -0. 1000E+04 0. 1542E+03 0. 5269E+03 0. 9128E+02
8
9 | TERATI ON NO. : 5 OBJECTI VE VALUE: 0. 6502E+03 NO. OF FUNC. EVALS.: 10
10 CUMULATI VE NO. OF FUNC. EVALS.: 58
11 PARAMETER: 0. 8878E-01 0. 1003E+00 0.2055E+00 0.1296E+00 0.6695E-01 0.7822E-01 0.1071E+00
12 GRADI ENT: 0. 1060E+04 0. 2567E+04 0. 3675E+03 0. 8472E+03 -0. 1807E+03 -0. 5093E+03 0. 9841E+02
13
14 1 TERATI ON NO. : 10 OBJECTI VE VALUE: 0. 6153E+03 NO. OF FUNC. EVALS.: 9
15 CUMULATI VE NO. OF FUNC. EVALS.: 107
16 PARAMETER: 0. 5008E-01 0.6626E-01 0.2425E+00 0.1663E+00 -0.6718E-01 0.6382E-01 0.1004E+00
17 GRADI ENT: 0. 9732E+02 0. 3034E+03 0. 3185E+02 0. 1228E+03 -0. 1162E+03 0. 1252E+03 0. 6450E+02
18
19 | TERATI ON NO. : 15 OBJECTI VE VALUE: 0. 6108E+03 NO. OF FUNC. EVALS.: 9
20 CUMULATI VE NO. OF FUNC. EVALS.: 152
21 PARAMETER: 0. 4235E-01 0.4508E-01 0.2462E+00 0. 1831E+00 -0.5721E-01 0.5237E-01 0. 1008E+00
22 GRADI ENT: 0. 3989E+02 0. 7394E+02 -0.1782E+01 0. 8527E+02 -0. 9309E+02 0. 1867E+02 -0. 1773E+02
23
24 1 TERATI ON NO. : 20 OBJECTI VE VALUE: 0. 6095E+03 NO. OF FUNC. EVALS.: 9
25 CUMULATI VE NO. OF FUNC. EVALS.: 197
26 PARAMETER 0. 1927E-01 0. 3153E-01 0. 2615E+00 0. 1898E+00 -0.4458E-01 0.4904E-01 0. 1047E+00
27 GRADI ENT: 0. 1609E+02 -0.3621E+02 0.5228E+01 0.9614E+00 -0. 1740E+02 0. 1329E+02 0. 3111E+01
28
29 | TERATI ON NO. : 25 OBJECTI VE VALUE: 0.6091E+03 NO. OF FUNC. EVALS.: 9
30 CUMULATI VE NO. OF FUNC. EVALS.: 242
31 PARAMETER: 0. 2389E-02 0.4171E-01 0.2652E+00 0. 1833E+00 -0.4413E-01 0.4998E-01 0. 1043E+00
32 GRADI ENT: 0.2273E+01 -0.5333E+01 0.3914E+01 -0.5397E+01 0. 1271E+01 0.2610E+01 0. 3584E+00
33
34 | TERATI ON NO. : 30 OBJECTI VE VALUE: 0.6091E+03 NO. OF FUNC. EVALS.: 16
35 CUMULATI VE NO. OF FUNC. EVALS.: 299
36 PARAMETER -0. 1278E-03 0. 4166E-01 0. 2650E+00 0. 1835E+00 -0.4414E-01 0.5003E-01 0. 1043E+00
37 GRADI ENT:  -0. 1120E+00 -0.9411E+00 -0. 3719E+00 -0. 2540E+01 -0. 5135E-01 0. 1420E+00 -0. 9524E-01
38
39 | TERATI ON NO. : 32 OBJECTI VE VALUE: 0. 6091E+03 NO. OF FUNC. EVALS.: 0
40 CUMULATI VE NO. OF FUNC. EVALS.: 315
41 PARAMETER: -0. 7284E-05 0. 4150E-01 0. 2650E+00 0.1836E+00 -0.4411E-01 0.5003E-01 0. 1043E+00
42 GRADI ENT:  -0.6416E-02 0.9336E-01 0.4548E-01 0.4826E-01 0.1263E-02 0.9652E-01 0.4629E-01

43
44 M NI M ZATI ON SUCCESSFUL
45 NO. OF FUNCTI ON EVALUATI ONS USED: 315
46NO. OF SIG DIGTS IN FINAL EST.: 3.9
Figurcte 10.5. The output from the Estimation St@jme line numbers on the left are not actually part of the
report.
are printed in the following order: elementséfdements ofQ, eements ofz. In this

example, reading from left to right, the parametersdgar@,, 9, 6,4, Qq1, Qo,, and Z4;.

Two points should be noted. First, éik parameters do not appear in the [Bterefore,
the off-diagonal elemer®,,, which is efectively fixed to O, does not appeafecond,
when off-diagonal elements @ are being estimated, then as madditional UCPS
appear as there are off-diagonal elementQ difeing estimated However, a 11 corre-
spondence between each of the elemenfd ahd an UCP does noxist. Thesame is
true for elements ok and the UCH for ~ when off-diagonal elements &f are esti-
mated.

With  NONMEM 7, the parameter estimatese also displayed in their natural
(unscaled) space. Thesknes are identified asNPARAMETR and precede the
PARAMETER lines, which display the UCP values.

Line 7 shavs the gradient for each parametghich may be thought of as the partial de-
rivative d the objectie function with respect to that parameter.

The Estimation Step proceeds in a series of stages called iterations. |Ratigles
intermediate printout is produced for each#rg 5 iterations, as well as for the 0-th and

final iterations, for which intermediate printout isvays printed by defult. Thisprintout
consists of the same four lines as for the 0-th iteration, but using the parameters estimates
obtained at the end of the iteration.

Inlines 4, 9, 14, 19, 24, 29, 34, and 39, obsdat the objectie function drops quickly
at first, and then more sity. After iteration number 25, there is no changevabhe
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fourth significant digit.

In lines 6, 11, 16, 21, 26, 31, 36, and 41, obsdmat each parameter also changes
rapidly at first and then more slowly as it gerges to its final &lue. (Thefirst parame-
ter, 81, is an eception. lItis clearly approaching a very smalllve close to its lwer
bound, 0. In Chapter 12, we shall see that Fgptiindg, are best fixed at 0.)

Finally, in lines 7, 12, 17, 22, 27, 32, 37, and 42, olesérat the gradients also approach
0, another sign that a minimum of the objeetunction has been located.

The values computed for the gradients aey/\sensitie o differences in computer arith-
metic and precisionlf a given NONMEM run is repeated on a different computeron

the same computer with different machine precision or a different FORTRAN cartpiler
is likely that the gradients will be @#frent. Thiswill cause the search to folloa dffer-

ent path to the minimum, so that lines 4 through 42 may be quitzetif. Havever,
each final estimate of a UCP should/als be the same to the number of requested sig-
nificant digits. (Minor differences may also be observed in the output of teri&lwe
Step, below; this output is also senstio computational differences.)

4.2. SummaryOutput from the Estimation Step

Lines 44, 45 and 46 areways printed, gen when intermediate printout is suppressed.

Line 44, "MINIMIZATION SUCCESSFUL", signifies that the search appears t@ ha
located a minimum of the objeeti function. Beforeone can be certain that a minimum

has been located, or one which corresponds to a reasonable parameter estimate (there can
be a number of "local minima"), the final parameter estimates must be examined in their
(untransformed) state; see Section 5Wweldhe Estimation Step is notvedys successful.

Chapter 13 discussesdwther messages that sometimes appear instead of line 44.

In line 45, note that the number of functioveleations used, 315, is a totahlue and
includes all iterations (not just those for which intermediate printout was displaljeg).
is under the limit of 360 supplied by NM-TRAN (figure 10.2, line 57).

The number of significant digits in the final estimate ¥®min line 34 as 3.9. This can

be interpreted as meaning that no (transfornpadameter estimatés actually deter
mined to less than 3.9 significant digitdore specificallywhen the UCP estimates were
compared between the lastawterations, none differed in the first (almost) 4 significant
figuresincluding leading zeros after the decimal point. Note that the findJCP esti-

mate is -0.7284E-05, and so the 7284 are not significant digits aBedlhuse NON-
MEM displays only 3 significant digits in the printed parameter estimates, and for other
reasons as well, by default NM-TRAN requests only 3 significant dibiitsvever, more
significance can be requested, as was discussed in Chapter 9, Section 4.1.

5. Minimum Value of the Objective Function and Final Parameter Estimates

The next tvo pages in the NONMEM output are produced whether or not the Estimation
Step was implemented and, if it was, whether or not the search terminated successfully
They give the \alues of the objeaté function and the parameter estimates, using the final
parameter estimates if the Estimation Step was implemented (whether or not the search
terminated successfully), and using the initial parameter estimates othefitiese

pages hee dready been shown in Chapter 2, figure 2.E¥en when the minimization
routine is successful in locating a minimum of the obyjectiinction, the final (untrans-
formed) parameter estimates must be carefully d@tbcksary parametes final estimate
physiologically unreasonable? Isyaparametes final estimate near its upper ovier
constraint? Ifeither answer is yes, the model, the constraint8'gyror the data may be
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incorrect; see Chapter 11.

Sometimes the final estimates do not match anticipated values,adugs wbtained by

some other system of analysis. Additional refinement of the model may be needed, as
discussed in Chapter 1However, the discrepancmay well be traceable to an error in
model specification, such as an error in specifying a compartsr®ale. Alongwith the
Estimation Step, it is important to obtain a scatterplot of PREDWarld male sure the

unit slope line is visible. See Chapter 13, Section 4.4.

6. Output from the Covariance Step

Figures 10.6 through 10.7 skhdhe output of the Gariance Step, which &s requested

via the $COYARIANCE record. Figure 10.6 has already been displayed as figure 2.14,
but is included here for completeness. This page displays the standard errors of the
parameter estimates. Standard errors are discugsatsizely in Chapters 5 and 11A
detailed discussion of the remaining three pages, containing tagacae, correlation,

and irverse cwariance matrices, is beyond the scope of thit t&lote,however, the use

of the notation "........ "Each sequence of dots denotes a value (such as the standard error
in the estimate af2,,) that is 0 by definition, rather than due to a computation.

Rk kkkkk ok ok k ok k ok kk ko k kK k ok k ok k kK kkkkkk ok k kK kK kkkh ko Rk k ok ko k ok kk ok kkhkk Kk ok kK ko kkhk ok k ko kk ok k ok hkkkkkkkkkkhkkkkk ok kk ok Kk ok *
D kk Kk ok ok ok ok ok ok ok ok ok ok ok kK kK K kkkkkkkkkkk
FoREK KKK KKKk KKk k kK kKK STANDARD ERROR OF ESTI MATE kokokkokkokokokokok
QR KK KKK KKK KKK KKKk Kk k kok ok ok ok ok ok ok ok ok ok
D ok kK k Ak kA Kk kK h hk kA Kk Kk kK kA Kk Rk kK kKK Rk kA Kk Ak kA kA KK Ak A A K A KR KKK KA KKK A K KR KA A KKK IR KKK KA KKK K IR KA KKK IR KK KKKk h kK

6
7

8
9 THETA - VECTOR OF FI XED EFFECTS  **# ks sk shsxsinsss

10

11

12 TH 1 TH 2 TH 3 TH 4
13

14 9.49E-11 1.46E-01 2.24E-04 1.13E-01
15

16

18 OMEGA - COV MATRI X FOR RANDOM EFFECTS - ETAS ***x*x**x

21 ETAL ETA2
23 ETAL 7. 24E-07
25 ETA2 ... ...... 3. 63E-02

29 SIGVA - COV MATRI X FOR RANDOM EFFECTS - EPSI LONS ****

32 EPS1
33
34 EPS1 1. 71E+00

Figure 10.6. Standard error of the estimate. The line numbers on the left are not actually part of the report.
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o kkkkkkkkkkkkkkkkkkkkkkkkkk ok kkkkk ok k ok k ok k ok ok ok ok k ok ok k ok ok k ok k ok kk ok ok ok ok kk ok ok ok ok kk ok ok ok ok kkkkkk ok kk ok k ok ok ok ok k ok ok ok ok ok k ok ok k ok ok ok ko k ok Kk k ok ok ok ok ok

2******************** Kk ok ok ok ok ok ok ok ok ok ok
3******************** w/ARl A'\CE mTRlX G: ESTI ’\MTE kkkkkkkkkkk
4******************** hkkkokkokkkkk
5*******'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k'A'"k********************************************************
6

7

8 TH 1 TH 2 TH 3 TH 4 oVl oML2 ove2 SGl11

9

10TH 1 9. 02E-21

11

12 TH 2 3.93E-12 2.14E-02

13

14 TH 3 -5.23E-15 -1.45E-05 ©5.00E-08

15

16 TH 4 -3.69E-12 -1.57E-02 1.04E-05 1.27E-02

17

18 OML1 -1.11E-17 2.13E-08 -6.39E-12 -1.52E-08 5.24E-13

19

20 OML2 . e e e e e

21

22 OwR2 -1.79E-14 4.40E-04 -5.30E-07 5.58E-04 6.27E-10 ......... 1.32E-03

23

24 SGl11 1.04E-11 -5.69E-02 1.12E-04 4.45E-02 -3.74E-07 ......... -1.03E-02 2.92E+00

Ir:ei%grrzt'-: 10.7. Covariance matrix of the estimateThe line numbers on the left are not actually part of the

P KKK KKK KKKk Kk kK kKK kK Kk kK kKK h Rk h Kk kK kA Kk kKK kA kA kA Kk Ak kA K KA I Kk KKK KK KKK KRR KK KKK R K I KKK KKK KKK AR KK KKK Rk kK Kk kK Kk ok kK

2******************** kkkkkkkkkkk
3******************** mRELATlO\I '\MTR'X O: ESTI '\MTE kkkkkkkkkkk
4******************** Kk ok ok ok ok ok ok ok ok ok ok
5***************************************************************************************************************
6

7

8 TH 1 TH 2 TH 3 TH 4 oMLl oML2 owe2 SG11

9

10TH 1 1. 00E+00

11

12TH 2 2.83E-01 1.00E+00

13

14 TH 3 -2.46E-01 -4.44E-01 1.00E+00

15

16 TH 4 -3.45E-01 -9.53E-01 4.13E-01 1.00E+00

17

18 oM11 -1.61E-01 2.01E-01 -3.95E-02 -1.86E-01 1.00E+00

19

O

21

22 Ove2 -5.21E-03 8.29E-02 -6.53E-02 1.37E-01 2.39E-02 ......... 1. 00E+00

23

24 SGl11 6.44E-02 -2.28E-01 2.94E-01 2.31E-01 -3.02E-01 ......... -1.66E-01 1. 00E+00

Figurcte 10.8. Correlation matrix of the estimate. The line numbers on the left are not actually part of the
report.

P KA KKK KA KK KKK KKK KKK A A KA KK R KA A KA IR KKK KA KA KA KK R KA KA A IR A KKK I KA KA KKK A A K KA IR A KKK KK A KA KKK KA KKK IR A KKK KK h KK

2******************** kkkkkkkkkkk
3******************** INVERSE CO/AR'M ,\MTR'X O: ESTI ,\MTE khkkkkkkkkkk
4******************** *kkkkkkkkkKk
5***************************************************************************************************************
6
7
8 TH 1 TH 2 TH 3 TH 4 omL1 ovL2 ove2 SGL1
9
10TH 1  1.56E+20
11
12TH 2 1.46E+11 1.25E+03
13
14 TH 3 1.35E+13 4. 42E+04 2. 80E+07
15
16 TH 4  2.32E+11 1.63E+03 3.98E+04 2.23E+03
17
18 OML1 3. 04E+15 - 3. 96E+06 -7.46E+08 - 1. 76E+06 2. 26E+12
19
20 OML2 ottt e e e e
21
22 OMP2  -1.56E+11 -1.14E+03 -2.82E+04 -1.55E+03 2.82E+06 ......... 1. 86E+03
23
24 SGL1  -1.93E+09 -7.14E+00 -1.06E+03 -1.03E+01 2.67E+05 ......... 9. 91E+00 4. 78E-01
{:higure 1(%.9.Inverse cwariance matrix of the estimate. The line numbers on the left are not actually part of
€ report.

7. Additional Output: Tables and Scatterplots

The use of $TABLE and $SAAERPLOT records to request tables and scatterplots is
discussed in Chapter 9.
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7.1. Outputfrom the Table Step

The first 12 lines of the table produced by the $TABLE record are shown in figure 10.10.
This is the data for the first individual.
1 TABLE NO. 1

2

3

4

5 LI NE NO I D TI ME AMI WI APGR DV PRED RES WVRES

g 1 1. 00E+00 0.00E+00 2.50E+01 1.40E+00 7.00E+00 O0.00E+00 1.78E+01 0.00E+00 0.00E+00

g 2 1. 00E+00 2. 00E+00 O0.O00E+00 1.40E+00 7.00E+00 1.73E+01 1.76E+01 -3.14E-01 -2.92E-01
ig 3 1. 00E+00 1.25E+01 3.50E+00 1.40E+00 7.00E+00 O0.00E+00 1.92E+01 0.00E+00 0.00E+00
ig 4 1. 00E+00 2.45E+01 3.50E+00 1.40E+00 7.00E+00 O0.00E+00 2.07E+01 0.00E+00 0. 00E+00
ig 5 1. 00E+00 3. 70E+01 3.50E+00 1.40E+00 7.00E+00 O0.O00E+00 2.20E+01 O0.00E+00 0.00E+00
ig 6 1. 00E+00 4.80E+01 3.50E+00 1.40E+00 7.00E+00 O0.00E+00 2.33E+01 0.00E+00 0.00E+00
ig 7 1. 00E+00 6.05E+01 3.50E+00 1.40E+00 7.00E+00 O0.00E+00 2.45E+01 0.00E+00 0. 00E+00
%g 8 1. 00E+00 7.25E+01 3.50E+00 1.40E+00 7.00E+00 O0.O00E+00 2.56E+01 0.00E+00 0.00E+00
%g 9 1. 00E+00 8.53E+01 3.50E+00 1.40E+00 7.00E+00 0.00E+00 2.66E+01 0.00E+00 0.00E+00
gé 10 1. 00E+00 9.65E+01 3.50E+00 1.40E+00 7.00E+00 O0.00E+00 2.77E+01 0.00E+00 0. 00E+00
%g 11 1. 00E+00 1.08E+02 3.50E+00 1.40E+00 7.00E+00 0.O00E+00 2.87E+01 0.00E+00 0.00E+00
%g 12 1. 00E+00 1.12E+02 0.00E+00 1.40E+00 7.00E+00 3.10E+01 2.81E+01 2.88E+00 6.88E-01

Figurcte 10.10.A portion of a NONMEM table. The line numbers on the left are not actually part of the
report.

Each rav in the table corresponds to a record of the input file, and W appear in the

same order as do the corresponding records of the input data file. Note that the values of
RES and WRES arevadys shown as zero for non-observation recordst, whereas a (pos-
sibly) nonzero value of PRED is printed faegy record.

If there are more than 900 data records, separate tables are produced for groups of 900
records. Theast table contains the remaining records. If tivesrof the table are sorted,

each group of records is sorted separatéfpen the input data file is large, the table will
require mag pages to print. Therefore, the $TABLE record should be omitted unless
needed for diagnostic purposes (such as when initially checking dat@ set or model).

7.2. Outputfrom the Scatterplot Step

Many examples of scatterplots are present in Chapters 2 anditg).are not reproduced
here. Whereaall the records in the input data file correspond tesrof a table, this is

not true of a scatterplot that includes one or more of the items RES, WRESVand D
When one of these three is being plotted, then only ols@nvrecords contribute points

to the scatterplottin figure 2.5, there are exactly 10 points "*", corresponding to the 10
observation records in figure 2.2; the dose record does not contribute a point.

NONMEM displays only the first 900 records of the appropriate type in a scatterplot.
This limit applies before gnpartitioning. For example, in a plot of W VS ID, the first

900 observation records are displayed; in a plot of WT vs ID, the first 900 records of the
data file are displayed. Additional scatterplots can be requestedinghadditional
points, using options "FROM=" and "TO=" of the $STOARPLQOT record. SeeNON-

MEM Users Guide, Part IV.

T Strictly speaking, RES and WRES arevays zero for records having MBx1. With PREDPPthis is the
same thing.

T Strictly speaking, it is only the records having MDV=0 that contribute poMitish PREDPPthis is the same
thing.
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1. What This Chapter is About

In this chapterthe simple phenobarbital examplegha in Chapter 2 will be continued to
illustrate heav NONMEM is used to build a model for population data. The topic of
model building, diagnosis ancenfication is a large one. This chapter can onlyed
very abbreviated example.

2. TheStages of Model Building

To analyze a population data set andldh a model for it, one must proceed in logical
stages. Therare five dages, and their relationship to one another is presented diagram-
matically in figure 11.1. One begins by checking the d@me then tries to find an ade-
qguate model incorporating the fixed effects; then an adequate model incorporating the
random effects and describing random méed intra-individual ariability. After a rea-
sonably complete model is found, attempts are made to refine it, and, findéigired,

the various parts of the models (which often, fieaf simply assert the existence of-cer

tain relationships between independent variables and the dependent variable) can be sub-
ject to formal lypothesis tests, as described in ChaptefHowever, it is well known by
statisticians that formal hypothesis testing underakfter model building is just an
approximation for the type of hypothesis testing described in textbooks, which assumes
that the model is the correct model).
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Fix Problems
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NONMEM
Tables Add Structural 2. Build Struct
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Delete 1 by 1

Done
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Figure 11.1. Stages in model building.

3. Check-out— Index Plots

The goal of this stage is to assure that the data are cofteete is no point to trying to

model the data when gross errors are present. Most gross errors are encoding errors that
cause certain values to be different from the intended value by a considerable amount (for
example, a misplaced decimal point changeslaesby a factor of 10), so that graphical
display of the data is usually adequate to detect these. No numerical or statistical
approaches are needed. Indeedy tre not usually useful,ven for more subtle errors,

as such errors cannot easily be detected pyraans (hw is a 10% error to be distin-
guished from interor intra-individual variability?).

To detect gross errors, then, one mslscatterplots of different data item types vsviddi

uals’ identification numbers (i.e. the ID data item,ibthe values of this data item are
arbitrary another data item that identifies patients using sequential integer values; call
this the sequence data item: SEQ). Such plots (of one data item versus ID or SEQ) are
called here indeplots,and are quite useful forvealing the structure of the data, as will

be noted belw, as well as for finding gross errors.

If NONMEM is used to mak index plots, it will also be useful to implement thablles

Step, so that if a problem is noted in a scatterplot, one can refer to the table to try to find
the datum that might account for the problefie. un NONMEM some model must be
specified, een if all that is desired is an ingdeplot. In such case, it makes little fif-

ence what model is used. It is easiest and useful to (i) start with a simpkeMibat is

likely to provide at least a roughly satisfactory fit, (ii) set each PK parameter téea (dif
ent) element o#, (iii) use only oney variable, modifying the scale parameter Qrayd

onee variable, and (iv) use roughly reasonable fixed initial estimates.

For the phenobarbital example, one might useVAN1 withK = 6,,V = 6, + 6,n,, and
y=f + fe;. Initial estimates might bek = .0057 hr™! (half-life = 5 days, a typical
value for adults)V=1.44 L. (the first patient has a concentration of 17.3 mg/L some fe
hours after an initial loading dose of 25 mg; 1.44 times 17.3 =25).25 (50% \ariabil-

ity); o2 = .04 (20% variability).

Figures 11.2 and 11.3 skdndex plots that might be seen in a check-out run (gross
errors hae teen added). In figure 11.2V0s plotted vs ID (here ID and SEQ are the
same), and a gross error occurring at about patient #13 is seen (aatidis@fabout 24
mcg/ml was erroneously recorded as 240 mcg/mnlfigure 11.3, AMT is plotted vs ID,
and patient #3 appears tovhaa gossly erroneous value (again, a decimal point error; a
dose of 18 was misrecorded as 180).
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Figure 11.2.A scatterplot of the dependent variabley, s the patiens ID number (a type of indeplot).
Note the outlier at about ID = 13.

Actually, figure 11.3 reeals a considerable amount about the data structure (this will be
seen better in figure 11.4, belowhen the outlier has been rewed). Mary points lie

along the line AMT = 0, where one sees integers 5, 3, 3, 6, etc, as one proceeds along the
ID axis, each intger indicating the corresponding number of pointar-plotted at that
location. Thg correspond to the observation records, since the doses on these records
are all zero. Thus one can seavhmary obsenations each indgidual contributes (other

type records would also plot at AMT=0,ever). Proceedindo the next highest "line"

of doses (where mgrpoints over-plot for each patient), one "sees" tiverd records gi-

ing the maintenance dose amount since this amount stays constant withimiduahdi
(mary maintenance doses were/gi per individual), and this amount is approximately

the same across indiluals. Lastat the highest dosesx@ept for the outlier), one has
mostly single points.These are the loading doses. There is occasioeslptotting of
loading-dose points. These points represestl@apping patient ID numbers (at the reso-
lution of the NONMEM pilot ), not multiple loading doses to the same patient.
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AMT VS. 1D
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Figure 11.3. An indeplot of the independent variable, dose amount (AMT). Note the outlier at about ID =
3.

Figure 11.4 replots the same data as figure 11.3 but with the misrecorded values of the
data items corrected. Figures 11.5 and 11.6vshe inde plots for the other ter data
items of interest to this data analysis: weight (WT) and Apgar score (APGR).
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AMT VS. ID
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Figure 11.4. See figure 11.3; the outlier has been corrected.
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Figure 11.5. Inde plot for weight (WT)
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APGR VS. ID
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Figure 11.6. Indeplot for Apgar score (APGR)

These plots will be useful in the next stage of model building.

4. Building the Structural Part of the Model

One must first consider the choice of the structural kinetic mdelthe phenobarbital
data, a monoexponential kinetic model has been chddeasumablythe basic structural
kinetics are already kmm well enough for this well studied drug, and it is not necessary
to explore the fits of other possible structural kinetic models to the data at Ratider,

in this section we focus on the newer task to most users of NONMEM, the tagikdef b
ing the structural part of the model for the PK parameters.

4.1. AGeneral Approach

It is generally advisable to start from the simplest reasonable model, and praeaed to
greater compbaty, sopping wheneer further additions fail to impre the model fit.

Thus, one needsal types of tools: (i) those to choose a "minimal” model, (ii) those to
indicate what part of a current model needs to be altered or elaborated (called model
diagnosis or model criticism), and (iithose to judge whether an alteration or elabora-
tion has led to an impved model.

With such tools, one proceeds step by step from the minimal model, running NONMEM
and using the diagnostic tools at each step to suggest a single addition for the next step.
The process will terminate when the judgement tools indicate no verpemt by ag of
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the additionsuggested by the diagnostic tools, or when the diagnostic tools fail to sug-
gest ag more additions.

The NONMEM runs at this stage, since there will be ynafnthem, should be made as
short as possibleTo do 0, only the estimation, table and scatterplot features need be
used; the Caariance Step need not, in general, be run.

4.2. TheMinimal Model

As suggested abe, the minimal model wolves the simplest pharmacokinetic model
(ADVAN) likely to fit the data, and the simplest possible structural PK parameter model:
each parameter is simply identified with a separate element of

At this stage, the statistical model should also be very simple. Only one, or at mgst tw
variables should be defined. These will usually affect (first) the scale parameter (which
itself, is often a @lume of distribution parameter) and (second) some other parameter
influencing the wverall kinetics. Since the werall kinetics exhibited in the data will usu-

ally be dominated by elimination, the secanshould usually modify the rate constant of
elimination or clearanceHowever, some (kinetic) data sets are dominated by absorption
or distribution, and in such cases, the secgrghould probably modify the parameter
most affecting these processeéssingle € should usually sfite. Bothinter and intra-
individual errors can caeniently be modeled as proportional, so that the determination
of initial estimates of variances is made easied all such estimates are on the same
scale, but this is a matter of taste. The model for the phenobarbital data defined in Chap-
ter 2 (figure 2.6) almost fulfills the spirit of these restrictiohlawever, the inter and
intra-individual error models there are add#irather than proportional. The minimal
model used on the phenobarbital data in this chapter is therefore a moditexh \of

that used in Chapter 2. ltis:

CL = 6,(1+ ny) (11.1a)
V= 92(1 + I]z) (lllb)
y=F(1+e) (11.1¢)

In (11.1), it is understood th&=V, and thatF is the prediction ofy from ADVAN1
using CL andV. A control file to NM-TRAN that specifies this model, and instructs
NONMEM to produce the desired output is:
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$PROBLEM PHENOBARB S| MPLE MODEL (#1)
$INPUT  ID TIME AMT WI APGR DV
$DATA  PHENO
$SUBROUTI NE  ADVANL
$PK
TVCL=THETA( 1)
CL=TVCL* ( 1+ETA( 1))
TWD=THETA( 2)
V=TWD* ( 1+ETA( 2) )
K=CL/ V
S1=V
$ERROR
Y=F* (1+ERR( 1))
$THETAS (0,.0105) (O, 1.05)
$OVEGAS .25 .25

$SIGVAS .04
$ESTI MATI ON
$TABLE ID TIME AMI WI' APCR

$SCATTERPLOT PRED VS DV UNI T
$SCATTERPLOT RES VS (PRED, W, APGR)
$SCATTERPLOT WRES VS ( PRED, WI', APGR)

4.3. Useof Constraints
It is important to realize that constraints on elemen&sa@fQ may be part of a model.

For example, constraining clearance to be puesits a nodelling choice. One might
implement this constraint in NONMEM using a lower bound on the $®it€€ord, and

this would assure that the estimate of clearance will be pesili may not be necessary

to do this; gen without the lower bound, the data might clearly force the estimate to be
positive.

Often, havever, analysts will constrain the range of a parameter in the belief that doing so
will shorten computing time or stabilize the search for the minimum of the ofgjecti
function. Whilethis benefit may beajned, the data may force the parameter estimate to
the constraint boundaryen though this boundary may not, iact, represent a true mod-
eling choice. In this case the proper action is to relax the constraint and rerun the prob-
lem. To do dherwise, and lag the parameter estimate to be the boundary value, implies
that at the outset the user assumes that the parameter must be within the boundary and
elevates the constraint to the status of a modeling choice. If an estimate lies on a bound-
ary, NONMEM will print a warning message (along with the standard messggelirey

the status of the termination of the Estimation Step). The reader is cautioned to look for
such a message, and in general, it is a good idea to checduks uf the final estimates
against the boundaryalues. Alternatiely, the implementation of constraints that are not
intended to represent modeling choices might be used cautiously and only riéalg

seem necessary to stabilize a search.

4.4. DiagnosticTools

-114-



Chapter 11 - Model Building

4.4.1. Plotof DV vs PRED

Most useful diagnostic tools are graphickbr an overall sense of the fit, a useful diag-
nostic plot is ¥ vs FRED. Whenthere are substantial and systematic deviations from
the line of identitythis plot suggests that there are problems with theuitjtlwoes not
suggest what exactly these problems might be or what to do about Thésplot for the

fit of the phenobarbital data to model (11.1) is seen in figure 11.7.
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Figure 11.7.Predictions from fit of model (11.1) to phenobarbital data vs observations themséhdine
of identity (...) shows where the points should, ide&dl.

Figure 11.7 reeals that there is a group of points where the observation is mweh lo
than the prediction.To begn to determine wi this is so, it will be useful to look at
residual plots. Such plots are the basis of the most important of the diagnostic tools.

4.4.2. ResiduaPlots

As mentioned in Chapter 2, a residual is théediince between an observation and its
prediction. Theprediction in this case (the same prediction as denoted by PRED) is the
population prediction, i.e. the prediction for the typical individual having trengialues

for all the concomitant variables.

With population data, weighted residuals are often more inforentidén (plain) residu-

als. Theweighted residuals for an individual are formed by transforming theidugil’s
residuals so that under the population model, and assuming thaluee of the popula-
tion parameters arevgn by the estimates of those parameters, all weighted residuals
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have wit variance and are uncorrelateWeighted residuals are more infornatifor
sevseral reasons. First, since thbave unit variance, or what is the same, unit standard
deviation, "large" weighted residuals are those with absolaleeg greater than 3 or so.
Second, loosely speaking, although plain residuals vertie structural model from the
data, alleving one to see what part of the data is not (yet) modeleg diheot remwe

the statistical model (formallythey are still correlated). Weighted residualsvlaaoth
models femoved’ so aly pattern in these is definitely not accounted for by the current
model. This provides a more secure basis for future model building choices.

4.4.2.1. IndexPlots of Residuals

Figure 11.8 is an indeplot of residuals, which is a useful plot when combined with
index plots of other data itemsOne can look for an association between unusual residu-
als and values of another data item. E.g. Are the largest discrepancies between model
and data associated with certain (possibly extreme) values of the data item?
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Figure 11.8. Inde plot of residuals from fit of model (11.1) to phenobarbital data.

In the phenobarbital example, this is clearly so: The largetive residuals (i.e., predic-

tions greater than observations), first noted in figure 11.7, are here seen to be associated
with patients 22 to 32 or thereabouts.figures 11.4 and 11.5 it is clear that these same
patients are those who reea the highest doses and who weigh the mdst.obvious
explanation, then, of thever-predictions is that theare in the patients who weigh the

most, and because weight is not in the model, neither volume nor clearance is adjusted to

-116-



Chapter 11 - Model Building

be lager in such individuals, so that predictions are strictly proportional to dose alone
and may be too large for these heavier patients.

4.4.2.2. Plotof WRES vs Independent Variable

Another way to see the association between weight (or dose) andgghedsiduals is to
plot the residual agnst weight, sayFigure 11.9 is this plot, but where, for reasons
already discussed, weighted residuals, rather than plain residuals, are used.

WRES VS. Wr
- 3. 10E+00 -1. 92E+00 -7.40E-01 VRES 4. 40E-01 1. 62E+00 2. 80E+00

5UO0E-0L. . . o o o e

1. 14E+00.

1. 78E+00.

2. 42E+00.

3. 06E+00.
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Figure 11.9. Plot of weighted residuals vs weight for fit of minimal model to phenobarbital data.

It is clear from figure 11.9, in a way that is particularly compelling, that it is precisely
those individuals with the largest weight whose residuals age kand ngative. This

type of residual plot, where (weighted) residuals are plotted against some independent
variable, is the single most useful diagnostic tool.

Systematic patterns of weighted residuals, then, suggest possible modefeimgnts.

For an independent variable that already appears in the model, such a pattern may suggest
that the way in which it enters the model is incorrect; e.g., it might appeariag hdin-

ear influence on a PK parametard a curvilinear influence might be better it might

affect additional PK parameters, beyond thosefécaés in the current model. Arxam-

ple of this will be seen shortlyor a variable that does not yet appear in the model, as in
figure 11.9, such a pattern suggests that the element should appear.

Before examining what happens if patient weight is added to the model, a caution about
residual plots is in orderNeither residuals, nor weighted residuals, showe be
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plotted against the observations themsglvSucha got will always sheov a correlation,
spuriously suggesting a problem with the mod#his is most easily appreciated by con-
sidering the simple model thatvgs rise to the constant-valued predictioneni by the

the mean of the obsetions. Allpositive residuals (observations greater than prediction)
must then be associated with observations greater than the mean, whiggtalerresid-
uals must be associated with observations less than the @Gkarly, then, the residuals
plotted against the observations mustvsladine with positve dope. Thissame type of
association, although to a lessegme, holds trueven in less extreme cases. The phe-
nomenon is illustrated in figure 11.10.

Y

(InCp) Res

time Y

Figure 11.10. Residualsvedys correlate with the observations themselves; the more so, the less the model
explains the data!

4.5. Jidging Goodness of Fit

A more compl& model is acceptable only if the comyiy can be justified by some sig-
nificant impravement in the fit. To evaluate whether this has been accomplishegktrab
measures should be examined; no single measure suffices.

In the phenobarbitalxample, based on the finding in figure 11.9, a modified model is
suggested. Thisiodel, (11.2), has (11.2b)=(11.1b), and (11.2c¢)=(11.1c), but

Cl = (01 + €3WT)(1 + 171) (1123)

which is a full model relate to the reduced model (11.1a), whence (11.2) is a full model
relative 1o the reduced model (11.1).

The model-defining statements to NM-TRAN ($PK and $SERROR) lmezome:
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$PK
TVCL=THETA( 1) +THETA( 3) *\WI'
CL=TVCL* ( 1+ETA(1))
TWD=THETA( 2)
V=TWD* ( 1+ETA( 2) )
K=CL/ V
s1=v
$ERROR
Y=F* (1+ERR( 1))

We row examine some measures of goodness of fit, and sed1i02) fares relaie
(11.2).

4.5.1. AGlobal Measure — Change in the Objectve Function

A global measure of goodness of fit is, of course, the obgetinction value based on

the final parameter estimates, which, in the case of NONMEM, is minus twice the log
likelihood of the data (see Chapter 5, Section 5.2.3). As noted in Chapter 5, ifvthe ne
model differs from the previous model only by the addition of somevagiable(s) (so

that the tvo models form a full/reduced model pair), then théedénce in objectie func-

tion values has a known (approximate) statistical distidim. Moreinformally, during
model-huilding, a fall in objectie function value of 4 when a singlewgarameter is
introduced (and no old ones are eliminated) indicates that Whenndel has substantially
improved the overall goodness of fit. Model (11.2) shie a decrease in objeati func-

tion of 35.2 relatie © (11.1), indicating considerable immament.

4.5.2. Decease in Unexplained Variability

The purpose of adding independent variables to the model is usuakpl&inekinetic
differences among indduals. Thismeans that prior to adding a variable, sucliedif
ences were not ¥plained” by the model, and hence were part of random inteiciil
variability, athough these differences could alsawddeen reflected as a part of random
intraindividual variability. Accordingly elaboration of the model should be accompanied
by a decrease in the estimates of the varianc@saind/orZ.

The estimates af?,, w3, and o2 from the fit to Model (11.2) are .057, .12, and .0196,
corresponding to coefficients canation of 24%, 35%, and 14%, respedti. The cor
responding a&lues from the fit to (11.1) are .25 (CV=50%), .14 (CV=37%), and .016
(CV=13%), so that a considerable reduction in the variance of clearance is seen.

4.5.3. Improvement in Plots

The last, and most usefuliidence confirming the value of elaborating a model is to find
that the pattern(s) in the PRED v& @nd weighted residual plot(s) that suggested the
need for the addition ka row dsappeared. Indeedvhen a model is relatly com-
plete, all weighted residual plots should whao pattern: the "unexplained” part of the
data should hae become featureless random noise.

Figures 11.11 and 11.12 correspond to 11.7 and 11.9, but are from the fit to model (11.2).
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Figure 11.11. Predictions from fit of model (11.2) to phenobarbital data vs observations.

Compared to figures 11.7 and 11.9, figures 11.11 and 11.12 indicate axmemmgmbin
that thenumberof large ngative residuals is clearly reduced in both plots.
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WRES VS. Wr
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Figure 11.12. Plot of weighted residuals vs weight for fit of model (11.2) to phenobarbital data.

4.6. Usingthe Tools: Further Impr ovement

4.6.1. AnAdditional Effect of WT

While all of the abwee suggests that model (11.2) is superior to model (11.1), figure 11.12
shaows a persistent linear relationship between weight and residlials, the addition of
weight to the model for clearance does not fultpleit the information in the ariable,
weight. Anobvious modification to model (11.2) that might deal with this is teeha
weight afect V as well as CL. Accordingly define model (11.3) such that
(11.3a)=(11.2a), (11.3c)=(11.2c), but

V = (62 + O,WT)(1 + 17) (11.3b)

The model-defining portion of the control strearwvrii@comes:
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$PK
TVCL=THETA( 1) +THETA( 3) *\WI'
CL=TVCL* ( 1+ETA(1))
TWD=THETA( 2) +THETA( 4) * WI
V=TWD* ( 1+ETA( 2) )
K=CL/ V
s1=v

$ERROR
Y=F* (1+ERR( 1))

When model (11.3) is fit to the data, the objexcfunction decreases fully 126 relatito

model (11.2).Moreover, the estimates ab2, , w@, and o2 are nav .050 (CV=22%), .028
(CV=17%), and .011 (CV=10%), indicating a further substantial decreasexplained
variation. Theplots corresponding to 11.7/11.11 and 11.9/11.12 are shown as figures
11.13 and 11.14.

PRED VS. DV
9. 00E+00 1. 78E+01 2.66E+01 PRED 3. 54E+01 4. 42E+01 5. 30E+01
5.00E+00. . . . . ...
;
o
.
. 2 w2
1. 80E+01. ¥ %22 *
: . exEx
oo
cqe
o P
* ‘k"k 2
*2 * .2
. .
¥ 2
: PR o e
3. 10E+01. * x %2
.
: 2* * ok
2
. .
v * 2

4. 40E+01

5. 70E+01

TUOOEH0L. . . o o

Figure 11.13. Predictions from fit of model (11.3) to phenobarbital data vs observations.

Now there are no ohious discrepancies, and the plot of weighted residuaf§vshows
no pattern, so that it is likely that no further use of weight in the model is required.
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Figure 11.14. Plot of weighted residuals vs weight for fit of model (11.3) to phenobarbital data.

4.6.2. TheEffect of APGR

The structural model building stage is netountil all available independentariables
have keen examined for influence, and there is one additiaarédhle, the Apgar score,
that has not yet been seriously considergblot of the weighted residuals from the fit to
model (11.3) vAPGRIs shown in figure 11.15.
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Figure 11.15. Plot of weighted residuals vs Apgar score for fit of model (11.3) to phenobarbital data.

There is a weak suggestion from figure 11.15 thatAlBGR less than 3, the weighted
residuals tend to be gaive. Accordingly a rew model (11.4) can be proposed, which is
identical to (11.3) except that

_Ue, + 6,WT, if APGR > Zg(l 1) (11.4b)
T 06, + 6,WT)gs, if APGR< 25 12 '

The releant statements for NM-TRAN mobecome:

$PK
TVCL=THETA( 1) +THETA( 3) * Wl
CL=TVCL* ( 1+ETA(1))
TVVD=THETA( 2) +THETA( 4) * Wl
I F (APGR LE. 2) TVVD=TWD* THETA(5)
V=TWD* ( 1+ETA( 2) )
K=CL/ V
s1=v
$ERROR
Y=F* (1+ERR(1))
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When this model is fit to the daté; is estimated to be 1.18, implying that indeed, the
volumes of distribution for infants with Apg scores less than 3 are typically 18% higher
than those of infants (of the same weight) with higher Apgar scores. The measures of
improvement are n& marginal, havever: the objective function decreases only 3.7, and

the decreases in the variances are all less than 10% of their previous values, with the v
ance ofe actually increasing a ¥e percent. Inspectioof figure 11.6 suggests a reason

for this: note that only 5 distinct indduals (separate symbols)veaApgar scores less

than 3. There is simply not very much information about babies witi\jogar scores in

this data set.

For completeness, figure 11.16 corresponds to figure 11.5, but using model (11.4), and
now shows no distinct pattern.

WRES VS. APGR

- 3. 00E+00 - 1. 88E+00 -7.60E-01  VRES 3. 60E- 01 1. 48E+00 2. 60E+00
8.00E-0L. . . o o s

L 2 2
2. 68E+00.

. 3
4. 56E+00.

. 3 * 2
APGR

26%2% 22 2 2
6. 44E+00. .
2 2 23%23 2

8. 32E+00.

1. 02E+01

Figure 11.16. Plot of weighted residuals vs Apgar score for fit of model (11.4) to phenobarbital data.

The stage of building the structural model isvia»mplete.
5. Building the Statistical Model

5.1. Judging Among Alternatives

NONMEM can provide estimates of thevariables for each individual (se€hapter 12,
Sections 4.11-4.13). Plots of the estimated interindividual differences, which can be
regarded as interindividual residuals, can be obtained. Plots of these residuals (associated
with a particular PK parameterkessus the values of an independent variableigeo
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further help in bilding the structural part of the parameter moddbreover, a got of
these residuals versus the typicalues of the parameter (whose values depend on
covariates) also provides help in building the model for interindividual differences them-
sehes. For example, if interindividual differences are modeled with the agditbdel,

but the plot shows a linear trend (in the boundariesleping the residuals), this sug-
gests that a proportional model be tried.

Lastly, help can be provided in the selection of a model for intraiddal error Predic-

tions of concentrations, and hence residuals, based on estimatesidfialdins, can be
computed, and the residuals can be plotted versus the predictions. (This requires
advanced technigues.Again, if intraindvidual errors are modeled with the additi
model, lut the plot shows a linear trend in thevgape, this suggests that a proportional
model be tried.

The statistical model is usually of less interest than the structural model, so that fre-
guently all that is sought is an adequate model, not necessarily the correct one, nor does
one care whether the estimates of the random effects parameters (the eleffeansl of

2) are particularly precise. Sometimeswwer, the variability in the random effects is

of genuine primary interestin such cases more attention must be paid to building the
random effects model. This, Wwever, may not be easy because it is an unfortunaitg, b
unavoidable fact, that a great deal more data is needed to estimate random effects parame-
ters with a gien precision than is needed to estimatedeffect parameters with compa-

rable precision.

The tools used to elaborate the statistical model are similar to those used for elaborating
the structural model: alterne# models are assessed usingaflable) residual plots,
especially ones lithose just discussed, and ralatthanges in the objegt function.

5.1.1. Unexplainedvariability

When the statistical model is\d#oped, a ne ; variable may be added, or an ojdari-

able used diérently Then differences in thes between models cannot really be used to
judge the benefit of the addition, and thisleation tool becomes less useful. On the
other hand, an addition of gnmight be confirmed by a reduction in the estimates of the
variances inZ, the variances of the random components in the model for residual error
However, there is one sure sign that too mays are in the mode:NONMEM may esti-
mate one or more of thes to be ero, or very nearly zeroThis can be disconcerting,
particularly if then variable is the only such variable affecting Volume, for instance, as
then this estimate seems to suggest that with respeotum¥, there is no interinddual
variability in the population whatseer! The result should not be interpreted thisyw
however. Rather assuming they affecting Volume is the one most recently added, it indi-
cates that gen the previous statistical model, reditional variability needsto be
ascribed to volume to explain all the variability sedie data cannot support such an
elaborate statistical model, and a simpler model, such as the previous one, must be used.

5.1.2. ResiduaPlots

The most important residual plot iswm@ pot of the weighted residuals against predic-
tions, where a pattern in the shape of the outeel@pe of points can indicate deficien-
cies in the statistical model (recall that a distinct pattern in the loeaBge" residual vs

the predictions wuld indicate a defect in the structural model). This can be illustrated
using the phenobarbital data. Figure 11.17Ashthe plot of weighted residuals vs pre-
dictions for model (11.4), and figure 11.18 shows the same plot for a modified model,
(11.5), identical to (11.4) except for
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y=F+¢ (11.5C)

Only the $ERROR statements of the control stream change:

$ERROR
Y=F+ERR( 1)

WRES VS. PRED
- 3. 00E+00 -1. 88E+00 -7.60E-01 WRES 3. 60E-01 1. 48E+00 2. 60E+00

9.00E+00. . . o o

1. 82E+01. x xx . * *
: : 2 *
_ . v oo vo 9 kg grp xkx xxx ks P
e

* ok ok

2. T4E+01. * . * *
.
PRED | N T e o .

3. 66E+01. * ) *

4. 58E+01. *

5UBOEFOL. . . o o e

Figure 11.17. Plot of weighted residuals vs predictions for fit of model (11.4) to phenobarbital data (propor
tional intraindividual error).

Although the plots do not differ greatlihere is a small suggestion in figure 11.18 that

the ewelope of weighted residuals is sowteat V-shaped with the apeof the V at
PRED=0 (lit which does not skoon the plot), while in figure 11.17 the weighted resid-

uals seem more homogeneous, and their magnitude seems less dependent on that of the
predictions. Thathis impression is valid is suggested also by the increase in wbjecti
function of 7.6 in going from model (11.4) to (11.5).
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WRES VS. PRED
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Figure 11.18. Plot of weighted residuals vs predictions for fit of model (11.5) to phenobarbital datee(additi
intraindividual error).

6. RefineModel

The goal of this stage is to check whether the model is as parsimonious as reasonable,
since if it is not, certain important parameters may not be estimated with as good preci-
sion as can be ackigd. Althoughup to this stage, one tries teoa adding parts to the
model which are not well supported by the data, it is nonetheless possible that a part
added at one stage may seem unnecessary after adding another part at a lateerstage.
haps, for example, weight affectsaid V and CL are correlated in the population (inde-
pendent of weight), but first the influence of weight on CL is examined, and later its influ-
ence on V is examined (thisaw the order illustrated ab®). Theninitially, weight might
appear to influence CL, although this influence might onlywderom the correlation
between the tow PK parameters. Lategfter the influence of weight on V is a part of the
model, the influence of weight on CL might disappéame wants to check this possibil-

ity and, if indicated, eliminate the influence of weight on CL from the model at the stage
now being described. The basic technique at this stage, is to run tlaeigdoe Step

with the best model thusaf and look for parameters with confidence intervals that
include the parametar'rull value, i.e., the alue that causes the parameter to fecef

tively deleted from the modelA null value is usually zero (for a parameter quantifying

an additve portion of the model), and sometimes unity (for a parameter quantifying a
multiplicative part of the model).If such parameters are found, then one at a time, each
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can be set to its null value and the consequences examined as discugsdar dbe ear
lier model building stages.

Figures 11.19 and 11.20 sthawo pages of NONMEM output from a run fitting model
(11.4) to the phenobarbital data, and implementing thear@mce Step. Figure 11.19
shows the final parameter estimates, and 11.20, their standard errors.

Kok kkkkkkkkkh ok kkkkkk ok k ok kkh ok k ok k ok hkh ok hkhkk ok kkh ok k ok hkhkh ok kkhkh ok k ko k ok kk ko h ok kk ko k ok k ok ko h ok k ko k ok kk ko k ok kkhkk ok k ok k ok k k&

hokkkkkkkkkk ok ok ok kk ok ok ok k kokkkkkkkkkkokk ok ok ok ok ok ok k

ek kK K K K K K K K K K K K El NAL PARAVETER ESTI MATE ek kK K K K K K K K K K K K

hokkkkkkkkkk ok ok ok kk ok ok ok k kokkkkkkkkkokokk ok ok ok ok ok ok ok

Kok kkkkkkkkkh ok kkkkkk ok k ok kkh ok k ok kkh ok h ok kkhkk ok kkh ok k ok kkhkh ok kkhkh ok k ok ko k ok k ko h ok kk ko k ok k ok ko k ok kk ko k ok kk ko h ok kkhkk ok kk ok k k&

THETA - VECTOR OF FI XED EFFECTS  **** %%k kkkkkxhkkh & x%
TH 1 TH 2 TH 3 TH 4 TH 5
7.50E-05 2.66E-02 4.62E-03 9.53E-01 1.18E+00

OMEGA - COV MATRI X FOR RANDOM EFFECTS - ETAS  ***x*x**

ETAL ETA2
ETAL 4. 59E- 02
ETA2 0. 00E+00 2. 63E-02

SIGVA - COV MATRI X FOR RANDOM EFFECTS - EPSILONS ****

EPS1
EPS1 1. 10E- 02

Figure 11.19.Paameter estimates from fit of model (11.4) to phenobarbital data.

Kok ok ok ok ko k ok k ok ok kK k ok k ok k kK kk ok ok k kK k ok ok k ok kk ok ok k ok kk ok ok k kK kkk ok k ok k ok k ok k ok kk ko k ok k ok k ok k ok kk ok ok k ok k ok k ok k ok k ok kk ok ko k ok k ok kkkkkkkkkkkk ok k ok k ko

Kokok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok k Kokok ok ok kK ok ok ok ok ok ok kK k ok ok Kk
Kokok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok k STANDARD ERROR OF ESTI MATE Kokok ok ok kK ok ok ok ok ok ok kK k ok ok Kk
Kokok ok ok ok ok k ok ok ok ok kK k ok ok ok ok k Kokok ok ok kK ok ok ok ok ok ok kK k ok ok Kk

Kok ok ok ok ok k ok ok ok k ok k ok k ok ok kK k ok ok k kK k ok ok k kK kk ok ok k ok k ok ok k ok k ok k ok k ok k ok k ok k ok k ok k ok k ok kk ok ok k ok kkkkkk ok k ok k ok k ok k ok k ok k ok kkkk ok kkkkkkkkkkkk ok k ok k ko

THETA - VECTOR OF FI XED EFFECTS %% % % o ok ok ko k ok % %
TH 1 TH 2 TH 3 TH 4 TH 5
9.59E-04 9.24E-02 7.33E-04 7.48E-02 8.36E-02

OVEGA - OOV MATRI X FOR RANDOM EFFECTS - ETAS ***x*#xx

ETAL ETA2
ETAL 2. 25E-02
ETA2 ......... 7. 08E- 03

SIGVA - COV MATRI X FOR RANDOM EFFECTS - EPSILONS ****

EPS1
EPS1 2.01E-03

Figure 11.20. Standard errors of parameter estimates from fit of model (11.4) to phenobarbital data.

6.1. Useof Standard Errors and Confidence Intevals

The null values o®; throughd, are zero, while the null value & is unity. Using the
numbers from the figures, it is easily seen thatdforand 6,, the parameter estimate
minus the null alue is a fraction of one standard eriamd henceg; andg, may not be
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different from their null values.

As indicated in Chapter 5 (Section 4.2.2), an approximate (two-sided) 95% confidence
interval for a parameter estimate is

0+ Z 47sSE

whereZ o5 is the 97.5 percentile of the normal distributien2) andSE is the standard
error of the parameter estimate. Therefore gigra %% confidence interval is\gn by

1. 18+ (2)(. 0836),which is 1.01 - 1.35. This range only barely misses including the null
value, unity indicating, as did the marginal change in the objediinction associated
with going from (11.3) to (11.4), that one cannot be very sure of the influence af Apg
score on volume.

Finally, note the magnitudes of the standard errors of the other parameters’ estimates.
For 05 it is 16% of the estimate (i.e., the CV of the estimation error is 16%¥, fitris

7.8%, while for the 2 elements ©fit is 49% and 27%This pattern is typical: the preci-

sion of the fixed effect parameter estimates is considerably greater than that of the ran-
dom effects parameter estimates;apt when the number of individuals sampled is-enor
mous.

6.2. AModel Refinement

Based on the observation tlgtand 8, may be equal to their null values, these parame-
ters are next set to their null values, definingwa ¢eend final) model,

Cl = ;WT(L + 77,) (11.6a)

_DOg,WT,  if APGR > 2J

= 1 11.
D(eWNes, if APGRSZE( ) (11.6b)

y=F(1+¢&) (11.6c)

which is communicated to NM-TRAN without changing the $PK or $ERROR state-
ments, but simply by fixing thealues ofg; andé, to 0, using the FIXED option in the
$THETA record:
$PK
TVCL=THETA( 1) +THETA( 3) *\WI
CL=TVCL* ( 1+ETA(1))
TVWD=THETA( 2) +THETA( 4) *\WI
| F (APGR LE. 2) TWD=TWD* THETA(5)
V=TWD* ( 1+ETA( 2))
K=CL/ V
S1=v
$ERRCR
Y=F* ( 1+ERR(1))
$THETAS (0 FIXED) (O FIXED) (0,.0018) (0,.43) 1.0

When this model is fit to the data, the objestiunction increases only .12 (avisl
change). Haever, now the CV’s of the estimation errors i¢s andg, are 4.4% and 2.5%
respectiely.

-130-



Chapter 11 - Model Building

This is the main point of this section on model refinement; deletion of imprecisely esti-
mated parameters can impeothe precision of other parameter estimafesis is related

to the correlation between parameter estimation errors, mentioned in Chayfih 5it-

tle data from patients who weigh virtually nothimg,andég,, the values of CL and V for
such patients, are not well estimatedgédless of the fact that one might rationally
model the alues of these parameters to be 0), and so their parameter estimateglyre lar
dependent on the estimates of the slope parameéierg,, and 65. The correlation
between the estimates &f andg; is -.96, and that betweeh andg, is -.95. Of course,

since slope itself can only be well determined when the intercept is well determined, the
parameter estimates 6%, 6,, and 85 themseles largely depend on the estimategpf

and 8,; correlations are symmetric. In other words, neither type of parameter (intercept
or slope) is very precisely estimated since the estimate of each depends afu¢he v
assigned to the otheBut if one of the parameters can be eliminated from the model (i.e.,
rationally assigned a fixed value), then the other can be more precisely determined.

7. Testing the Model

This step is undertak when it is desirable to assign p-values to the hypothesis test of
one or more parameter values against nalll@s. Theprocedure is as folles: Begin-

ning with the final model resulting from all previous steps, each parameter to be tested is
set, in turn, to its nullalue, and the reduced model is fit to the data (only the Estimation
Step need be run; no tables, graphs eaance output are necessary. likelihood

ratio test is done using the difference in minimum objedtinction values obtained with

both the full (original) and reduced models. doing this one must be careful that in the
Estimation Step with a reduced model, no parameter other than the one under test (and
those which are already constrained to fixed values under the full model) be constrained
to a fixed value.
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1. What This Chapter is About

This chapter briefly describes ariety of features of PREDPP and NONMEM that are
someavhat advanced for this text but are of interest to most users of NONMEg¥er-

ences are gen to aher documents where additional information can be found. Section 2
is concerned with PREDPS8ection 3 is concerned with useritten PREDs, and Section

4 describes general NONMEM features. Section 5 contains an example that includes
several of the adanced features. Descriptions of NM-TRAN control records in Section 4
have keen augmented with sections headed "More about ...". These contain additional
details, plus ne options for NONMEM 7.3. Section 6 is wefor NONMEM 7.3. It
contains a supplemental list of features through NONMEM 7.4, including features from
previous releases that are not otherwise discussed in this guide.

Note that wheneer $PK, $ERROR, $DES, $AES, $SMODEL, $MIX, $INFN, $TOL and
$PRED statements are referred to beloserwritten subroutines PK, ERBR, DES,
AES, MODEL, MIX, INFN, TOL and PRED can be used instead.

2. Advanced Features of PREDPP

2.1. PharmacodynamidModeling Using the $SERROR Record

$ERROR statements may modify the value oftlfe scaled drug concentratioithey
may also introduce med andn variables. Thisallows pharmacodynamic modeling to be
performed using PREDPFuch models occur when a studyolves measurement of a
drug effect, such as blood pressufeproposed model might relate the predicteigcf
to a pharmacokinetic quantity such as plasmd.lePREDPFcan be used to modél, as

is usual, and the predicted effect can be computed in the $ERROR statements.

For example, suppose that a modifiedrsion of the phenobarbital data of Chapter 2
includes observations of some drufgef (in this case, perhaps a measure of tlyeede
of sedation) but none of the concentration oles@ras. Thedose gent records are the
same as those of the earlistample. Supposéhat the drug concentrations from each
individual have keen used to estimate that widual's K and V parameters, and that
these estimates arewadncluded on eery event record for the indidual. Finally sup-
pose that the proposed structural model for the effect, E, is an "E-max" model:

CP
max Cso+ Cp

where hereC , is understood to mean the prediction of anvialial’s dug concentration
in the plasma, anH,,,, andCsgy are PD (pharmacodynamic parameters) modeled as

E=E

Emax = 91 +’71
Cso=6+1n;

To fit this data we can use the control statements of figure T8.#btain initial parame-

ter estimates, let us assume that the following is ohb&nin the data. Theverage

vaue of all effect measurements is about B@ross individuals, thevarage value of the

largest effect measurement within each vidlial's data is about 100, and theesage

value of the indiidual’'s dosened concentration at about half this largest measurement is
about 20. (This is seen when concentration measurements and effect measurements are
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examined together Letus also assume 20% random intenidlial variability in Eax
andCsg and 4% intraindividual variability in the obseation. Fromthis we obtain initial
estimates of 100 and 20 fa and 6,, (100x.2)? for Qq;, (20%.2)? for Q,,, and
(50%. 04)? for Z.

This example is examined again in in Section 3.2, whiclvshbe use of $PRED state-
ments, and in Section 5, which si®hav obsened concentrations and effects can be fit
simultaneously.

References: Users Guide VI (PREDPP) IV.B.2

$PROBLEM PHARMACODYNAM C MODEL US| NG $ERROR STATEMENTS
$INPUT  ID TIME AMI | NDK | NDV DV
$DATA  EFFDATA
$SUBROUTI NE ADVANL
$PK
K=l NDK
V=1 NDV
S1=v
$ERROR
EMAX=THETA( 1) +ETA( 1)
C50=THETA( 2) +ETA( 2)
E=EMAX* F/ ( C50+F)
Y=E+ERR( 1)

$THETA 100 20
$OVEGA 400 16
$SIGVA 4

$ESTI MATI ON

Figure 12.1. The input to NONMEM-PREDPP for analysis of effect observations.

2.2. OtherPharmacokinetic Models: ADVAN5-9, ADVAN13-15

Appendix 1 lists AIWAN routines for the most commonly-used pharmacokinetic models.
Other ADVAN routines are:

ADVANS (General Linear)

ADVANG (General Nonlinear)

ADVANY (General Linear with Real Eigeatues)

ADVANS (General Nonlinear Kinetics with StEquations)

ADVANS9 (General Nonlinear Kinetics with Equilibrium Compartments)

ADVAN13 (General Nonlinear Kinetics With SiNonstiff Equations using
LSODA)(nm71) |
ADVAN14 (General Nonlinear Kinetics With StMonstiff Equations using|
CVODES)(nm74) |
ADVAN15 (General Nonlinear Kinetics with Equilibrium Compartments usjng
IDAS)(nm74)

With the general methods the user defines a model of up to 999 compartments using spe-
cial options of the $SMODEL recordror a linear model (AWAN5 and AD/ANT7), it is
sufficient to specify (directed) compartmental connections and to compute their rate con-
stant parameters with $PK statemem®VAN 5 and 7 mak use of numerical approxi-
mations to the matrix xponential. Br a nonlinear model (AAN6, ADVANS,
ADVAN9, ADVAN13, ADVAN14, ADVANL1D5), differential equations must be supplied

to govern the kinetics, via $DES statementsis possible to specify initial conditions for

the differential equations using the 1_SS (Initial Steady State) feature; Resariaiev
ISSMOD may be used.
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For ADVAN9 and ADVANL15, algebraic equations may also be supplied via $AES state-
ments.

The use of the term 'nonlinear’ with AB\N 6, 8, 9, B, 14, and 15 only indicates that a
system of ap type of first-order dferential equations is allowed; such equations could
be linear or non-linear.

In all cases, the basic features of PREDPP described in Chapter 7 awilstileg such

as the ability to introduce doses ofydind to aty compartment of the modelt should

be noted that the general XBN routines are relately slow. For example, when a gen-
eral method is used for a model identical to that of an analytic methodA(ND through
ADVAN4 or ADVAN10 through AIYAN12) the run time increases, usually by an order
of magnitude.

Some AD/AN and SS routines must be told the number of accurate digits that are
required in the computation of drug amounts, i.e., the vel@lerance. Thg may also
be told the absolute toleranc&/ith some AIVAN and SS, the tolerances may be speci-
fied for each compartmenThey may be specified by $SUBROUTINES record optiops
TOL, ATOL, SSTOL, SSACL; by the corresponding options of the@ record; or by
userwritten subroutine OL (which may also specify tolerances by NONMEM Step).
Option TOL (relatve tlerance) may also be specified on the $8RIANCE record.
Option ATOL (absolute tolerance) may also be specified on $ESTIRN and
$COVARIANCE records.

See Guide NONMEM 7, "Controlling the Accuyadf the Gradient Evaluation and Indit
vidual Objectve Function Evaluation”

With ADVAN9, ADVAN13, ADVAN14, and AD/AN15, reserved variable MXSTER
may be used to set the number of integration steps.

With $AES, $AESINIT statements are also requirdédthere is no TIME data item,
$AESINIT may specify a calling protocol for the AES subroutine. (See 2.WwlHeloa
discussion of calling protocols.)

CALLFL=-1:
Call ADVAN9 and AD/AN15 and AES witheery event record (default) |

CALLFL=1:
Call ADVAN9 and AD/AN15 and AES once per individual record. |

Equivalent calling protocol phrases are:

( EVERY EVENT)
(ONCE PER | R)

References: Users Guide VI (PREDPP) VI, VII
References: Users Guide IV (NM-TRAN) V.C.3, 4, 7-10

2.3. Zemw-Order Bolus Doses

Instantaneous bolus doses, whickehAMT>0 and RATE=0, are described in Chapter 6.

Such doses appear instantaneously in the dose compartment. Zero-order bolus doses are
doses that enter the dose compartment via a zero-order process (in the same manner as do
infusions) &cept that the rate or duration of the process is computed with $PK state-
ments. Whenhe RATE data item has the value -1, then the $PK statements must include

an assignment statement for an additional PK paranitethe "modeled rate for com-
partment n"), whose valuevgs the rate of entry of the drug during the interval of time
between the lastvent record and the current one. There is fedifht such parameter for

evay compartment receiving a zero-order bolus ddshen the RATE data item has the
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value -2, then the $PK statements must include an assignment statement for an additional
PK parameterDn (the "modeled duration for compartment n"), whose value at the time

of the dose went gives the duration time of the dose. The rate and duration parameters
can be modeled Ik any aher PK parameters; in particuldhe assignment statements

can irvolve 8’s which are to be estimated. These parameters can be used to model the
drug release rate or dissolution time of a tablet or capsule.

Steady-state \@ls involving zero-order bolus doses can be computed.

Steady-state with constant infusiorasvdescribed in Chapter 6. Steady-state infusions
may also hee modeled rates (i.e., the RATE data item may be -1).

References: Users Guide VI (PREDPP) Ill.LF.3, F.4

2.4. TheAdditional Dose Data Item: ADDL

ADDL is a dose-related data item that is used to request thatrargimber of additional
doses, just lik the dose specified on theeat record, be added to the system atogulee
time interval, starting from the time on theeet record. PREDPP itself adds these doses
at the appropriate future times; no actual dasaterecord is generated by the Data Pre-
processor or by PREDPHA positive integer value in ADDL specifies momary addi-
tional doses (i.e., in addition to that already specified in\taet @ecord) are to beggn,

and the value in the Il (interdose intalvdata item (which is required) specifies the time
interval between doses.

ADDL may be non-zero on a steady-state damataecord (except for steady-state infu-
sions), in which case additional doses ax@gi maintaining the dosing gamen into the
future. Non-steady-statdnetic formulas are used to advance the system between each
additional dose.Resered \ariables DOSTIM (the time of a lagged dose or additional
dose to which the system is being adeed) and DOSREC (the dose record correspond-
ing to thedose entering &2OSTIM) may be used.

See also Section 2.6 belo

References: Users Guide VI (PREDPP) V.K

2.5. Laggeddoses: the ALAG Parameter

PREDPP permits an additional PK parameter called an absorption lag time. One such
parameter can be defined for each compartment and applies to all doses to that compart-
ment. Itgives the amount of time that a dose is held as a "pending" dose. When the
absorption lag time has expired, the dose is input into the sysiteeatfect, the value of

the absorption lag time parameter is added to the value of the TIME data item on the dose
event record. With NM-TRAN, recognized names for absorption lag time parameters
have the form ALAGnN, where n is the compartment humbResened \ariables DOS-

TIM (the time of a lagged dose or additional dose to which the system is beargcady

and DOSREC (the dose record corresponding todibee entering d&0OSTIM) may be

used.

See also Section 2.6 belo

See Guide VI, Chapter, Wote 3 for the effect of ALAGn with Steady-State doses. |

References: Users Guide VI (PREDPP) IIl.F.6
References: Users Guide IV (NM-TRAN) V.C.5

2.6. ModelEvent Times: MTIME

Model event times MTIME(i) are additional PK parameters defined in the PK routine or
$PK block. A model event time is not associated withyanompartment, but, li& an
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absorption lag time, defines a time to which the system isnagd. Wherthe time is
reached, indicator variables aset and a call to PK is made. At this call (and/or subse-
guent to this call) PK or DES or AES or ERR can use thandicator \ariables to
change some aspaiftthe system, e.g., a term in aféiential equation, or the rate of an
infusion. Resemd variables MNEXTMPAST, MNOW, MTDIFF may be used.

MTIME does not apply to Steady-State doses. See Guide VI, Chaptete/4. |

2.7. Controlling Calls to PK and ERROR

In order to galuate the $PK and $ERROR statements, PREDPP calls the PK ai®RERR
subroutines. Bydefault, the subroutines are called withey event record. PREDPP
may be instructed to limit calls to certainest records in order to sa the computing
time involved with unnecessary calls (e.g. when the PK parameters daaryofrom
event record to eent record within an indidual). Itis also possible to cause the PK sub-
routine to be called at times which do not correspondy@eimal ezent record.

Using NM-TRAN, calls to PK are controlled by the presence of one of thenfotio
pseudo-statements, at the start of the $PK block:
CALLFL=-2:
call with every event record, at additional and lagged dose times, and at modeled
event times.
CALLFL=-1:
call with every event record (default).
CALLFL=0:
call with the first gent record of each indidual record and with me values of
TIME.
CALLFL=1:
call once per individual record.

A calling protocolphrasemay be used instead of a pseudo-statem@&malling protocol
phrase may use uppeor lower-case characterslt must be enclosed in parentheses.
NM-TRAN can understand minor variations in therding. E.g.the word "CALL" and
prepositions such as WITH can be omitted. Here are calling protocol phrasesesdui
to the abwe four pseudo-statements, respeaayi

(CALL W TH NON- EVENT TI MVES)

(CALL W TH EVERY EVENT RECORD)

(CALL W TH FI RST EVENT RECORD AND NEW Tl ME)

(CALL ONCE PER | NDI VI DUAL RECORD)

The choiceCALLFL=-2 (CALL W TH NON- EVENT TI MES) is intended to be used
when PK parameters Dn and/or Fn apply to additional or lagged alodédse model for

these parameters depends on some time-varying concomitant variable such as type of
drug preparation or patient weighBy default, the values of the PK parameters which
apply to the dose are thosalwes computed by PK with the firsteat record having a
vaue of TIME greater than the time at which the dose actually enters the system (the
additional or lagged dose timejlowever, if PREDPP is instructed to also call PK at the
additional or lagged dose time, then tteues of the PK parameters are thoakies
computed at these special calls. At such calls, PKvaialale to it information from the
initiating dose eent record itself, and information from the dwevent records whose
TIME values brackt the additional or lagged dose time. Along Viti_LFL=- 2 in the

$PK block, the NM-TRAN $BIND record may be useful; see Users Guide IV.
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Using NM-TRAN, calls to ERROR are controlled by the presence of one of theifailo
pseudo-statements at the start of the $ERROR block:
CALLFL=-1:
call with every event record (default).
CALLFL=0: call with observation\ents only.
CALLFL=1: call once per individual record.

A calling protocol phrase may be used instead of a pseudo-stateAgim. the $PK
block, the calling protocol phrase may use upperdower-case characters and must be
enclosed in parentheses.

Here are calling protocol phrases eglént to the abee three pseudo-statements, respec-
tively.

(CALL W TH EVERY EVENT RECORD)

(CALL W TH OBSERVATI ON EVENTS)

(CALL ONCE PER | NDI VI DUAL RECORD)

NM-TRAN automatically instructs PREDPP to limit calls to ERRto once peproblem
for the simple error models discussed in Chapter 8, Sections 3.1 and 3.2:
Y=F+ERR( 1)
Y=F+F* ERR( 1)
Y=F* (1+ERR( 1) )
Y=F* EXP( ERR( 1) )

During the Simulation Step, PREDPP ignoreg Bmitation and calls the ERROR sub-
routine with eery event record.

Even when calls to PK and/or ERROR are limited, the CALL input data item can be used
to force additional calls for specifigent records as needed.

References: Users Guide VI (PREDPP) III.B.2, lll.H, IV.C, V.J
References: Users Guide IV (NM-TRAN) V.C.5, C.6

2.8. Output-Type Compartments

With all versions of PREDPP output-tym®mpartments may be defined using the
$MODEL record. Suppose there is a compartment namedNBERI (for metabolite in
urine). Ifitis to be an output-type compartment, it must defined as follows:

$MODEL COMP=( METABURI , NODCSE, | NI TI ALOFF)

The compartment is initally ffmay be turned on and off, and may not reeei dse.

Just as with the da@ilt output compartment, CMT may begaive a1 an doservation
record, allowing the obseation to be obtained, and then the compartment turrfed of
with a single record. There may be more than one such compartment, in addition to the
default output compartment. An output-type compartment must be turned on with an
othertype e&ent record in order to start accumulating drug. An output-type is not com-
puted by mass-balance, but must instead be compupdidtly by the ADVAN routine,

e.g., using a differential equation when a general non-linear model is used.

For an exkample, see Chapter 6, Section 9.

ID TIME EVID bvOL Dv  CMI' AMI
1 9.50 0 75 .058 -3 0

With ADVANZ2, compartment 3 is the default compartment for output, and the abserv
tion at TIME 9.50 may ha&e GOMT=-3. Butsuppose a general linear or non-linear model
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is used (ADYANS5,6,7,8,9,13) and there are more than 3 user-defined compartments.

If the SMODEL statement describes the 3d. compartment as simply

$MODEL COVP=NANE

then the default compartment attributes apply (initial on, off/on allowed, doseed)lo

and the compartment is not an output-type compartment. PREDPP produces this error
message for data record 3:

SPECI FI ED COMPARTMENT MAY NOT BE TURNED OFF W TH AN OBSERVATI ON RECORD

There are tw ways to &oid this error message. First, it isvalys possible (for ancom-
partment that may be turned offiea the output compartment) to useotvecords instead

of one, e.g., first the observation, then a record with EVID=2 that turmkeoEompart-

ment:

1 9.50 0 75 .058 3 0

1 9.50 2 0O O -3 0
Alternately it is possible to lege the data as-is, and change the $MODEL statement so
that compartment 3 is an output-type compartment.

2.9. Transgeneration of Input Data: the INFN Subroutine

NONMEM may be used to modify the data records befose camputations are per
formed and also after all computationsvéadeen performed. This is referred to as
transgenerationf the data. Transgeneration at the beginning of a problem can be used,
for example, to change weight-normalized doses to unnormalized dRREDPP allw/s

the user to supply a subroutine called INFN or a $INFN block of wisldee code ("ini-
tialization/finalization") in which transgeneration can be perform@the PREDPP li-
brary includes a default INFN subroutine which does nothing.)

The NONMEM PASS subroutine is used for transgeneration. $INFN and $PRED code
may use the folling statements to process each record of the data set. ICAluksv

may be 0, 1 or 3, for run initializaton, problem initialization, and problem finalization,
respectiely.

IF (1 CALL == 3) THEN

DOWHI LE( DATA)

ENDDO

ENDDO

Reserved variable PASSRC may be of interest.

References: Users Guide VI (PREDPP) VI.A

3. Userwritten PRED Subroutines

It is not necessary to use PREDPP with NONMEM. Either $PRED statements or a user
written PRED subroutine may be used in place of PREDPP to supply NONMEM with
predicted alues for the B data item according to some (not necessarily pharmacoki-
netic) model. An example using $PRED statements uenghere. A special caeat
applies to user-written PRED subroutines that are reeussie 4.6 bela.

References: Users Guide | (Basic) C.2

3.1. Requird Data Items

The only required data items when PREDPP is not used are the NONMEM data items
DV, MDV, and ID. When PREDPP is used, the Data Preprocessor is able to recognize
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which records contain observedlwes and which do not, and it supplies the\Miata

item if it is not already present in the data fil@hen PREDPP is not used, the Data Pre-
processor cannot do this. The input data file must already contain tiedBtB item if it

is needed, i.e., if the\Ditem of some data record does not contain a value of an actual
observation.

If SPRED statements are used,jtmust calculate aariable called Yusing input data
items and NONMEM'®, 7, and (for population modelg) vectors in the calculation.

References: Users Guide | (Basic) B.1
References: Users Guide IV (NM-TRAN) 111.B.8

3.2. AnExample of $PRED Statements: Pharmacodynamic Modeling

The syntax of $PRED statements is essentially the same as discussed for $PK and
$ERROR statements$PRED statements can be used for simple pharmacokinetic and
pharmacodynamic models. In figure 12.1\aban example was gien of pharmacody-

namic modeling using $ERROR statements. Suppose that in that example, drug concen-
tration is alvays measured at the same time as drégcef Suppos¢oo, that rather than

input the individuals’ values of K and V and use them to compute a predicted drug con-
centration for the indidual, the observed drug concentration itself is used in the Emax
model. Thismeans that the the observed concentrations are again incorporated into the
data, but nv as \alues of an independent variable, rather than astheala item. This

also means that a pharmacokinetic model is not needed, and therefore, PREDPP is not
needed eitherFigure 12.2 shows the control stream for thig meample.

$PROBLEM A S| MPLE PHARMACODYNAM C MODEL
$INPUT  ID TIME CP DV
$DATA  EFFDATA
$PRED

EMAX=THETA( 1) +ETA( 1)
C50=THETA( 2) +ETA( 2)
E=EMAX* CP/ ( C50+CP)
Y=E+ERR( 1)

$THETA 100 20
$OMEGA 400 16
$SIGA 4

$SESTI MATI ON

Figure 12.2. The input to NONMEM including $PRED statements for analysis of effect data.

4. Advanced Features of NONMEM

4.1. Full Covariance Matrices: $OMEGA BLOCK and $SIGMA BLOCK

In the examples of Chapter 2 and 9, there appeared statements such as:

$OVEGA . 0000055, .04
This is an example of the specification of initial parameter estimates farianae-
covarianceQ matrix which is constrained to lagonal Initial estimates are gen for
the variances aof, and ofn,. The cwariance betweer; andn, is constrained to be 0,
i.e.,wi> = coMnq, 72) = 0. Anotherway of writing this statement is:

$OVEGA DI AGONAL(2) .0000055, .04
The optionDI AGONAL ( 2) states explicitly that the block containsotys and that it has
diagonal form.
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If the data supports the possibility thgtands, covary with each otheiit may be useful
to modelQ as being unconstrained and allBlONMEM to estimate the e@ariance. A
special form of the $OMEGA record is used, in which initial values are supplied for both
variances and the gariance. Br example:

$OVEGA BLOCK(2) .0000055, .0000001, .04
The optionBLOCK( 2) states that there aredw variables in the block, and that \awi-
ance is to be estimated. The nev element is
Wiy = @1 = COMA1, 112) = COM172,711) = 1 x 107",
$OMEGA BLOCK is used for both population and widual studies, i.e., it is the same
whethern is used in the first case in a model for residual error or is used in the second
case in a model for random interindividual errém a population studyif there is more
than onee variable, and the model allows these variables teagp then $SIGMA
BLOCK is used in a similar manner.

The initial estimates ofven more complicated? and ¥ matrices may be gen using
multiple SOMEGA and $SIGMA recordg=or example, the initial estimates of a mixture

of correlated and uncorrelated random variables mangiAlso,in this context (as with

the simple form of the $SOMEGA and $SIGMA records described in Chapter 9, Section
3) variances-ceariances may be constrained to fixed values by means of the FIXED
option. Finally some \ariances-ceariances may be constrained to equal others by means
of the BLOCK SAME option.

The ability to fix all \ariances-ceariances in botl2 andZ allows Bayesian estimates to
be obtained of the pharmacokinetic parameters of a singhaduodl, based on the indi-
vidual's data and a prior population distribution for the parameters.

References: Users Guide IV (NM-TRAN) I111.B.10

4.1.1. More About SOMEGA and $SIGMA

Initial estimates of a block of SOMEGA or $SIGM#&ust be positie cefinite unless the
entire block is fixed to O.

If initial estimates of a block of SOMEGA or $SIGMA not positve cefinite because of
rounding errors, a value will be added to the diagonal elements ® itnadsitive defi-
nite. A message in the NONMEM report file will indicate if this was done. (nm73).

Additional options include:

VARI ANCE (initial estimates of diagonal elements are variances (default))

STANDARD or SD (initial estimates of diagonal elements are standard deviations)

COVARI ANCE (initial elements of off-diagonal elements area@nces (default))
CORRELATI ON (initial elements of off-diagonal elements are correlation)

CHOLESKY (the block is specified in its Cholgskorm)

NONMEM corverts all initial estimates to variance andvagances. Thevaues
desplayed in the NONMEM report and in thevrand additional output files arevedys
variances and c@riances.

If the initial estimate of SOMEGA or $SIGMA has band-symmetric form, NONMEM
will be constrained to retain this form (nm7).

Special alue of SOMEGA elements for unconstrained etas: If all diagonal elements of
$OMEGA are "1.0E+06 FIXED" this indicates that, in a multi-subject data set, each sub-

ject’s data is to be analyzed as individual data. This is described by NONMEM as
ANALYSI S TYPE: POPULATI ON W TH UNCONSTRAI NED ETAS(nm73)
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Short-cuts may be used for entering repeated information.

BLOCK SAME(m) option
A count m may be included.With $OVEGA BLOCK(n) SAME(n) the
$OVEGA BLOCK(n) SAME record is repeated m time&imilarly for $SIGMA
records (nm73).

$THETA, $SOMEGA, $SIGMA Repeated values
When specifying initial estimates, a repeated value can be coded using notation
(...)xn. E.g.3OMEGA (2)x4 can be used in place of SOMEGA 2 2 Sinliarly
for $SIGMA and $THETA.

$OMEGA,$SIGMA VALUES option
If initial estimates of all diagonal elements of SOMEGA or $SIGMA are the same,
and initial estimates of all bfliagonal elements are the sameytban be specified
simply as $OMEGA BLOCK(n)VALUES(diag,odiag).

Informative record names fdBOVEGA and$SI GVA may be used to makt easier place
the records in the control stream.

$OVEGAP specifies omga giors
$OVEGAPD specifies degrees of freedom (or dispersion factor) fogarpérs

They are identical to$OVEGA records, but understood to specify prior information for
NWPRI. Theg may be placed amvhere in the control stream, whereas the same records
without "P" or "PD" would hee © be in a pecific location.

Informative record name$SI GVAP and$SI GVAPD may be used similarly.

4.2. Grouping Related Obsevations: The L1 and L2 Data Items

The $ERROR statements for a problem may sometinvet/énore than one random
variable. For example, there may be bmypes of obsemtions. Onetype may be an
obsenation from one compartment of a PK system, or with one assay or preparation, and
another type may be an observation from a different compartment or witffieeertif
assay or preparation. The model for theo ttypes of obsemtions would typically
involve at kast tw ¢ variables (e.g. (3.8)). If all observations are made dicseritly
separated times, there may be little reason to be concerned about correlation between the
two random errors.However, if the two types of observations are taken at the same or
very close to the same time, it is possible that correlation will exist; wératécum-

stance has influenced one observation to be different from the predigtethéy also

have ©me influence on the other obsation. Inthis case a a@riance between the tw

£ variables should be aNeed, as described ab® in Section 4.1. Then the twtypes of
obsenrations at the same time point argaeed as tw dements of a muklariate
observation.

In the case of population data, there exists a NONMEM data item, L2, which is used to
identify the elements of a multiriate obseration. Ineffect, L2 acts in a similar &y as
ID, but grouping observationgithin individual records.

In the case of indidual data, the ID data item already serves this purpose: it forms
groups of observations whosgvariables may be correlated. Thus, in the input data file,
the ID data item should be the same for those observations which weagohelated;s.
However, for individual data, the Data Preprocessor normally replaces the ID data item
with a nev set of values which describevery obseration as being independent of the
others. © prevent the Data Preprocessor from doing this, L1 should be included in the
$INPUT record as the name or synonym for the user-supplied ID data item.
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Auto-correlation: The values of epsilons used in the intraindividual model may be corre-
lated across the observations contained in the L2 re@arth-correlation may be part of
both Simulation and Estimation. The CORRL2 reserved variable may be used.

References: UsefBuide IV (NM-TRAN) I11.C.4, 111.B.2
References: UsefSuide Il (Supplemental) D.3

4.3. Continuinga NONMEM Run: MSFO and MSFI

The MSFO (Model Specification Output File) option of the $ESTIMATION record
instructs NONMEM to write a Mode$pecificatiorFile (MSF). It is created when NON-

MEM writes the first iteration summary to the intermediate output file, and is re-written
when @ery subsequent iteration summary is writtérhis file can then be read in a sub-
sequent NONMEM run using a $MSFI (Model Specification File Input) record. This file
has much of the information about the model used in the previous run, thus the name
"Model Specification File". It also contains all the information thawadlthe Estimation

Step from the previous run (which mayhkaerminated, for example, due to the number

of function ealuations &ceeding its limit or a computer crash or some otktereally-
caused interruption of the NONMEM run) to be continued in the subsequentene

are a number of benefits to using a M3$#st, what might be a long Estimation Step
(due to a very lengthsearch) can be splitver a sries of runs, each with a limited num-

ber of function ealuations. Ary run which terminates prematurely due to compuads f

ure can be restarted from the MSF output in the previous run. (This provides a "check-
point/restart” capability Theprogress made in the Estimation Step can alsodeated
between runs, and a decision made as to whether it is worth continuing a search which is
consuming ecessve anounts of computer time. Second, thev&@nce, Tables, and
Scatterplot Steps can be performed in later runs, each using the MSF from the final run
with the Estimation Stepilt is advisable to perform the €ariance Step only after satis-
factory results hae been obtained from the Estimation Step. Third, when NONMEM
writes to the MSFit also writes iteration summaries to the intermediate printout file (IN-
TER). Theséteration summaries are in the original parameterization (nm72).

Options are described in Guide VIII. These include NORESCALE, ONLYREAD |, |and
NPOPERS (nmvi). (NPOPERS gives information to NM-TRAN rather than NON{
MEM.) The VERSION option alloes NONMEM to read MSF files generated byvpre |
ous \ersions of NONMEM (nm74). The NOMSFTEST option tells NONMEM to tufn of
strict MSFI error testing (nm74).

Option NEW allows analysis to continue, or to wilan analysis on a ne data set, |
resuming from the final parameters of the MSF file. (nm74)

References: Users Guide | (Basic) C.4.4
References: Users Guide IV (NM-TRAN) 111.B.6, B.12
References: Introduction to NONMEM 7

4.4. NONMEM Can Obtain Initial Estimates for 8, Q, >~

NONMEM can be directed to obtain initial estimates for one or more elemeftpbr

2. This is done in a separate Initial Estimates Steg.an dement ofg, omit the initial

estimate but include lower and upper bounds, e.g., (1, ,50) in the $Ntd#edrd. (The
NUMBERPOINTS option may be used to control the number of poirdsspace ram-
ined by NONMEM during the search for initial estimate9f For a block ofQ or Z,

omit all initial estimates on the $SOMEGA BLOCK (or DEONAL) record, or $SIGMA
BLOCK (or DIAGONAL) record, respeactely.
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Note that when $PK and $ERROR statements are preserthd $SOMEGA and/or
$SIGMA records are absent, NONMEM will be directed to obtain initial estimates for the
variances of the random variables in question, assuming the diagonal form of the matrix.

References: Users Guide IV (NM-TRAN) 111.B.9-11

4.5. Improving Parameter Estimates: REPEA and RESCALE

The Estimation Step can be immediately repeated after the search has terminated success-
fully, by including theREPEAT option on the $ESTIMATION record. This can impeo

the accurag of the parameter estimates when one or more initial estimates are wrong by

a few aders of magnitudeThe final estimates from the first implementation of the Esti-
mation Step are used as the initial estimates of the second implementation, and thus the
scaling used with the STP is different from that with the first implementatiowiadjo

fewer leading zeros after the decimal point in the.SWWRen the Estimation Step is con-

tinued by means of a Model Specification File, similar rescaling can be requested using
the RESCALE option of the $MSFI record.

References: Users Guide IV (NM-TRAN) 111.B.12, B.14
References: Users Guide Il (Supplemental) F

4.6. TheCovariance Step: R, S, Special Computation

The Cwariance Step, which computes standard errors of the parameter estimates, first
computes a c@riance matrix of the parameter estimatéBhis is not the same as the

or ¥ matrix). Itis possible to request that thisvanance matrix be computed in one of
three different ways: either &?, S, or R1SR? (the defult), whereR and S are two
matrices from statistical theqrhe Hessian and Cross-Product Gradient matrices, respec-
tively. Options MATRI X=R and MATRI X=S of the $COYARIANCE record are used to
request theR™* and S matrices, respestily. The Caariance Step can produce addi-
tional output. When the default\e@iance matrix is usedy™* and/orS™ can be printed.

This is requested by optiofRl NT=R and/orPRI NT=S. Eigervalues are be printed if
requested by optioRRI NT=E. Multiple PRI NT options can be specified.

A special computation ieequiredwhen the data are from a single widual and a recur

sive FRED is used.A recursve FRED is one which stores the results of certain computa-
tions using the values from oneeat record, and uses these results in later computations
with the values from a latevent record. PREDPP advances the kinetic system from one
time point to the next and therefore is aarmaple of a recurge RED. WhenPREDPP

is used and the data is from a single vitiial, NM-TRAN automatically requests the
special computation. When a recussiserwritten PRED is used and the data are from
a sngle individual, theSPECI AL option of the $C®ARIANCE recordmustbe used.

The CONDI Tl ONAL option of the $CUARIANCE record requests that the @nance

Step be implemented only if Estimation Step terminates successfulys the dedult.

The UNCONDI TI ONAL option can be used to request that it be implemented no matter
how the Estimation Step terminates.

References: Users Guide IV (NM-TRAN) 111.B.15
References: Users Guide Il (Supplemental) D.2.5

4.6.1. More About $COVARIANCE
Other options of interest:
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COVPRESS (affects hav the Cwariance matrices are displayed in the NONMEM report)
NOSLOW SLOMSLOW Requests a slower method of computation)

SI G| SI GLO(affects hav computations are done in the Wadance Step)

RESUME (allows the Cwariance Step to resume from a MSF)

NOFCOV (turns of the Cwaariance Step for Estimation steps using the classical methods)

The $ESTIMATION record option NOC®may be used to turn othe Cwariance Step
following a particular Estimation step, and to turn it back on again.

See Section 6.8 for more about $CO

4.7. Multiple Problems in a Single NONMEM Run

NONMEM can implement more than one problem in a single run. That is, the input con-
trol stream can contain more than one $PROBLEM record, eaclvéallby its own set

of problem specification statementBhis feature can be useful in a variety of situations.

A series of what otherwise auld be separate runs, each analyzing a singlgidudil’s

data within a population data file, can be performed@uantly without building sepa-

rate data files for each inililual. Also,more than one data set can be analyzed using the
same model and the same problem specificatidultiple problems are also useful with
NONMEM'’s Smulation Step, described balo

Note that abbreviated code such as $PK and §ERBtatements cannot appear after the
first problem. If the $BTA record is omitted or the filename is specified as * on a
$DATA record in a problem subsequent to the first, the previous data set is re-used.

With multiple problems, the following NONMEM reserved variables are of interest:
NPROB,IPROB

A sequence of problems may be defined to be a superprdblemeans of the NM-
TRAN $SUPER record, and NONMEM may also be directed to repeat them a specific
number of times.

With superproblems, the following NONMEM reserved variables are of interest:
SINUM S2NUM SINIT S2NIT S1IT S2IT
SKIP_ variable for Superproblem termination

References: Users Guide IV (NM-TRAN) 111.B.1

4.8. SimulationUsing NONMEM: The $SIMULATION Record

The term simulatiomefers to the generation of data points according to some mAdel.
simple form of simulation is performed when the Estimation Step is omitteitid Bble

Step is implemented. The PRED column of the table contains predictions based on the
information in the data records and the initial estimates ofder the model specified in

the PRED (PREDPP) subroutine. Randoamniablessy and ¢ (if any) have ro efect on

the predictions and may be omitted. If the only purpose of the run is to obtain simulated
values, and these variables are present, it is basni required) that their variances be
fixed to 0. NONMEM does not compute the objeeifunction in this circumstance,
which has certain advantages.

NONMEM can also perform a Simulation Step, in which another type of simulation is
performed. Inthe Simulation Step, eaclalue of the ¥ data item of each record with
MDV=0 is replaced by a simulated obsa#ign generated from the model, but including
statistical wariabilityt. The PRED (PREDPP) routine uses and ¢ values that are

T During the Simulation Step, values of F computed by PRED or PREDPP for recards M®V=1 are irrel-
evant and are ignored by NONMEM.
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supplied by NONMEM according to usspecified random distributions (e.g., witari
ances gien by the initial estimates dR andZ). If Q andX matrices are fixed to zero, for
example, the simulated values are the same as the predictions descriaed abo

If the data are then displayed by thable Step, the Y0 column for records with MB=0
contains the simulated observations obtained from the Simulation Stepecords he-

ing MDV=1, the D/ column contains whater was in the original data recordlhe
PRED column of the table contains predictions as describedk.albothe Estimation
Step was not implemented, the valueg afsed for these predictions are the initial-v
ues. Ifthe Estimation Step was implemented, the values uded for the predictions in
the PRED column are the final parameter estimatiege that the observations that are fit
during the search are the simulated values obtained by the Simulation Step.

Often data are simulated using the Simulation Step, then analyzed using one or more
other steps (e.g. Estimation andv@tiance Steps), and this process is repeateded fix
number of times, using the same modEhe Simulation Step accommodates this easily
with the notion of a NONMEMsubproblemwhereby these steps are repeated within the
same NONMEM problemHowever, on occasion it can be useful tovgmultiple prob-

lems (see Section 4.7), where one problem implements the Simulation Step, and the sub-
sequent problem implements other stepa: example, this is one &y to obtain diierent

initial parameter estimates for the Estimation Step than for the Simulation Step.

The ONLYSI MULATI ON option causes NONMEM to suppresslaation of the objec-
tive function. Wth this option, PRED-defined variables displayed in tables and scatter
plots (see Section 4.13) are simulated values, i.e., use simpkta initial s, and
weighted residual values in tables and scatterplots aeysaD.

References: Users Guide IV (NM-TRAN) I111.B.13
References: Users Guide VI (PREDPP) Ill.LE.2, L.1,IV.B.1-2, C, G.1

4.8.1. More About $SIMULATION
With simulation, subroutines SIMBTand SIMEPS are used.

With simulation and subproblems, the data set for each subproblem after the first is the
same data set used by the previous subproblem, and inclydeksamges (transgenera-

tion) made by the previous subproblekivith nm74, the REWIND option of $SIMULA-|
TION may be used to request that the original data set be used for all sub-praftierms.
transgeneration is performed on the data set by $INFN when ICALL=1, the resulting data
set is considered to be the original data set.) |

See Section 6 for a discussion of the BGWPRAP and STRA (stratification) features of]
simulation, and also parallelization during simulation.

The following NONMEM reserved variables are of interest during simulation:
IRER, NREP

NONMEM subroutine RANDOM may be used in abbreviated code to obtain numbers
from a random source (nminm7).

The $SIMULATION record has other options, including:

a random seed and optiohEW NORVAL, UNI FORM or PARAMETRI C for each of se-
eral random sources;

TRUE=I NI TI AL, TRUE=FI NAL, or TRUE=PRI OR, to gecify what the "true parameter
values" for the Simulation should be;

PREDI CTI ON or NOPREDI CTI ON to specify whether the Y (or F) variable or th¥ D
variable is set to the prediction;
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REQUESTFI RST or REQUESTSECOND to specify if aiy eta partials are to be computed.

NONMEM can use the BOTBTRAP method for simulationsWith BOOTSTRAP,
other options are possible:

REPLACE or NOREPLACE

STRAT or STRATF.

$SIM NOSUPRESET feature allows the simulation seeds not to be reset with each itera-
tion of a super-problem.

4.9. Filesfor Subsequent Processing: the $TABLE Record

NONMEM can write the data for a table to an external formatted file, as requested by the
FILE option of the $ABLE record. Other computer programs can read these filesh
programs can perform further analysis or provide iwmgitagraphical displays.These

files normally contain header lines similar to those in a printed taltl¢hé header lines

can be suppressed entirely or in part by means oGHEADER, ONEHEADER, ONE-
HEADERALL, ONEHEADERPERFI LE options. NOTI TLE (suppresses the table titles)
andNOLABEL (supresses column labels) may be used.

Tables may be written to the same or to different table files.
References: Users Guide IV (NM-TRAN) 111.B.16

4.9.1. More about $TABLE and $SCATTER

Some options may be used only with a table file.

OptionsNOFORWARD and FORWARD control whether a table file which is used with mul-
tiple problems is positioned at the start of the file or forwarded to the end of the file.

Option NOPRI NT may be used suppress the table in the NONMEM repoRRbNT to
include it as ususalA printed table is limited to 8 items but a non-printed table file may
have an ulimited number of items (controlled by PDT in $SIZES with default 500).

FORMAT supplies an alternate format fareey numeric item in a table file (the default is
s1PE11.4). Aralternate name for this optionDELI M

RFORMAT supplies an alternate format for the full numeric record of a file.

LFORVAT supplies an alternate format for the full label record in a file.

Other options can be used with both printed tables and table files.

FI RSTONLY (include only the first data record from each individual record)
LASTONLY (include only the last data record from each individual record)

FI RSSTLASTONLY (include only the first and last data record from eachviddal |
record)

BY (sort records in the table)

NQAPPEND (suppress items\) PRED, RES, WRES)

APPEND (list items D/, PRED, RES, WRES,; this is the default)

With a $SCATTER record, additional options are:

FI RSTONLY (include only the first data record from each individual record)
OBSONLY (include only the observation records, having MDV=0)

The optionABSO is similar toORDO described in Chapter 9, but adds a line zero line on
the abscissa axis of the scatterplots.

Many additional diagnostic and reservedriables may be listed in tables and scatters;
see 6.3 belw.
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With the Monte-Carlo generated diagnosticsy mptions of the $ABLE record may be
used. Notdhat if these options affect the values of the weighted residual, the scatterplots
will also be affected.

ESAMPLE=n1
VRESCHOL

SEED=n2
RANVETHOD=[ n| S|

4.10. DataCheckout Mode

NONMEM'’s data checkout maode is intended for preliminary display of data without the
use of a model. In data checkout mode, the PRED routine is not cBHedictions, the
objective function, residuals, and weighted residuals are not computed. Onhaltte T
and Scatterplot Steps can be implemented in the probiéitlh NM-TRAN, this mode is
requested by coding the opti@HECKOUT on the $ATA record. A$SUBROUTINES
record and abbuated code are required, but yheaveno effect and need only be syn-
tactically correct.

References: Users Guide IV (NM-TRAN) 111.B.6

4.11. Obtaininglndividual Parameter Estimates - Conditional Estimates of;s

With population data, NONMEM can obtain estimates ofviddial-specific true alues

of n from ary given set of values ob, Q, 2, and the indvidual’'s data. Thesare called
conditionalestimates ofy. When the conditional estimates are obtained after estimation
is carried out by the First-Order method, \tteee referred to as "posthoc" estimates.
With NM-TRAN, they are requested by the optidPOSTHOC on the $ESTIMAION
record.

References: Users Guide IV (NM-TRAN) 111.B.14

4.12. Ppulation Conditional Estimation Methods

NONMEM can obtain conditional estimatesp¥ariables as part of the computation of
population parameter estimateBhese are called conditionastimationmethods.With
NM-TRAN, such methods are requested by including the optieMHOD=CONDI -

TI ONAL (or METHOD=1) on the $SESTIMATION record. (The optioRETHOD=ZERO,

or METHOD=0, requests the cemntional First-Order method and is the a@idf.) There
are two conditional estimation methoddf NONMEM uses only first-order approxima-
tions, this is the First-Orde€onditional Estimation Method. This has one ariation,
interaction,which takes into accoumt-¢ interaction and is requested by the additional
option| NTERACTI ON on the $ESTIMATION record. If NONMEM uses a certain sec-
ond-order approximation, this is the Laplacraethod, which is requested by the addi-
tional optionLAPLACI AN on the $ESTIMATION recordInteraction may be specified
with any method, including the Laplacian method.

Note that this usage of the term CONDITI®N is different from the usage on the
$SCATTERPLQA, $TABLE, and $CO®ARIANCE records, in which it refers to the -cir
cumstances under which the step in question is implemented.

Option CENTERI NG requests that theverage conditional estimates @fach eta beon-
strained to be cloge 0.

References: Users Guide IV (NM-TRAN) 111.B.14
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4.13. DisplayingPRED-Defined Variables and Conditional Estimates ofs

NONMEM can display PRED-definedasiables in table and scatterplotg/ith NM-

TRAN, ary variable appearing on the left-hand side of an assignment statement in abbre-
viated code can be displayed by listing it in a $TABLE or $SCATTER record. If the data
are population, NONMEM can also display conditional estimatgs o¥ith NM-TRAN,
variables ETA(1), EA(2), etc., can be simply listed in $TABLE and $SCATTER records.
When conditional estimation is not performed, the values displayed areisplayed

values of PRED-defined randonanables will use conditional estimatesroif they have

been obtained, otherwise thevill be typical \alues. Thisfeature is wailable with
PREDPP as well as with user-written PRED routineszor example, the follaving
records could replace the $SESTIMATION record in Figure 12.2:

$ESTI MATI ON POSTHOC
$TABLE ETA(1) EMAX

The $ABBREVIATED record can be used to limit the number of variabledable for
display when the number is excessi

References: Guide Il (Installation) V.2.4
References: Guide IV (NM-TRAN) 111.B.16-17
References: Guide VI (PREDPP) Il1.J, IV.E

4.14. Mixture Models

A mixture modelis a model that explicitly assumes that the population consistsoadrtw
more sub-populations, each having its own modkek. example, with tvo sub-popula-
tions, one might assume that some fraction p of the population has one set of glpical v
ues of the PK parameters, and the remaining fraction 1-p has another set of &pe=l v
Both sets of typical values and the mixing fraction p may be estim&t®aach indvid-

ual, NONMEM also computes an estimate of the number of the subpopulation of which
the individual is a membeiThe user must supply a FORTRAN subroutine called MIX or

a MIX block of abbreviated code to compute the fractions p and 1-p.

Resered variables NSPOP, MIXNUM, MIXEST, MIXP and MIXPT can be used in
abbreviated code. Reserved variable TEMIPay be used.

References: Users Guide VI (PREDPP) Ill.L.2

4.15. PREDError Retur n Codes and Error Messages in File PRDERR

A PRED routine can return a PRE®ror returncode(1 or 2) to NONMEM, indicating

that it is unable to compute a prediction for zegidata record with the currendlues of

@'s andp’s. For example, PREDPP returns error return code 1 when a basic or additional
PK parameter has a value that is physically impossible (e.g., a scale parameter which is
zero or ngaive). Errorreturn codes can also be specified by the user inwrgésn

code or in abbreviated code using the EXIT statem@mte reason for doing this is to
constrain parameters in order twia floating point machine interrupts. The PREDor
recovery option determines what action NONMEM will tak With NM-TRAN, the

PRED error receery option is eithe’®ABORT (which is the default) oNOABORT, and is
specified on the SESTIMATION and $THETecords.

If an error return code is returned during the Simulatiowatance, Table or Scatterplot
Step, or during computation of the initialue of the objecte function, NONMEM wiill

abort. If the error return code is returned during the Estimation or Initial Estimates Step,
NONMEM will try to avoid those values of andn for which the error occurs. If the
cannot be wided, NONMEMS &ctions depend on the error return coddue, as
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follows:

1 If NOABCRT is specified on $ESTIM or $THET try to avoid the current values of
6 andn. If ABORT is specified on $SESTIM or $THETA, then abort.

2 Abort in all cases.

NOABORTFI RST may be specified on $THET(nmvi) Same as NABORT option, hut
also applies to thdirst value of the theta vector that is tried.

NOHABORT may be specified on $ESTIM (nm7).

PRED routines may optionally provide text accompanying the error return dtfoN-
MEM writes all text associated with error return codes to a file, PRDERR. The contents
of this file should avays be carefully reviewed.

References: Users Guide Il (Installation) 111.2.1.1
References: Users Guide IV (NM-TRAN) IV.A, IV.C.5-6
References: Users Guide VI (PREDPP) IlI.K, IV.F

4.16. UsefWritten Subroutines

Although most NONMEM applications can be accomplished using NM-TRAN wibbre
ated code, there are cases in which user-written FORTRAN subroutines are ridesled.
$SUBROUTI NES record allows the user to specify the names of user-written routines
that are needed in the NONMEM load moduke.user may choose to write hisvo
PRED, PK, ERROR, INFN, MODEL, DES, or AES subroutine. Some subroutines that
are distributed with NONMEM are dummgyr "stub" routines, that do nothingf these,
subroutines CCONTR, CONTR, CRITPPRIOR, USMETA, SPTWO, MIX can be
replaced to obtain an objeaifunction different from the datilt. NONMEM subroutine

MIX must be replaced for mixture models. The names of all such routines are specified
using the identically named options of B8 UBROUTI NES record, e.g.PRED=sub-

nane, CONTR=subnane, etc. Userwritten routines may call other FORTRAN subrou-
tines, which can be specified for inclusion in the load module using the option
OTHER=subnane.

With user-written CONTR routines, the NM-TRAN $CONTR record may be useful.
THETAI and THETAR are stubs that may be replaced to transform initial and final theta

values. The$THETAI and $THETAR records described in Section 6 can be used to gen-
erate the replacement code in FSUBS.

References: Users Guide IV (NM-TRAN) 111.B.4, B.6

4.17. PRIOR

The PRIOR subroutine and $PRIOR recordvedlca Bayesian penalty function to be
added to th&dONMEM objective function. This serves as a constraint on the estimates
of THETA, OMEGA, and SIGMA and thuas away for stable estimates to be obtained
with insufficient data.

NONMEM subroutines that may be used are NWPRI and TNPRI (nrvith NWPRI,
informatively-named $THEARP, $SOMEGAR $SIGMAP records can be used to yide
prior information (nm73).

The option NOPRIOR of the $SESTIMAON record controls whether or not the prior
information is used for a gen Estimation Step.

References: Introduction to NONMEM Version VI
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5. Obsewations of Two Different Types

An NM-TRAN control stream is shown in Figure 12.3, for the analysis of a data set
which contains observations ofawvdifferent types.A fragment of the data set, shown in
Figure 12.4, contains the data for onewidlial. Thisexample illustrates h@ concentra-

tion and effect data can be fit simultaneouaty includes manof the advanced features
described in this chaptesuch as pharmacodynamic modeling in the $ERROR state-
ments, correlation between element& pénd the L2 data item.

Suppose that the data set for the phenobarbital example of Chapter 2 is modified to
include both concentration and effect observations, and that a data item called TYPE is
used to distinguish between them. When TYPE is\M cbntains an effect measurement.
When TYPE is 2, ¥ contains a concentration. The $PK statements are the same as
those of Figure 2.12. The $ERR statements are the same as those of Figure 12.1,
except that the elements 8fandn are renumbered to follothose used in the $PK state-
ments. Thdgrandom) variable Y1 is assigned the same value as Y in the $ERROR state-
ments of Figure 12.1 The (random) variable Y2 is assigned the sdueeas Y in the
$ERROR statements of Figure 2.12, except4h& used rather thasy.

The input data file contains observations of both types which were made at the same time
value. Theevent records therefore include the L2 data itdfigure 12.4, lile Fgure 2.7,

shawvs the data for the first individual, but includes TYPE and L2 data items feud ef
obsenations. Notehat the L2 data item has a different value for each variite obser

vation within the individual record. (Thealues 1 and 2 are chosen arbitrarily and may

be re-used for the L2 data items in the next individudata, if desired.)

The $THER, $OMEGA, and $SIGMA records contain the values shown in Figures 2.12
and 12.1 and one othealue, 2.8, for the a@rianceX, = co¢y, £5). Theestimate 2.8
is chosen SO that the correlation is, arbitrarily .5

(2.8= 31, = (5113,,)7 coIT = (8x 4)z .5).
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$PROBLEM COMBI NED PK/ PD MODEL
$INPUT  ID TIME AMIT W APGR DV TYPE L2
$DATA  COVBDATA
$SUBROUTI NE ADVANL
$PK
TVCL=THETA( 1) +THETA( 3) * WI
CL=TVCL+ETA( 1)
TWD=THETA( 2) +THETA( 4) * WI
V=TWD+ETA( 2)
. THE FOLLOW NG ARE REQUI RED BY PREDPP
K=CL/ V
s1=v
$ERROR
EMAX=THETA( 5) +ETA( 3)
C50=THETA( 6) +ETA( 4)
E=EMAX* F/ ( C50+F)
Y1=E+ERR( 1)
Y2=F+ERR( 2)
Q=1
I F (TYPE. EQ 2) Q=0
Y= Y1+(1- Q * Y2
$THETA (0, .0027) (0,.70) .0018 .5 100 20
$OVEGA . 000007 .3 400 16
$SI GVA BLOCK(2) 4 2.8 8
$SESTI MATI ON

Figure 12.3. The input to NONMEM-PREDPP for analysis of the population phenobarbital data, including
both concentration and effect observations.

1 0. 25.0 1.4 7 .2 0
1 2.0 1.4 7 6.0 1 1
1 2.0 : 1.4 7 17.3 2 1
1 12.5 3.5 1.4 7 2 0
1 24.5 3.5 1.4 7 2 1
1 37.0 3.5 1.4 7 2 0
1 48.0 3.5 1.4 7 2 1
1 60.5 3.5 1.4 7 2 0
1 725 3.5 1.4 7 2 1
1 85.3 3.5 1.4 7 2 0
1 96.5 3.5 1.4 7 2 1
1 108.5 3.5 1.4 7 .2 0
1 112.5 1.4 7 8.0 1 2
1 112.5 . 1.4 7 310 2
Figure 12.4.The first indvidual’s phenobarbital data, including both concentration and

effect observations.

The aboe £ERROR statements can be coded more simply.

$ERROR

EMAX=THETA( 5) +ETA( 3)
C50=THETA( 6) +ETA( 4)
E=EMAX* F/ ( C50+F)

| F (TYPE. EQ 2) THEN
Y=F+ERR( 2)

ELSE

Y=E+ERR( 1)

ENDI F

Figure 12.5. Alternate $ERROR statements
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6. SupplementalList of Features through NONMEM 7.4

With NONMEM 7 there are mgnnew features, including me Estimation Methods.
This section lists features of NONMEM, PREDRfd NM-TRAN that are not discussed
elsavhere in this guide. Theevsion of NONMEM in which each feature appears is
listed. Theuser should consult other guides for details.

6.1. NONMEM Features

Odd-Type Data (nmv)
Non-continuous obseed responses ("odd-type data") can be analy$&5TI-
MATION options LIKELIHOOD or -2LL must be used( is st to a (conditional)
likelihood.
Reserved variable F_Fl@&may be used (nmvi).

New methods of Estimation
METHOD=HYBRID with option ZERD (nmv)
STIELTJES withoptions GRID, REPEAT1, REPEAT2, ZERnhmvi)
ITS Iterative Two Sage (hm7)
Expectation-Maximization (EM) and Monte Carlo Bayesian (nm7)

Expectation feature (nmv)
This feature uses the NONMEM marginal (MRG_) data itdiRG_ identifies
records for which NONMEM computes and displays giraal quantities (epecta-
tions) Expectations are computed when ICALL=5.

Raw data aerage feature (nmv)
This feature uses the NONMEM raw-data (RAW_) data itd®AW _ identifies
template records for which NONMEM computes and displaysdata &erages.
Raw data aerages are computed when ICALL=®Resered variables TEMPL
and the $OMIT record may be used (nmvijie NONMEM utility routine RAN-
DOM may be used to obtain numbers from different random sources.

Non-parametric analysis methods (nmvi)
The SNONPARAMETRIC record is used to request the Non-parametric method of
analysis. Optionmclude:
MARGINALS or ETAS, MSFO=filename, RECOMPUTE, EXRD, NPSUPP=n
or NPSUPPE=N

SORT option of SESTIMATION (nmvi)
With classical methods, inddual contribution to the objee® function and gradi-
ents may be sorted before yhare summed, so that smaller numbers are summed
before larger numbers.
Reserved Variables YLO/YUP (nmvi)
During the analysis an interval is defined in whi¢br outside of which)an
observation is conditioned taist. Resered variable PR_Y is also of interest.
Reserved Variables CTLO/CTUP (nmvi)

An obseration may be thevent that the value of a normally distributedriable
falls in a gven intenal. Resered variable PR_CT is also of interest.

NONMEM Repetition feature (nmvi)
This features uses reserved variables RPTIRRRPTON,PRDFL. Analternate
way is to uise the RPT_ data item.

MU Modeling (MU Referencing) (nm7)
MU _i variables may be used in Abbreviated code with EM methods of Estimation.
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NM-TRAN checks the use of MU _i variables, unless opt&CHECKMU of the
$ABBR record is used (nm73)Thetas may be input and reported in their natural
domain, &en when used as logs (e.g., linear MU referencing) using $THETAI and
$THETAR records (nm73).

New method of setting initial values of thetas, @ag and sigmas. (nm72)
See CHAIN option of SESTIMATION and $CHAIN.

Multiple Estimation steps (nm72)
If the SESTIMATION record is present more than once within a problem, then
each subsquent record requests a separate Estimation Step rather vlthngpro
more options for a single Estimation Step.

BOOTSTRAP method (nm73)
BOOTSTRAP may be specified with SNONPARAMETRIC and $SIMULAN
records. Thisrequests that a bootstrap sample be used. Options SERA
STRATF may be used for stratificatioWith $SIMULATION, options REPLEE
or NOREPLACE may be useddn example is gien of bootrapping single subject
data (nm74).

More than 2 leels of mixed effects (nm73)
Increased number of mixed effectsdis. Random effects across groups of vt
uals, such as clinical site, can be modeled. The $LEVEL record is used.

Alternate method (POPULATION WITH UNCONSTRAINED ETAS) for single-subject
analysis (nm73)
All the subjects may be analyzed togethart with SOMEGA diagonal alues
fixed to a special value 1.0E+06.

New values of MDY/ (nm73)
MDV may be set to 100, 101. Such records are ignored during Estimation.
Resered variables MDVI1, MDVI2, MI¥13 may also be used; there defined in
include file nonmem_reserved_general.

Initial Estimates for ETAs feature (nm73)
By default, the initial value used for E§ in the Estimation Step search is Dhe
$ETAS and $PHIS records provide user-supplied initial estimates.

Tranformations of THEA values (nm73)
$THETAI transforms the initial values in the $THETand $THETAP records.
$THETAR transforms the final theta values for the NONMEM report and addi-
tional output files. May be used with MU Modeling.

Constraints on model parameters (nm73)
Additional algorithmic constraints may be imposed upon model parameters by use
of the subroutine CONSTRAINTOption CONSTRAIN of the $SESTIMAION
record and the $ANNEAL record may be used t@gnformation to the subrou-
tine. Thisfeature is wailable only for the EM and Bayesian algorithms.

Additional Reserved Variables
The descriptions of the following reserved variables can be found in Introduction to
NONMEM 7 MXSTEP FIRSTEM MDVRES NPDE_MODE DV_LOQ CDF_L

6.2. Miscellaneoud-eatures

Interactve cntrol of NONMEM (nm7)
A NONMEM run can nw be montrolled to some extent from the console by issu-
ing certain control characters.
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Dynamic Memory Allocation (nm72)
No need to recompile NONMEM or NM-TRAN for large problems. Most arrays
are sized automaticallylf necessarythe $SIZES record may be useH.g., the
default maximum number of data items per data record istinhy be increased
by specifying a larger value for PD; the maximum number of items per tabjle is
500, but may be increased by specifying a larger value for PDT.

Paallel Computing (hm72)
Paallel Computing is requested using the nmfe option -parafile and specified using
.pnm files. The optionsARAFILE of the $ESTIMATION and $C@ARIANCE
records may also be usedith nm74, Option FPARAFILE of the $ESTIMAON |
record controls parallelization for final eta (EBE) computatioption ARAFILE |
of the $ABLE controls parallelization for weighted residual computati@ption |
PARAFILE of the $SIMULATION record may also be used.

6.3. Changego NONMEM Outputs
Reports include Gariance and Correlation Matrices for OMEGA and SIGMA (nm72)

Reports include ETABAR, SE, N, P VAL (nm7)
Option ETABARCHECK of the SESTIMATION record may be used.

Reports include ETAshrink, EBVshrink, EPSshrink (nm7)
Eta shrinkage valuation using empirical Bayesakiances (EBVs, or conditional
mean variances) is reported. TheASITTYPE option of the $ESTIMATION record
and the ETASXI reserved variable in abbreviated code may be used to control
which etas from which subjects are included.

Reports include tag labels: #METH etc. (nm7)

Raw and additional output files: root.ext, rootwaoot.xml, etc. (nm7)
These files provide numerical results in a columnar for@BESTIMATION record
option ORDER may be used to control the order of thetagansgma in these
files. $SESTIMATION record option NUMDER may be used to request files with
numerical and analytic eta deddives: root.fgh, root.agh (nm73)

Tables and Scatters may request NONMEM-generated items
Elements of G and H (e.g., G11, H11) and elements Af(Bmvi)

A range of etas using the format ETAS(k:n) may be requested (nm73).
Number lists or a syntax flexible (TO, :, BY) may be used(nm74). Examples afe
ETAS(1 TO 10 by 3, ETAS(1,5,12,4).

OBJI (Objectve function values for each individual) (nm72)
Additional statistical diagnostic items (nm7, nm73)

In addition to the PRED, RES, and WRES items, the following may be
listed.

PREDI , RESI , WRESI
CPRED, CRES, CV\RES
CPREDI , CRESI , C\RESI

Cl PRED, Cl RES,Cl V\RES

Cl PREDI , CI RESI ,Cl W\RESI
NI PRED, NI RES, NI WRES
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| PRD, | RS, \RS
EPRED, ERES, EVRES

Monte-Carlo generated diagnostiase not linearized approximations dikhe
other diagnostic types. These include

ECVRES

El PRED, El RES,El WRES

NPDE Monte-Carlo generated normalized probabidligtribution error) (nm71)
NPD correlated value of NPDE (nm72)

With FIXEDETAS=(list), the specified etas are treated as if the fixed efects |
when NONMEM eauates population diagnosticgluring the $ABLE |
step.(nm74)

The EXCLUDE_BY option can be used to exclude records from the table or jscat-
ter. (nm74).

The VARCALC option asks NONMEM to report standard errors (xxx_SE) in [the
tables for PREDPP and usdgfined items. (nm74) |

A resered variable of interest whewatuating residuals and weighted residuals|is
MDVRES which may be set in PRED to cause NONMEM to treat an aitsrv|
as missing duringhe computation ofesiduals and weighted residuals. (nm73)

6.4. PREDPP

New PREDPP data items in SINPUXVID1 XVID2 XVID3 XVID4 XVID5 (nm72)
Special values of EVID alle repeated observation records, e.g., for Stochastic dif-
ferential equations.

CMT and PCMT values 100,1000
Specification of the default compartment for output (nm, nm73)

Compartment Amounts A(i), TTE (hmvi)

A_0 (compartment initialization) (nmvi)
May be used with anADVAN. A_OFLG

|_SS (Initial Steady State) for general non-linear models (nmvi2.0)
It is possible to specify initial conditions for the differential equations using the
|_SS (Initial Steady State) feature. Reserved variable ISSMOD may be used.

DES array: COMRCT vs. FULL for general non-linear models (nmv)

ISFINL reserved variable with AES and DES (nmvi)
Allows the abbreviated code to ¢afpecial action on the final call to AES and DES
for an integration inteal. TIME data item may be getive. |

6.5. NM-TRAN

6.5.1. GeneralFeatures

Case-insensitivity (nm72)
Both lower and upper case may be used in the NM-TRAN control file.

Continuation and line length (nm73)
Any line may be continued with "&" and may be 67000 characters long.

Warning messages (nmv)
The numbers of warning messages afiaus types may be controlled using the
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$WARNING record.

6.5.2. DataPreprocessor

$DATA TRANSLATE (nmy nm73)
Allows TIME and Il values to be rescaled, with specified number of decimal
points.

ill-formed data files (nmvi)
NM-TRAN is better able to handle a data file whose final line does not terminate
correctly.

tabs in data files (nmvi)

"M in data files (nmvi)
NM-TRAN can read data files in which tabs are present, and whose lines end with
M.

$DATA BLANKOK (nmvi)
NM-TRAN will not allow blank lines in a data file unless the BLANKOK option is
used.

Larger data files (nmvi)
The RECORDS=n option of $&TA may specify a number as large as 99999999.

MISDAT Missing Data Indicator (nm74)
MISDAT specifies anumerical value indicating missing data value in the data
set, which is displayed on $TABLE table outpukst is safely interpretedas 0
by other steps of NONMEM.

6.5.3. Albreviated Code

FORTRAN 90/95 syntax may be used.
For example, logical expressions may be written using symbols ==,>, instead of
.EQ., .GT,, etc.

Increased number of THETA, ETA, EPS (nm72)
Subscripts of THETA, ETA, EPS may be as large as 999.

$ABBR record: COMRES, COMSAV
Creates variables that areved between nonmem passes. NONMEM Reedrv
variables COM, COMACT are used.

$ABBR record: DERIV2 (nmIV), NOFASTDER(nm72) DERIV1 (nm74)
Affects generated code in FSUBSee also NOFIRSTDERCODE reservetiv
able in abbreviated code.

$ABBR REPLACE (nm73)
Any character string may be replacethis allows for symbolic reference to thetas,
etas, and epsilons. Replacement with selection by data item and parameter is per
mitted.
With nm74, the syntax is moreible. Symboliclabels for eta may be used in the
$TABLE record. Symbolic label substitutions will appear in the NONMEM report
file and $TABLE outputs $SESTIMATION record option NOSUB may be used to
control label substitution in the NONMEM report fil&TABLE record option |
NOSUB may be used to control label substitution in $TABLE fi®SCATTER |
record option NOSUB may be used to control label substitution in Scatterplots.
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$ABBR DECLARE (nm73)
Allows integer variables and array (subscripted) variables to be used inviAbbre
ated code.

Recursve dbreviated code (nmvi)
Allows a random ariable to retain the value from the previous data record instead
of being set to zero. May be used to implement regikgnetics in$PRED.

User-supplied functions FUNCA,FUNCB,FUNCC and VECTRA,VECTRB,VECTRC
(nmvi)
FUNCA etc. are reserved names for user-supplied functiong mag hare scalar
or vector-alued aguments. VECTR/Aetc. are reserved names for vectors used as
arguments. Wheffunctions are used in abbiated code, the eta deatives of the
arguments are computed correcthiiny vector may be used with grfunction.
With NONMEM 7, there are more reserved functions and vectors.

$ABBR FUNCTION, $ABBR VECTOR (nm74)

In NONMEM 7.4 the $ABBR FUNCTION option and $ABBR VECTOR option
allows user-defined function names and user-defined argument vector names.

PROTECT functions (nm74)
Versions of FORTRAN functions arevailable that protect against domain viola-
tions, divide by zero, and floating pointesflows. For example, PLOG is the pro-
tectve mde routine that performs the LOG operatiofhe $ABBR PROTECT
record causes NM-TRAN to automatically replace FBRN functions in abbre-
viated code with the protegé functions.

WRITE/PRINT statements
Character strings, format specification, Array options FULL vs. DIAG

DO WHILE, DO WHILE(DATA) statements
Looping; transgeneration.

Include files for NONMEM_RESERVED variables (nm73)
If the name of an include file starts with NONMEM_RESE®, it may contain

definitions of wariables that will be parsed by NM-TRAN for use in ablaed
code.

6.5.4. Resered Variables in Abbreviated Code
Here is a partial list of reserved variables that are not mentioned elsewhere in this guide.

ICALL
NONMEM reserved variable. Tells PRED when NONMEM is doing Run initial-
ization, Problem initialization, Estimation, Problem finalization, Simulation,
Expectiation, Data Yerage. (nmv)

NEWIND
NONMEM reserved variable. Tells PRED when data fromva imelividual record
is starting.

NIREC, NDREC (nmvi)

FIRSTOBS, LASTOBS (nm74)
NONMEM reserved variables. Input data file record counters. NONMEM 7.4 pro-
vides additional record counters such as FIRSTOBS, LASTOBS, etc. in file non-
mem_reserved_general.
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LIREC NINDR INDR1 INDR?2 reserved variables (nmvi2.0)
NONMEM reserved ariables. Descripte d the individual record.

MSEC, MFIRSTIFIRSTEM
NONMEM reserved variables. Tells PRED which datives to mmpute.

THETAFR, OMEGA, SIGMA, SETHETSETHETR, SEOMEG, SESIGM (nmvi,nm74)
NONMEM reserved ariables. Thecurrent \alues of OMEGA, SIGMA, et. al.,
may be used in abbreviated code.

[IDX,CNTID (nmvi)
NONMEM reserved ariables. Indiidual contribution to the objes® function.

PRED_,RES ,WRES , and other variables
Variables with similar names and the same values as statistical diagnostic items
PRED_, RES , WRES_, CPRED_, CRES__, CWRES, etc., may be used on the
right in $PRED and $ERROR blocks (nm7)

NONMEM _reserved_general (nm73)
This is a file in the util directory with declarations for maanlditional resergd
variables.

6.6. Utility Routines
This is a list of utility programs found in the util directory.

nmfe74
The nmfe shell script has manew qotions, including options for parallel comput-
ing.

finedata
Augments an NM-TRAN data file to incorporate additional, non-obsiery, time
values spaced at regular increments.

nmtemplate
Performs wariable substitutioron appropriately tagged control stream template
files, and produces wnecontrol stream files. Compare with the $ABBR RERLERA
feature, abee.

table_quant
Transforms results in vaoutput file of $CQO SIRAMPLE step, places into a table
file with frequencies and cumulesi values

table_resample
Resamples from va output file of $C¥ SIRAMPLE step, using the WEIGHT
information

table_compare
Compares the numericalalies between twtable files produced by th&TA-
BLE record.

table_to_xml
Corverts additional output table files produced by NONMEM to XMarrRatted
files.

xml_compare
Compares the contents ofdMONMEM report XML files.

doexpand
Expand an NM-TRAN control stream file that has been annotated with DOE
(which stands for DO expand) and ENDDOE (which stands for ENDxparel)
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directives.

ddexpand
Expands a control stream file by adding equations for time-delay differntial equa-
tion problems.

nef Performs efective sample statistics on population parameters in caitput file
genereated by Bayesian or NUTS analysis

nefii Performs efective sample statistics from individual parameters genereated by
Bayesian or NUTS analysis

6.7. All Options for SESTIMATION

This section lists all options of the SESTIMATION reco®ome are discussed earlier in
this guide and are listed here for completidome options are only appropriate with
specific estimation method§.or more information, see the SESTIMATION help item.

-2LL (nmv)
Y evaluated in $ERROR or $PRED is intepreted as -2 times log likelihood

ATOL (nm72)
Absolute tolerance adjustment for ¥BN9 and AD/AN13

AUTO (nm73)
Have NONMEM determine optimal settings for certain EM/Bayes options

CALPHA (nm7)
alpha error rate for Monte Carlo EM and Bayesveagence

CENTERING (nmv)
Impose centering ofvarage empirical Bayes estimates (EBEs) about zero (FOCE).

CINTERVAL (nm7)
Correlation iteration interval for Monte Carlo EM and Bayes/emence

CITER/CNSAMP (nm7)
Number of iteration samples to use for Monte Carlo EM and Baye®srgence

CONDITIONAL (nmiv)
Assess objeate function around each subjexi{conditional) etas during Estima-
tion (FOCE/Laplace)

CONSTRAIN (nm72)
Impose algorithmic constraints on thetas through CONSTRAINT subroutine
(EM/BAY ES)

CTYPE (nm7)
Select cowmergence criterion

DERCONT (nm73)
Correct for demative @ntinuity in change of objeet function with theta
(SAEM/IMP)

DF (nm71)

degrees of freedom of t-distribution of sampling density for IMP and IMPMAP
DFS (nm73)

degrees of freedom for simulating initial SIGMAS (CHAIN only)

EONLY (nm71)
Expectation step onlyio alvancement of thetas or sigmas for EM methodéth |
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nm74, also affects indidual conditional means/modes and conditiorsiances, |
and approximate variances.

ETABARCHECK (nmvi)
p-value of ERBAR (mean EBES) tests similarity to EBAR of a previous prob-
lem

ETADER (nm73)
Select alternaite finite difference methods for eta detives

ETASAMPLES (nm74)
Generates posterior density samples of etas

ETASTYPE (nm73)
Determine whether non-influential etas should be included ABEBR/Shrinkage
statistics

FAST (nm74)
Uses analatical desdtives of thetas and sigmas to speed up FOCE analyses

FILE (nm71)
specify alternatie rame for rav ouptut file containing figd effects parameters
progress

FNLETA (nm72)
Determine hw final etas are obtained for table outputs

FORMAT/DELIM (nm71)
specify alternatie numerical format for output files.

FPARAFILE (nm74)
Turn ON or OFF parallelization of final etagiation.

GRD (hm71)
Specify gradient behavior of THETAS and SIGMAS for EMMEES methods

GRDQ (nm74)
Gradient quick option, specifying what number of fraction of importance samples
generate should be used for gradiesatueation of non-mu modeled parameters

GRID (nmvi)
Set up search grid pattern for Stieltjes method

HYBRID (nmv)
Use conditional etas except for those etas listed inZBRion (hybrid of FOCE
and FO)

IACCEPT (nm71)
Acceptance/rejection ratio or proposal densityecage for EM/BY ES

IACCEPTL (nm74)
Scale a second multi-variate normal denséyover long tails in the posterior dent
sity.

INTERACTION (nmiv)
Assess residual variance (epsilon terms) using conditional (non-zero) etas.

ISAMPEND (nm73)
Maximum value for ISAMPLE

ISAMPLE (nm71)
Number of Monte Carlo EAX samples to collect for each subject
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ISAMPLE_M1 (nm71)
Number of ERA samplings to test in the OMEGA space (SAEMYEES)

ISAMPLE_M1A (nm72)
Number of ER samplings to test using BT samples of other subjects
(SAEM/BAY ES)

ISAMPLE_M2 (nm71)
Number of multi-variate EA vector samplings to test in the local space
(SAEM/BAYES)

ISAMPLE_M3 (nm71)
Number of uni-variate EA samplings to test in the local space (SAEMYEES)

ISCALE_MAX (nm72)
Maximum factor to expand prospoal density for AET sampling
(SAEM/BAY ES/IMP/IMPMAP)

ISCALE_MIN (nm72)
Minimum factor to scale prospoal density for AT sampling
(SAEM/BAY ES/IMP/IMPMAP)

KAPPA (nm74)
Specify power term to be used imeeage acumulating samples for mass matrix
production for NUTS analysis

KNUTHSUMOFF (nm74)
Turn off precision retaining KnuthSUm algorithm when summingvitiial OFVs
to produce total OFV.

LAPLACE (nmiv)
2nd Order conditional estimation method

LEVWT (nm74)
Specify hav to weigh subjects in nested randomds ($LEVEL) problem

LIKE (nmv)
Y evauated in SERROR or $PRED is interpreted as likelihood

LNTWOPI (nm74)
Add the N*log(2pi) term to the objeg# function
MADAPT (nm74)
Specify hov the mass matrix is updated during a NUTS analysis

MAPCOV (nm74)
MAPCOQOV=1 is the default.

MAPINTER (nm72)
Iteration interval at which to use MAP estimates for proposal density (IMP)

MAPITER (nm72)
Number of first set of iterations at which to use MAP estimates for proposal density
(IMP)

MASSRESET (nm74)
Initialize mass matrix accumulation, or bagrérom previous estimation.

MAXEVAL (nmiv)
Maximum number of functionveluations (FO/FOCE/FOCEI/Laplace)

MCETA (nm73)
Number of Monte Carlo samples to assess best starting eta vector for MAP
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estimation

METHOD (nmiv)
Specify method of estimation
MSFO (nmiv)
File name for containing estimation information to use in subsequent analyses

MUM (nm71)
Turn on or of MU-referencing for EM/BY ES analysis

NBURN (nm71)
Number of burn-in iterations for SAEMAY ES methods

NITER/NSAMPLE (nm71)
Number of iterations for EM/BY ES methods

NOABORT (nmiv)
Have NONMEM Recwer from numerical errors during estimation

NOCOV (nm73)
Do not &aluate coaruiance step for particular estimation step

NOHABORT (nm73)
Have NONMEM recover from all numerical errors during estimation (stronger than
NOABORT)

NOLABEL (nm71)
Do not print column names in additional output files

NOOMEGABOUNDTEST (nmvi)
Do not limit hav much OMEGA elements may change in an estimation
(FO/FOCE/Laplace)

NOSIGMABOUNDTEST (nmvi)
Do not limit hav much SIGMA elements may change in an estimation
(FO/FOCE/Laplace)

NOTHETABOUNDTEST (nmvi)
Do not limit hav much THETW parameters change in an estimation
(FO/FOCE/Laplace)

NOSUB (nm74)
Turn off substitution of variable labels in Table headers.

NOTITLE (nm71)
Do not print title (header) in additional output files

NONINFETA (nm73)
Determine hary NONMEM treats etas that do not influence the sulgjekta likeli-
hood

NOPRIOR (nm71)
Turn on or of the contribution of the prior information
NSIG (nmiv)
number of signficant digits for ceergence criterion (classical methods, ITS)

NUMDER (nm73)
Output numerical and/or analytical ETerivatives

NUMERICAL (nmv)
Use finite difference method for 2nd detive ETAS in MAP estimation (Laplace,
ITS, MAP, IMPMAP)
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NUTS_BASE (nm74)
Specify number of iterations for stage Il of warmup process of NUTS analysis

NUTS_DELTA (nm74)
Sample acceptance rate for NUTS analysis

NUTS_EPARAM (nm74)
Specify parameterization for individual parameters/etas in NUTS analysis

NUTS_GAMMA (nm74)
Gamma factor for NUTS algorithm

NUTS_INIT (nm74)
Specify number of iterations for stage | of warmup process of NUTS analysis

NUTS_MASS (nm74)
Specify whether mass matrix should be full, diagonal, block-diagonal, etc.

NUTS_MAXDEPTH (nm74)
Sets the maximum number of total branchings to try in the NUTS algorithm in the
search for the next decorrelated sample

NUTS_OPARAM (nm74)
Specify parameterization for Oges in NUTS analysis

NUTS_REG (nm74)
Specify diagonal dominance algorithm for mass matrix in NUTS analysis.

NUTS_SPARAM (nm74)
Specify parameterization for Sigmas in NUTS analysis

NUTS_STEPINTER (nm74)
An initial step size is calculatedery NUTS_STEPINTER iterations.

NUTS_STEPITER (nm74)
An initial step size is calculated for the first NUTS_STEPITER iterations.

NUTS_TERM (nm74)
Specify number of iterations for stage Ill of warmup process of NUTS analysis

NUTS_TEST (nm74)
Specify acceptance/rejection algorithm in NUTS algorithm

NUTS_TRANSFORM (nm74)
Specify whether estimation parameters or momentum parameters are to be trans-
formed in NUTS algorithm.

OACCEPT (nm7)
Select acceptance/rejection ratio for Metroplis-Hastings algorithm of finding
OMEGAS (BAYES)

OLKJDF (nm74)
Set degrees of freedom for LKJ correlation for @ese

OLNTWOPI (nm74)
Include log(2pi) degrees of freedom from eta density portion of obgeftinction

OMEGABOUNDTEST (nm74)
Limit how much OMEGA elements may change in an estimation
(FO/FOCE/Laplace)

OMITTED (nmiv)
Omit estimation
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OPTMAP (nm73)
Select optimization method for MAP estimation

ORDER (nm72)
Select ordering of fixed effects parameters w oatput file

OSAMPLE_M1 (nm71)
Number of samples for Metroplis-Hastings global search of finding OMEGAS
(BAYES)

OSAMPLE_M2 (nm71)
Number of samples for Metroplis-Hastings local search of finding OMEGAS
(BAYES)

OVARF (nm74)
The weight to STD prior to the log sqrt OMEGA diagonal elements

PACCEPT (nm71)
Select acceptancel/rejection ratio for Metroplis-Hastings algorithm of finding
THETAS/SIGMAS (BAYES)

PARAFILE (nm72)
Specify nav parallization file for estimation, or turn ON/OFF parallelization

PARAFPRINT (nm74)
Print iteration interval for parallelization log file

PHITYPE (nm74)
have phi file contain conditional neans phis or etas

POSTHOC (nmiv)
Assess EBEs for each subject after FO estimation

PREDICTION (nmv)
Determines hw Y or F is interpreted with simulation

PRINT (nmiv)
Iteration print interval

PSAMPLE_M1 (nm71)
Number of samples for Metroplis-Hastings (MH) global search of finding
THETAS/SIGMAS (BAY ES)

PSAMPLE_M2 (nm71)
Number of samples for MH local multaviate search of finding THRB/SIG-
MAS (BAYES)

PSAMPLE_M3 (nm71)
Number of samples for MH local unasiate search of finding THRB/SIGMAS
(BAY ES)

PSCALE_MIN (nm73)
Minimum factor to &pand prospoal density for MH sampling of THEJ/SIG-
MAS(BAY ES)

PSCALE_MAX (nm73)
Maximum factor to scale prospoal density for MH sampling of TA&SBIG-
MAS(BAY ES)

RANMETHOD (nm72)
Select random number generator and behavior for Monte Carlo EM AN
methods
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REPEA (nmiv)
repeat estimation starting at final parameters from first loop (FO/FOCE/Laplace)

REPEAT1 (nmvi)
repeat first stage of Stieltjes estimation

REPEA2 (nmvi)
repeat second stage of Stieltjes estimation

SADDLE_HESS (nm74)
Selects type of Hessian to be used for Saddle reset process

SADDLE_RESET (nm74)
Set the number of times a saddle_reset is performed

SEED (nm7)
Select starting seed for Monte Carlo EM and Bayes methods

SIGL (nm7)
Significant digits of individual objeaste function assessment

SIGLO (nm72)
Significant digits to assess ETAS in MAP estimation

SLOW (nmvi)
Use slev method of advancing fixed effects parameters

SIGMABOUNDTEST (nmvi)
Limit how much SIGMA elements may change in an estimation
(FO/FOCE/Laplace)

SLKJDF (nm74)
Set degrees of freedom for LKJ correlation for Sigmas

SORT (nmvi)
Sort individual objectie function \alues before summing into total objeetifunc-
tion

STDOBJ (nm73)
Stochastic standard dation tolerance of objeste function to determine best
ISAMPLE for IMP/IMPMAP

STIELTJES (nmvi)
Higher order assessment of objeetiunction

SVARF (nm74)
The weight to STD prior to the log sqrt Sigma diagonal elements

THETABOUNDTEST (nmvi)
Limit how much THET parameters change in an estimation (FO/FOCE/Laplace)

THIN (nm74)
Sample intervals to be recorded in the cutput file for Bayesian analysis

TTDF (nm74)
Set t-distribution degrees of freedom for priors to Thetas

ZERO (nmv)
List of etas for which conditional etas are not to be used in HYBRID method

References: Introduction to NONMEM 7
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6.8. All Options for SCOVARIANCE

This section lists all options of the $UORIANCE record. Some are discussed earlier
in this guide and are listed here for completiofor more information, see the
$COVARIANCE help item.

ATOL (nm73)
Asolute tolerance for differential equation problems

CHOLROFF (nm74)
Have R matrix evaluated according to earlier versions of NONMEM.

COMPRESS (nmv)
Covariance Step arrays are printed in compressed forrgatdiess of dimension
size of cwariance of estimates

CONDITIONAL (nmiv)
Evaluate cwaraince step only if estimation successful

FAST (nm74)
Uses analatical desdtives of thetas and sigmas to speed upaci@ance step

FILE (nm74)
Select file name of vaoutput file for SIR sampling

FORMAT (nm74)
Select format of numbers to be written tevr@utput file during SIR sampling

FPOSDEF (nm74)
Force positve cefiniteness on R matrix after Preconditioning

IACCEPT (nm74)
Acceptance rate (sampler expansion) during SIR importance sampling

IACCEPTL (nm74)
Acceptance rate of the secondary sampler during SIR Importance sampling

KNUTHSUMOFF (nm74)
Turn off precision retaining KnuthSUm algorithm when summingyittial OFVs
to produce total OFV.

MATRIX (nhmiv)
Select type of Information matrix to beauted during Ceariance step

NOFCO/ (nm72)
Turn off covariance estimation for FOCE method

NOSLOW (nm72)
Use analytical devitives of Omeages to evaluate gradients during eariance step

PARAFPRINT (nm74)
Print iteration interval for parallelization log file duringvadance step

PFCOND (nm74)
Force predonditioningven if Rmatrix is positve cefinite during ceariance step

PRECOND (nm74)
Set number of preconditioning cycles to perform duringacince step

PRECONDS (nm74)
Select whether preconditioning should be done on Thetasg@®@and/or Sigmas
of R matrix portion in ceariance step
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PRETYPE (nm74)
Select the R matrix corrector type when preconditioning during #r@ance-
covariance step.

PRINT (nmiv)
Select to Print out additional matrices and items (E=e@ees, R=R matrix, S=S
matrix)

RANMETHOD (nm74)
Select randomozation method for SIR sampling

RESUME (nm73)
Collect intermediate information to resumevatgance step if interrupted

SIGL (nm71)
Significant digits of individual objeate function assessment duringvenance
step

SIGLO (nm72)
Significant digits to assess ETAS in MAP estimation duringréance step

SIRCENTER (nm74)
Where the sampling (proposal) density is to be centered during SIR sampling

SIRDF (nm74)
Degrees of freedom of t-distribution sampler used during SIR sampling

SIRNITER (nm74)
The number of times to perform SIR sampling

SIRPRINT (nm74)
Set the console print iterations interval during SIR sampling\ari@mce step

SIRSAMPLE (nm74)
Number of random samples to generate during SIR samplingyaiamce step.

SIRTHBND (nm74)
Determines whether R and S matrix aval@ated in uncosntrained or constrained
domain for thetas during SIR sampling

SLOW (nmvi)
Have Omega gadients ealuated numerically

SPECIAL (nmiv)
The special computation will be used in thev@@nce Step with a recuvs
PRED subroutine.

THBND (nm74)
Determines whether R and S matrix aval@ated in uncosntrained or constrained
domain for thetas during main@iance step

TOL (nm72)
Selects relate blerance for differential equation integration during/ac@nce
step

UNCONDITIONAL (nmiv)
Evaluate cwaraince step whether or not estimation successful

References: Introduction to NONMEM 7
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1. What This Chapter is About

This chapter describes error messages that can appear in NONMgIt and dis-
cusses some possible causes and remedies. It is yotogredlic; only selected messages

are discussed. NM-TRAN messages are meant to be xgddfratory as ae mary
PREDPP messages, and important NONMEM messages are documented in NONMEM
Users Guide, Part |, Chapter GInlike certain other regression programs, NONMEM-
PREDPP will not try to mask what is penssl as a eal problem and to which attention
must be gien by the user before the computation can proceed; an error message results
and often, the program terminates.

The Estimation and Gariance Steps do notvedys terminate successfullyrhis is a nor
mal part of the process of model building.

2. Abnormal Termination of the Estimation Step
Normal termination of the Estimation Step is indicated by the message:
M NI M ZATI ON SUCCESSFUL

Even when this message is seen, it is possible that the Estimation Step has not run cor
rectly. Final estimates should be different from initial estimates. If the initial and final
estimates are the same and the gradients for a parameter are xerg irationt, this

is a sign of a modelling erroifhe parameter does not affecyamedictions, as discussed

in Chapter 7, Section 4.4f there were bounds, estimates should be wedlysrom the
bounds. Afinal estimate which is close to a bound is discussed in Chapter 11, Section
4.3.

Abnormal termination of the Estimation Step is indicated by a message whose first line
is:

M NI M ZATI ON TERM NATED

One of seeral messages will folle, indicating the type ofdilure. Themessages are
listed in Users Guide I.

Two of the most common are discussed here separately.

2.1. "DUE TO MAX. NO. OF FUNCTION EVALU ATIONS EXCEEDED"

If after ary iteration the total number of@uations of the objeate function (Chapter 10,
figure 10.5, line 33) is equal to or greater than the maximum allowed (Chapter 10, figure
10.2, line 51), the minimization search is halted with this message. If the $SESTIMA-
TION record requested that a Model Specification File be written, it is possible to con-
tinue the search from this point in a subsequent NONMEM run. In Chapter 12, Section
4.3, a strategy is discussed by which the number of funcimuations is deliberately set

to a lov value in order to structure a lengthun as a series of shorter runs.

Whenever this message is obtained, it is importantxtarsine the intermediate output and
evduate the progress made sir. fA poorly-specified model, for example, may cause
very slowv corvergence of the minimization search. Raising the maximum number of
function evaluations (using the MAXEVAL option of the $ESTIMAON record) may

not be advisable.

T A gradient may reach zero at or near the final iteration; this is not an Bot& also that no gradient is com-
puted or printed for a parameter whose value is fixed, so if a gradientys aero, it is not for this reason.
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2.2. "DUE TO ROUNDING ERRORS (ERROR=134}'

This message will be accompanied in the intermediate output by a mesgageénie
NUMSIGDIG: .... which gives the approximate number of significant digits obtained in each

of the parameters being estimated. At least one such number will be less than the number
requested.

The number of significant digits obtained should k&m@ned. Ifit is at least 2, and the
gradient vector appears stable throughout the lasttérations, a satisfactory minimum
may well hae bkeen obtained (It may be desirable to re-run the problem with the print
interval for iteration summarization set to 1 (PRINT=1 in the $ESTIMATION record) so
that the progress made aesy iteration can bexamined.) Thdinal parameter estimates
should be examined, and if thappear reasonable, thenight be accepted. Although the
user may hee requested more than 2 significant digits, the data may only support about 2
digits, given the precision of the arithmetic being usd} examining the gradients care-
fully, it is often possible to obtain further information about which parameter estimates
are less-well determined.

Even though the final parameter estimates may be adequate, it is unlikely that the mini-
mum is sufficiently well-determined to allothe Cavariance Step to run successfuléy

least with the number of significant figures requested in the EstimationBtefestima-

tion Step may need to be rerun, requesting only 2 significant figuresyddllby the
Covariance Step.

If the number of significant digits is less than 2 (@nenegdive), then the final estimates
should not be trusted. The problem may be model misspecification or insufficient data.

Model misspecification is a very general problenoiving some mismatch between the
model and the data. This can result in particularly laajaes of the objeaté function

or slav corvergence of the minimization search. Sometimes the modekiparameter-

ized. Thismeans that the model has more parameters than can be well-enough estimated
from the data (e.g., a biexponential model is fit to monoexponential data). When model
misspecification occurs due toep-parameterization, then the Estimation Step will usu-

ally proceed smoothjyut terminate with fewer than 2 significant digits. It is best to start
with simple models (see Chapter 11).

A related problem arises when avadance element, e.gQq, (or Z;,), is being esti-
mated. Ifthe ID (or L2 data item) is not used correcitymay appear as though the
covariance does not affect objei function values, and then this parameter will not be
well estimated. In other words, it may appear as though the modedrfsamameterized
due to the inclusion of this paramet&ee Chapter 12, Section 4.2.

3. Abnormal Termination of the Covariance Step

It is possible for the Estimation Step to terminate successtuity yet the Ceariance
Step generates an error message. Error messages fromvélrai@e Step are printed
immediately after line 46 of Figure 10.5. The messages are listed in Users Guide I.

When a message arises, often it is:

R MATRI X ALGORI THM CALLY NON- PCSI TI VE- SEM DEFI NI TE
BUT NONSI NGULAR
COVARI ANCE STEP ABORTED

In order for the minimization routine to terminate successfilllyeeds to determine that
the final gradient vector is didiently small, which is a necessary condition for a mini-
mum to hae been achieed. This condition, haever, is ot suficient. A sufficient
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condition, that the R matrix be pos#i cefinite (and therefore, that the apparent mini-
mum not be a saddle point) is only chedkn the Ceariance Step. The message means
that the sufcient condition appears not to be satisfied. The final estimate is, therefore, in
doubt.

Sometimes the message is:

R MATRI X ALGORI THM CALLY SI NGULAR
COVARI ANCE STEP UNOBTAI NABLE
S MATRI X ALGORI THM CALLY SI NGULAR

This arises when there exists a parameter whose values do not acfaeatlyhaf predic-
tions and whose gradient in the intermediate outputiayal 0.

In general, successful completion of thev@@mnce Step requires a better defined mini-
mum than does the successful completion of the Estimation Step.

4. MiscellaneousProblems

This section discusses avfample errors which preent NONMEM-PREDPP from run-
ning successfully.

4.1. Proportional Error Model

A common error is to use the proportional error model while some predicted values for
actual observations are zero or close to z@for example, if the first dose is an infusion
and there is a "baseline" observation at the start of the infusion, the predietedllde

zero.)

With individual data this will lead to an error message similar to theafivitp (the indi-
vidual number may be different from 1):

PROGRAM TERMINATED BY OBJ, ERROR IN ELS
WITH INDIVIDU AL 1 (IN INDIVIDUAL RECORD ORDERING)
VAR-COV OF DATA FROM INDIVIDUAL RECORD ESTIMATED TO BE SINGULAR

With population data this will lead to an error message similar to the following (the indi-
vidual and record numbers may be different than 1):

PROGRAM TERMINATED BY OBJ, ERROR IN CELS
WITH INDIVIDU AL 1 (IN INDIVIDUAL RECORD ORDERING)
INTRAINDIVIDUAL VARIANCE OF D ATA FROM OBS RECORDL1 ESTIMATED TO BE 0

4.2. Errors in the Pharmacokinetic Model

When using a rve model, a run should done in which the Estimation Step is not run, and
a <atterplot of PRED vs YD with unit slope line is produced, t@nfy that the model

and the initial parameter estimates are reasondiile much harder to diagnose errors in

the model or the initial estimates after the Estimation Stigp fMale sure that the initial

value of the objectie function is not gcessvely large, and that the unit slope line sls

on the plot: scaling errors can easily go undetected! E.g., if the units are incorrect at
some point in the model (L vs ml), the predictions may be wrong lagtarfof 1000.
Similarly, if no scale was specified for the compartment being observed, the predictions
for the observations are compartment amounts rather than concentrations. In both cases,
the shape of the PRED vs/[plot may appear lineabut the axes may be labeled quite
differently. When observations from twdifferent compartments are present in the data
(e.g.,C, andC,), some of the observations may be scaled incorre€tijs is discussed
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in Chapter 6, Section 9, and Chapter 7, Section 4.3.3.
5. Errors with PREDPP

5.1. Error Messages from a TRANS Routine

TRANS routines can produce error messages. Here is one from TRANS2:
ERROR IN TRANS2 ROUTINE: V IS ZERO
Appendix 2 shows that TRANS2 normally compukesCL/ V. The routine checks that
V is not zero, and upon finding that it is, it prints the inforratiressage, and terminates
the run (thusaiding a machine "division by zero" interrupt by the operating system).
This error usually occurs with the initial parameter estimakeg., suppose the refnt
$PK statement is:

V=THETA( 1) +WI'* THETA( 2)

For some values o8,, 6,, and WT, a value of zero is being computed for Yhe initial
estimates 08, andd, should be che@d. Thenterceptd,; might have been fixed to zero,
in which case then, the values of WT should also be eldeck WT is recorded only on
the first @ent record of each indidual’s data, careful coding is required to insure that a
value of zero is not used when the $PK record/@uated with subsequentent records.

5.2. Error Messages from AINVAN Routines

A similar error message can be generated in PRER&P

PK PARAMETER FOR OBSEWATION COMPARTMENT'S SCALE IS ZERO

Some scale parameter is modeled in suclwaag to produce a zerédgain, the code for
that scale parameteand the initial estimates for th#s used therein, should be check
Perhaps the scale parameter is being set equal dtumer parameteiand as described
abore, the volume parameter is being set to zefdhen TRANSL1 is used, theoume
parameter is neither recognized nor checked.

5.3. Numericdifficulties in PREDPP

Numeric difficulties can occur with linear pharmacokinetic models (e.gvAMNIL-4) in
the process of computing certaixpenentials. Thgcan occur from an error in the units
of either a rate constant and/or the TIME data itefifsey can also occur from inordi-
nately large values for a rate constant which arise during the minimization sé&aish.
might be &oided by placing appropriate constraintsém

They can also occur when the system is advanoesl an excessvely long period of

time. Thiscan happen within an individual record, when the individual had a course of
drug treatment, folwed by a wash-out period, followed by another course of drug treat-
ment. Thefirst dose record of treatment courses other than the first shorddEED

data item equal to 4 (reset-dose) rather than 1 (doseyoith @omputing &cessvely

small compartment amounts (see Chapter 6, Section 7.3), and to reduce computational
cost.

Difficulties can occur in the process of computing predictions with/ANI? and
ADVAN4 when walues of KA and K arise during the minimization search that ang v
close to one anotheiThe models encoded into the BN routines assume that KA and

K havefairly distinct values, and the formulas for the predictiongehie term KA-K in

the denominatorlf, for example, the typicalalues of K and KA are associated with

and 6,, respectiely, then one might try reparameterizing. The typical values of K and
KA-K can be associated wi# and6,, so hatK = 8; andKA =K +6,. A lower bound
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of zero should be placed &nt.

A similar situation occurs with TRANS3, where VSS-V occurs in the denominator of the
expression for K21. As ab®, reparameterization and a constraint on an elemest of
may help.

T This technique also prents a "flip-flop" from occurring. (In the original parameterization, the final estimates
of 8, andé, can be the final estimates of the typical values of KA and K, resggti
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ADVAN Compartments Basiand additional PK parameters
ADVAN1 1= Central K Rate constant of elimination
2 = Qutput S1 Scale for central compartment
S2 Scaldor output compartment
F1 Bioavailability for central compartment
FO OutputFraction
ADVAN2 1= Depot KA Absorption rate constant
2 = Central K Rate constant of elimination
3 = Qutput S1 Scale for depot compartment
S2 Scaldor central compartment
S3 Scaldor output compartment
F1 Bioavailability for depot compartment
F2 Bioavailability for central compartment
FO OutputFraction
ADVANS3 1= Central K Rate constant of elimination
2 = Peripheral K12 Rate constant from central to peripheral
3 = Qutput K21 Rate constant from peripheral to central
S1 Scaldor central compartment
S2 Scaldor peripheral compartment
S3 Scaldor output compartment
F1 Bioavailability for central compartment
F2 Bioavailability for peripheral compartment
FO OutputFraction
ADVAN4 1= Depot KA Absorption rate constant
2 = Central K Rate constant of elimination
3 = Peripheral K23 Rate constant from central to peripheral
4 = Qutput K32 Rate constant from peripheral to central
S1 Scaldor depot compartment
S2 Scaldor central compartment
S3 Scaldor peripheral compartment
S4 Scaldor output compartment
F1 Bioavailability for depot compartment
F2 Bioavailability for central compartment
F3 Bioavailability for peripheral compartment
FO OutputFraction
ADVAN10 1= Central VM Maximum Rate
2 = Qutput KM Michaelis Constant
S1 Scaldor central compartment
S2 Scaldor output compartment
F1 Bioavailability for central compartment
FO OutputFraction
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ADVAN Compartments Basiand additional PK parameters
ADVAN11 1= Central K Rate constant of elimination

2 = Peripheral 1 K12 Rateconstant from central to periph. 1

3 = Peripheral 2 K21 Rateconstant from periph. 1 to central

4 = Qutput K13 Rate constant from central to periph. 2
K31 Rateconstant from periph. 2 to central
S1 Scaldor central compartment
S2 Scaldor peripheral 1 compartment
S3 Scaldor peripheral 2 compartment
S4 Scaldor output compartment
F1 Bioavailability for central compartment
F2 Bioavailability for periph. 1 compartment
F3 Bioavailability for periph. 2 compartment
FO OutputFraction

ADVAN12 1= Depot KA Absorption rate constant

2 = Central K Rate constant of elimination

3 = Peripheral 1 K23 Rateconstant from central to periph. 1

4 = Peripheral 2 K32 Rateconstant from periph. 1 to central

5 = Qutput K24 Rate constant from central to periph. 2
K42 Rateconstant from periph. 2 to central
S1 Scaldor depot compartment
S2 Scaldor central compartment
S3 Scaldor peripheral 1 compartment
S4 Scaldor peripheral 2 compartment
S5 Scaldor output compartment
F1 Bioavailability for depot compartment
F2 Bioavailability for central compartment
F3 Bioavailability for periph. 1 compartment
F4 Bioavailability for periph. 2 compartment
FO OutputFraction
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Alternatve Pa@aameters

Reparameterizatibimes

ADVAN1 TRANS2
CL Clearance K=CL/V
V Volume of distribution
ADVAN2 TRANS2
CL Clearance K=CL/V
\Y Volume of distribution KA=KA
KA Absorption rate
ADVAN3 TRANS3
CL Clearance K=CL/V
Vv Central Volume K12=Q/V
Q Intercompartmental clearance K21=Q/(VSS-V)
VSS Volume of distribution at steady state
ADVAN3 TRANS4
CL Clearance K=CL/V1
V1 Central volume K12=Q/V1
Q Intercompartmental clearance K21=Q/Vv2
V2 Peripheral volume
ADVAN3 TRANSS5
AOB A/B K21=(AOB*BETA+ALPHA)/(AOB+1)
ALPHA alpha K=ALPHA*BETA/K21
BETA beta K12=ALPHA+BETA-K21-K
ADVAN3 TRANSG6
ALPHA alpha K=ALPHA*BETA/K21
BETA beta K12=ALPHA+BETA-K21-K
K21 Rate constant from periph. to central K21=K21
ADVAN4  TRANS3
CL Clearance K=CL/V
Vv Central Volume K23=Q/V
Q Intercompartmental clearance K32=Q/(VSS-V)
VSS Volume of distribution at steady state KA=KA
KA Absorption rate
ADVAN4 TRANS4
CL Clearance K=CL/V2
V2 Central volume K23=Q/V2
Q Intercompartmental clearance K32=Q/V3
V3 Peripheral volume KA=KA
KA Absorption rate
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ADVAN4 TRANSS5
AOB A/B K32=(AOB*BETA+ALPHA)/(AOB+1)
ALPHA alpha K=ALPHA*BETA/K32
BETA beta K23=ALPHA+BETA-K32-K
KA Absorption rate KA=KA
ADVAN4 TRANSG6
ALPHA alpha K=ALPHA*BETA/K32
BETA beta K23=ALPHA+BETA-K32-K
K32 Rate constant from periph. to central | K32=K32
KA Absorption rate KA=KA
ADVAN1l1 TRANS4
CL Clearance K=CL/V1
V1 Central volume K12=Q2/V1
Q2 Intercompartmental clearance 1 K21=Q2/\V2
V2 Peripheral volume 1 K13=Q3/V1
Q3 Intercompartmental clearance 2 K31=Q3/V3
V3 Peripheral volume 2 V3=Vv3
ADVAN1l1 TRANS6
ALPHA alpha K=ALPHA*BETA*GAMMA/(K21*K31)
BETA beta V1=ALPHA+BETA+GAMMA
GAMMA gamma V2=ALPHA*BETA+ALPHA*GAMMA
K21 Rate constant from periph. 1 to central +BETA*GAMMA
K31 Rate constant from periph. 2 to central K13=(V2+K31*K31-K31*V1-K*K21)/(K21-K31)
K12=V1-K-K13-K21-K31
ADVAN12 TRANS4
CL Clearance K=CL/V2
V2 Central volume K23=Q3/V2
Q3 Intercompartmental clearance 1 K32=Q3/V3
V3 Peripheral volume 1 K24=Q4/v2
Q4 Intercompartmental clearance 2 K42=Q4/V4
V4 Peripheral volume 2 V4=V4
KA Absorption rate KA=KA
ADVAN12 TRANS6
ALPHA alpha K=ALPHA*BETA*GAMMA/(K32*K42)
BETA beta V2=ALPHA+BETA+GAMMA
GAMMA gamma V3=ALPHA*BETA+ALPHA*GAMMA
K32 Rate constant from periph. 1 to central +BETA*GAMMA
K42 Rate constant from periph. 2 to central K24=(V3+K42*K42-K42*V2-K*K32)/(K32-K42)
K23=V2-K-K24-K32-K42
KA Absorption rate KA=KA
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The following is an alphabetic list of NM-TRAN control records.

See Guide VIII, On-line Help, or On-line HTML for the options and for more informat8®e Appendix 4
for the corresponding NONMEM control records (FCON).

$ABBREVI ATED
$AES
$AESINI' T
$ANNEAL

$BI ND

$CHAI N
$CONTR
$COVARI ANCE
$DATA
$DEFAULTS
$DES

$ERROR
$ESTI MATI ON
$ETAS

$1 NDEX

$I NFN

$1 NPUT
$LEVEL

$M X

$MODEL

$NVBFI
$NONPARAVETRI C
$OVEGA
$OVEGAP
$OVEGAPD
$SOM T

$PHI S

$PK

$PRED

$PRI OR
$PROBLEM
$SCATTER
$SI GVA

$SI GVAP

$SI GVAPD
$SI MULATI ON
$SI ZES
$SUBRQUTI NES
$SUPER
$TABLE
$THETA
$THETAI
$THETAP
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$THETAPV |
$THETAR |
$TOL

$WARNI NG
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The following is a list of NONMEM control records and options. These are generated by NM-TRAN in a file
called FCON. Theare listed in the order that theppear in FCON.

Records markd with * may be continued. The record name, e.g., "INDX", is not repeated on continua-
tion(s). Ary time a field may contain 0, it may contain blanks instead, which are readGmn6tants SD,

PD, LVR are from SIZES. Constants INNTBIG, INTSMALL indicate the largest floating point number

the largest integer value, and smallest integer value, resggcthat can be represented in the compater’
architecture. (Irsome cases, e.g., BOOTSTRAP option of SIMULATION, it means agdntef up to 11
digits).

FI LE record (FILE) (A4, 4X, A72)
Field No. Value Function
1 NULL no file stream
72 chars name of file stream
SUPER record ( SUPR) (A4, 4X,14,18,14)
Field No. Value Function
1 1-9999 Numbepf problems in the superproblem
2 2-9999 Numbepf iterations of the superproblem.
3 0 Input information will be printed for first problem only
1 Input information will be printed for all problems
PROBLEM record ( PROB) (A4, 4X, A72)
Field No. Value Function
1 72 chars probleniheading
DATA record ( DATA) (A4, 4X, 181 4)
Field No. Value Function
1 Oor blank data set is embedded in the control stream
1 data set is in a separate file
-1 re-usethe data set from the previous problem.
2 Oor blank FORTRAN unit not to bewsund
1 FORTRAN unit to be reround
3 0 data set to be read to FINISH record or end of file
1-9999 noof data records (low-order digits)
4 1-PD no.of data items per data record
5 0 mot data checkout
1 data checkout only
6 0-9999 noof data records (high-order digits)

The no. of data records is Field 6 * 10000 + Field 3.
When Field 6 is 0 or blank, this is simply Field 3

7 0 Smulation NOREWIND from$SIMULATION record
1 Smulation REWIND from$SIMULATION record

8 0 NOSUPRESET
1 SUPRESET (default)
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| TEM record (1 TEM (A4, 4X, 181 4)
Field No. Value Function
1 0-PD index of ID data item
2 1-PD index of DV data item
3 O-PD ind of MDV data item
4 0-PD no.of data item indices in INDXS
5 0 o user-supplied labels.
1 user-supplied labels.
6 0 gandard labels PRED,RES and WRES used.
1 nonstandard labels used.
7 O-PD inde of L2 data item
8 0-PD index of first data item specified in CONTR record
9 0-PD index of second data item specified in CONTR record
10 0-PD index of third data item specified in CONTR record
11 0-50 no. of user-supplied labels for tables, scatters
12 0-PD index of MRG__ data item
13 0-PD index of RAW _ data item
14 0-PD no. of items on OMIT record
15 0-PD index of RPT_ data item
I NDEX record (1 NDX) * (A4, 4X, 181 4)
Field No. Value Function
1 1-PD 1stelement of INDXS
2 1-PD 2ndelement of INDXS
etc.
XVID record (XVI D (A4, 4X, 181 4)
Field No. Value Function
1 0-PD XVID1
2 0-PD XVID2
3 0-PD XVID3
4 0-PD XVID4
5 0-PD XVID5
MSDT record ( MSDT) (A4, 4X, 20( 1PE22. 14ES3, 1X)
Field No. Value Function
1 -INF-INF MISDAT (1)
2 -INF-INF MISDAT (2)
20 -INF-INF MISDAT (20)
LABEL record (LABL) * (A4, X2, A74)

The LABL record contains a comma-delimited list of labels, beginning at position 6, with an unlimited num-
ber of continuation records. Each label is right-adjusted in a field of SD characters. By default (i.e., with
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SD=20 in SIZES), there are 3 labels per line. The order is as follows:

Field No. Function
1: labelof 1st data item
2: labelof 2nd data item
etc.
m: labelof last data item
m+1: labelfor PRED (if ITEM(6)=1)
m+2: labelfor RES (if ITEM(6)=1)
m+3: labelfor WRES (if ITEM(6)=1)
m+p+1: labefor 1st variable in NMPRD4
m+p+2: labefor 2nd variable in NMPRDA4t , etc.
m+p+q: labefor last displayed variable in NMPRDA4
Note

m=no. of data items per data recAdA (4)

p=3 if non-standard labels for PRED, RES, WRES (ITEM(6)=1)
p=0 otherwise

g=no. of user supplied labels for tables, scatters=ITEM(11)

T Blank if this variable is not displayed

Addi ti onal LABEL record (LBWL) * (A4, X2, A74)

The LBW1 record contains a comma-delimited list of labels for the additional diagnostic items, starting at
position 6 in each line. The format is similar to that of the LABL record, but leading spaces are oftigted.
default labels are as follows:

I VRS, | PRD, | RS

NPRED, NRES, NVRES

NI WRES, NI PRED, NI RES
CPRED, CRES, CV\RES

Cl VRES, ClI PRED, Cl RES
PREDI , RESI , WRESI

| VRESI , | PREDI , | RESI
CPREDI , CRESI , CWRESI
CI WRESI , Cl PREDI , Cl RESI
EPRED, ERES, EVWRES

El V\RES, El PRED, EI RES
NPDE, ECWRES, NPD

oBJI
LABEL record for THETA (LTHT) * (A4, X4, A72)
LABEL record for ETA (LETA) * (A4, X4, AT2)
LABEL record for EPS (LEPS) * (A4, X4, A72)

LABEL record for RESI DUAL LABEL (LRES) (A4, X1, A5)

Symbolic names for elements of THETA, ETA, and EPS (res@badti for NONMEM to use in the report
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file (label substitutioh If label substitution is not requested, thEHT, LETA, and LEPS records are
optional and (if present) shouldwealanks starting in position 9.

Example: Suppose the NM-TRAN control file contains
$ABBR REPLACE THETA(KA, K, CL) =THETA(1 TO 3)
$ABBR REPLACE ETA(CL)=ETA(3), ETA(V) =ETA(5)
Then the generated LABEL records are:

LTHT 1=THETA( KA) , 2=THETA( K) , 3=THETA( CL)
LETA 3=ETA(CL), 5=ETA(V)

LEPS
OMT record (OMT)* (A4, 4X 18l14)
Field No. Value Function
1 4chars noof 1st data item omitted from template matching
2 4chars noof 2nd data item omitted from template matching
etc.
FORMAT record (FORM (A4, 4X, A72/ A80)
Field No. Value Function
1 80 chars formaspecification
(field begins on first continuation record)
FIND record ( FI ND) (A4, 4X, 181 4)
Field No. Value Function
1 0
2 0
3 0 No Model specification file (MSFI)
1 A Model specification file (MSFI) is to be read.
4 0 estimate on file not to be rescaled.
1 estimate on file to be rescaled.
5 0 No ONLYREAD option
1 ONLYREAD option
6 0 MSFTEST option (default)
1 NOMSFTEST option
7 0 MSFI not nev (default)
1 MSFI new
MSF Versi on Record (MSFV) (A4, X4, A72)

Right after the FIND record for MSFI, if itxests, the MSFV (NM74) contains the MSF version, starting at
position 9. This will be blank if not specified explicitliExample:

MSFVY  7.2.0

I'NI TIAL VALUES record for ETA (ETA)* (A4,14,(conma-delimted list))

-182-



Appendix 4 - NONMEM Control Records (FCON)"

I NI TI AL VALUES record for PHI (PH)* (A4,14,(conma-delimted list))

With FILE specified:

Line FieldNo. Value Function
1 1 0 indicates file name is\gn.
1 2 Hle name starting in position 9 (through 88 max)

With no FILE specified:

Line FieldNo. Value Function
1 1 LLVR numberof initial values for etas or phis.
Listed starting at position 9 of each line.

Initial STRUCTURE record (STRO (A4, 4X, 181 4)

Field No. Value Function

1 0-999 lengthof THETA

2 0-999 dimensiorof OMEGA

3 0-999 dimensiorf SIGMA

4 blank

5 blank

6 Oor blank OMEGA constrained with a block set partition
1 OMEGA constrained to be diagonal

7 Oor blank only if field 6 has value 1
1-999 numbeof block sets for OMEGA

If the dimension of SIGMA is 0, the following fields may be ignored.

8 Oor blank SIGMA constrained with a block set partition
1 S GMA constrained to be diagonal
9 Oor blank SIGMA only if field 8 has value 1
1-999 numbeof block sets for SIGMA
10 blank
11 blank
12 Oor blank default THEA boundary test
1 No default THETA boundary test
13 Oor blank default OMEGA boundary test
1 No default OMEGA boundary test
14 Oor blank default SIGMA boundary test
1 No default SIGMA boundary test
STRUCTURE record for OVEGA (STRO) * (A4, 4X, 181 4)
STRUCTURE record for SIGVA (STRO) * (A4, 4X, 181 4)
Field No. Value Function
1 1-999 sizeof 1st. block set
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2 1-999
3 1-999
4 1-999

THETA CONSTRAI NT record

Field No. Value

1 Oor blank
1

2 Oor blank
1-9999

3 Oor blank
1
2

THETA record

Field No. Value
1
2

etc.

LOVER BOUND record

Field No. Value
1
2

etc.

UPPER BOUND r ecord

Field No. Value
1
2

etc.

DI AGONAL record
for OMEGA or SIGMA

Field No. Value
Pos. 1 0
1
Pos. 2 blank
1

Appendix 4 - NONMEM Control Records (FCON)"

dimensiorf blocks in 1st. block set
sizeof 2nd. block set

dimensiorof blocks in 2nd. block set
etc.

( THCN) (A4, 4X, 181 4)

Function

THE™R unconstrained

THETA constrained

use default size of initial. est. search

noof points to be examined during initial est. search.
ABOR if PRED sets error return code to 1 during search
NOABORT - Ignore PRED error return code during search
NOABORTFIRST - Same,ven with first values.

(THTA) * (A4, 4X, (comma-delimted list))

Function

initial est. of6;

(blank if NONMEM is to obtain the inital est.)
initial est. off,

(blank if NONMEM is to obtain the inital est.)

(LOWR) * (A4, 4X, (comma-delimted list))

Function
lower bound forf;
lower bound forf9,

(UPPR) * (A4, 4X, (comma-delimted list))

Function
upper bound fof;
upper bound fof,

(DI AG) * (A4, 1X, A1, 1X, Al, (comma-delimted list))

Function

Diagonals Variance

Diagonals standard deviation (STANDARD)
Notfixed.

Fixed.

-184-



etc.

BLOCK SET record
for OMEGA or SIGMA

Field No. Value
Pos. 1 blank

Pos. 2 blank

etc.

SI MLUATI ON record

Field No. Value
1 Oor blank
1

Appendix 4 - NONMEM Control Records (FCON)"

NONMEM is to obtain the inital estimate(s).
initial est. of (1,1) element of matrix
initial est. of (2,2) element of matrix

(BLST) * (A4, 1X, A1, 1X, Al, (comma-delimted list))

Function

Diagonal&/ariance, Off-diagonals e@riance

Diagonals standard deviation, Off-diagonalsatmance (STANDARD)
Diagonals Variance, Off-diagonals correlation (CORRELATION)
Diagonals standard deviation, Off-diagonals correlation (STANDARD CORRELATION)
Cholesly format (CHOLESKY)

Notfixed.

Fixed.

NONMEM is to obtain the inital estimate(s).

initial est. of (1,1) element of matrix

initial est. of (1,2) element of matrix

use symmetric enumeration

(SI M) (A4,4%,12,13,12,113,512,113,16,16, 1X, AL6)

Function
Simulation Step implemented
Smulation Step not implemented

If the value is 1, the subsequent fields may be ignored.

2 1-10
3 0
1
4 0-9999
5 0
1
6 Oor blank
1
2
7 Oor blank
1
8 Oor blank
1
2
9 0
1
10 -1
0
1-INTBIG
11 0-PD
12 0-PD

no.of random sources (SORC records)

ea (eps) changes with each record

eta (eps) changes withwend.rec. (L2 rec) (NEW)

no.of subproblems

ompute objectie function and other steps

only the simulation step

no partial devétives from PRED needed

PRED should compute 1st. deafives REQUESTFIRST)
PRED should compute 2nd. degiives REQUESTSECOND)
simulated observation ¥ or F (PREDICTION)

smulated observation isS\D(NOPREDICTION)

Use inital ests. (TRUE=INITIAL)

with MSFI, use final ests. (TRUE=FINAL)

use values in THET ,PMEG_P SIGM_P set by the PRIOR routine (TRUE=PRIOR)
REPLACE

NOREPLACE

BOOTSTRAP using as mgrsubjects as are in the data set
No BOOTSTRAP (the default)

BOOTSTRAP using the gen number of subjects

STRAT data column number

STRATF data column number
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13 ALPHA RANMETHOD

ADDI TI ONAL RECORDS FOR SI M. (A4, 4X, 112, A

Record Function
SFIL PARAFPRINT (0-INTBIG),PARAFILE (line may accomodate up to 80 character file for total of 88 characters)
SOURCE record ( SORC) (A4, 4X, 2A12,1 4)
Field No. Value Function
1 -1-21474836447 firgeed
2 021474836447 secorsked
3 Oor blank random numbers are pseudo-normal (NORMAL)
1 random numbers are pseudo-uniform (UNIFORM)
2 random numbers are from a nonmlstrib (NONPARAMETRIC)
DEFAULT record (DFLT) (A4, 4X,14)
Field No. Value Function
1 -1-1 NOSUBoption of DERULT record
CHAI N record ( CHN)
Line Format FieldNo. \alue Function
1 (A4,4112,F12.5,112) 1 0-4 CTYPE
2 INTSMALL-INTBIG SEED
3 INTSMALL-INTBIG ISAMPLE
4 C-INTBIG NSAMPLE
5 0.0001-1.0 IACCEPT
6 C-INTBIG DF
2 (4X,4112,A12) 1 INTSMALL-INTBIG ISAMPEND
2 03 SELECT
3 03 NOTITLE(1,3),NOLABEL(2,3)
4 -1-INTBIG DFS
5 ALPHA RANMETHOD

ADDI TI ONAL RECORDS FOR CHAIN (A4, 4X, A)

Record Function

CFIL FILE (line may accomodate up to 80 character file for total of 88 characters)

CDLM FORMAT

ORDR ORDER

CHFL PARAFPRINT (112:0-INTBIG),PARAFILE (line may accomodate up to 80 character file for total of 88 character
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LEVEL record

Field No. Value Function
1 ALPHA Dataitem type

2 ALPHA level description

LEVEL rec.

Field No. Value Function

1 blank

Appendix 4 - NONMEM Control Records (FCON)"

(OLEV) * (A4, X4, A20, A52)

contination rec. (OLEV) * (A4, X4, X20, A52)

2 ALPHA level description (continues el description from previous record)

ANNEAL record

Field No.
1
2

Value
1-LVR
O-INF

ESTI MATI ON record

Field No.
1

If the value is 1, t

Field No.
2

Value
Oor blank
1

Value
0-9999

-1

1-8

Oor blank
n>0

Oor blank
1

Oor blank
1

Oor blank
1

Oor blank
1

Oor blank

(ANNL) (A4, X4, A6, AB)

Function
EtaNumber
StartingOmega \alue

(ESTM (A4, 4X, 181 4)

Function
Estimation Step implemented
Estimation Step not implemented

he subsequent fields may be ignored.

Function

maximummo. of function. eauations (low-order digits)
Reusdhe value from the previous run (with MSFI)
numberof significant figs. required in final est.

no summarization of iterations

e/ery nth iteration summarized

no second search (REPEAT)

second search (REPEAT) implemented

MSF not output

MSF output

First order (FO) method

Conditional methogMETHOD=COND)

No POSTHOC etas are to be estimated.

POSTHOC etas are to be estimated.

Etas are 0 for comp. of intraind. error (NOINTERACTION)
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10

11

12

13

14

15

16

17

18

ESTI MATI ON rec.

Field No.
1

BAYES ESTI MATI ON record

Line Format

1 (A4,4112,F12.5,112)

1

Oor blank
1

Oor blank
1

2

Oor blank
1

2

3

Oor blank
1

Oor blank
1

Oor blank
1

Oor blank
1

2

Oor blank
1-99

Oor blank
1

2

Value

Oor blank
0 or Hank
1

Oor blank
1

Oor blank.

1
0-9999

-1,0,100
1-15
-1,0,100
1-15

conti nuat

Appendix 4 - NONMEM Control Records (FCON)"

Nonzero etas for comp. of intraind. error INTERACTION

Do not use Laplacian method.

Laplacian method is to be used.

ABOR if PRED sets error return code to 1

NOABORT - Attempt theta-reogery when PRED error code 1.
NOHABORT - Attempt recwery even at first iteration

Faster method of compuation (NOSLOW)

Sower method of computation (SLOW)

Sower method of computation (SLOW=2); for Stieltjes

Fast analytical deviative method of compuation (FOCE only)
awg. cond. est. of etas unconstrained (NOCENTER)

avg. cond. est. of etas constrained close to 0. (CENTER)
First-order model not used (NOFO)

Frst-order model used with METHOD=1 CENTERING (FO)
Second eta-derivs. computed by PRED (NONUMERICAL)
Second eta-derivs. for Laplacian to be obtained numerically.
Y or F (with user-supplied code) is a prediction.

Y or Fis a LIKELIHOOD.

Y or Fis a -2LOGLIKELIHOOD

Not the Hybrid method

no.of etas fixed to zero by ZERrecs. (Hybrid method)

Not the Stieltjes method.

Sieltjes method; no GRID option.

Stieltjes method; GRID was specified.

ion rec. ( ) (A4, 4X, 181 4)

Function

Required if estimation step is omitted, otherwise:
TheREPEAT?2 option is not coded; same as NOREPEAT2
REPEAT?2 (with Stieltjes)

No ETABARCHECK.

ETABARCHECK option is coded.

Sum contrikto dbj. func. in data set order.

Sort contrib to abj. func. prior to sum (SORT)
maximummo. of function galuations (high-order digits)
The no. of func. els. is Field 4 * 10000 + low-order
When Field 4 is 0 or blank, this is simply low-order

SIGLdefault
SIGLvalue
SIGLOdefault
SIGLOvalue
( BEST)
FieldNo. Value Function
1 -1-16 BAY ES METHOD

<=0 FO/FOCE/Laplace
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10 DIRECT
11 BAYES
12 ITS
13 SAEM
14 IMP
15 IMPMAP
16 CHAIN
2 1-INTBIG PSAMPLE_M1
3 -1-INTBIG PSAMPLE_M2
4 OINTBIG PSAMPLE_M3
5 0.0001-1.0 RCCEPT
6 1-INTBIG OSAMPLE_M1
(X4,2112,F12.5,3112) 1 -1-INTBIG OSAMPLE_M2
2 OINTBIG OSAMPLE_M3
3 0.0001-1.0 @CCEPT
4 1-INTBIG ISAMPLE/ICHAINS (non-CHAIN)
INTSMALL-INTBIG ISAMPLE (CHAIN)
5 OINTBIG ISAMPLE_M1
6 OINTBIG ISAMPLE_M2
(X4,112,F12.5,4112) 1 0-INTBIG ISAMPLE_M3
2 0.0-1.0 IACCEPT
3 OINTBIG NSAMPLE/NITER
4 OINTBIG NBURN
5 OINTBIG DF
6 03 EONLY
(X4,5112,F12.5) 1 INTSMALL-INTBIG SEED
2 01 NOPRIOR
3 03 NOTITLE(1,3),NOLABEL(2,3)
4 04 CTYPE
5 1-INTBIG CITER/CNSAMP
6 0.0000001,1 CALPHA
(X4,4112,2E12.5) 1 0-INTBIG CINTERAL
2 OINTBIG MAPITER
3 -1-INTBIG MAPINTER
4 OINTBIG ISAMPLE_M1A
5 O-INF ISCALE_MIN
6 O-INF ISCALE_MAX
(X4,5112,A12) 1 0-INTBIG CONSTRAIN
2 015 ATOL
3 0-2 FNLETA
4 0-2 OPTMAP
5 03 ETADER
6 ALPHA RANMETHOD
(X4,5112,E12.5) 1 0-INTBIG MCETA
2 0-2 NONINFETA
3 INTSMALL-INTBIG ISAMPEND (CHAIN)
4 01 ETASTYPE
5 01 AUTO
6 0.0-1000 STDOBJ
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10

11

12

13

14

15

16

(X4,112,2E12.5,112,112,16)

(4X,16,16,16,E12.5,E15.8,16)

(4X,4(112),2(E15.8))

(4X,6(E15.8))

(4X,3(E15.8))

(4X,A12,A12,14,14,14,14,14,14)

(4X,112,112,112,3(E15.8))

(4X,112,112,112,E15.8,E15.8,14)

(4X,112,112,112,112,112)

o O WN

NP OO DM WNEOODMWNEOONOOGAMWOWNMEPWOWNMPEPOOORMWDNMEOODMWNEOOOGDRMOWN
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0-3

O-INF
O-INF
-1-INTBIG
03

01

0-1

-1-1

02
0.0-1.0
-10.0-INF
O-INTBIG
-1-1

01
-1-INTBIG
O-INTBIG
0.0001-INF
0.0001-INF
0.0-INF
0.0-INF
0.0-1.0
0.0-1.0
0.0-INF
0.0-INF
0.0-INF
-INF-INF
-INF-INF
ALPHA
ALPHA
01

01

02

0-10

01

01
O-INTBIG
O-INTBIG
01

O-INF
-99-INF
O-INF

01

01
-1-INTBIG
0.0-INF
0.0-INF
O-INTBIG
01
O-INTBIG
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NUMDER
PSCALE_MIN
PSCALE_MAX
DFS
SELECT
NOCO/
DERCONT
NOSUB
MAPCOV
IACCEPTL
GRDQ
ISAMPLE_M1B
MASSRESET

BAYES_METHOD (0:BR\YES, 1:NUTS)

MADAPT
IMAD APT (NOT USED)
KAPR

IKAPRA

NUTS_GAMMA
IGAMMA (NOT USED)
NUTS_DEIA
IDELTA (NOT USED)
OLKJDF

SLKJDF

TTDF

OVARF

SVARF
NUTS_TYPE(NOT USED)
NUTS_MASS
NUTS_TRANSFORM
INUTS_TRANSFORMNOT USED)
NUTS_ERRAM
WISHTYPE(NOT USED)
NUTS_ORRAM
NUTS_SRRAM
NUTS_STEPITER
NUTS_STEPINTER
NUTS_TEST
NUTS_INIT

NUTS_BASE
NUTS_TERM
KNUTHSUMOFF
LEVWT
NUTS_MAXDEPTH
NUTS_CHOLBND(NOT USED)
NUTS_REG
SADDLE_RESET
SADDLE_HESS

THIN
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3 01 ETASAMPLES
4 01 PHITYPE
5 04 LEVSWITCH (NOT USED)

ADDI TI ONAL RECORDS FOR ESTI MATI ON (A4, 4X, A)

Record Function
BFIL FILE (name be up to 256 characters)
BDLM FORMAT/DELIM
BMUM MUM (may go beyond 80 characters)
BGRD GRD(may go beyond 80 characters)
ORDR ORDER
PFIL PARAFPRINT (112:0-INTBIG),PARAFILE (name be up to 256 characters)
FFIL FRARAFPRINT (112:0-INTBIG),FPARAFILE (name be up to 256 characters)
ZERO record (ZERO) * (A4, 4X, 181 4)
Field No. Value Function
1 0 oonditional estimate for eta(1)
1 eta(l) is fixed to 0 (HYBRID method)
2 0 onditional estimate for eta(2)
1 ea(2) is fixed to 0 (HYBRID method)
etc.
GRID record (GRI D) (A4, 4X, 9A8)
Field No. Value Function
1 nr as pecified in GRID=(nr,ns,r0,rl)
2 ns & yecified in GRID=(nr,ns,r0,r1)
3 ro & yecified in GRID=(nr,ns,r0,rl)
4 rl & yecified in GRID=(nr,ns,r0,rl)
NONPARAMETRI C r ecor d ( NONP) (A4,4X,614,112,16,16)
Field No. Value Function
1 Oor blank Nonparametric step implemented conditionally
1 Nonparametric step implemented unconditionally
2 Oor blank use nonparametric estimate from input MSF
1 recompute nonparametric estimate
3 Oor blank obtain marginal cumulagés
1 compute conditional nonpaatas (CNPE ETAS)
4 Oor blank no model specification file is output
1 amodel specification file is output
5 0,1 1=BOO'STRAP
6 03 EXFAND(1,3),NPSUPPE(2,4)
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7 O-INTBIG NPSUPP(Eyaue
8 1-INTBIG STRAT data column number
9 1-INTBIG STRATF data column number

ADDI TI ONAL RECORD FOR NONPARAMETRI C (A4, 4X, 112, A)

Record Function
NFIL PARAFPRINT (0-INTBIG), PARAFILE (name be up to 256 characters)
COVARI ANCE record (CovR) (A4, 4X, 181 4)
Field No. Value Function
1 Oor blank Cwariance Step conditionally implemented
1 Covariance Step unconditionally implemented
2 Covariance Step not implemented
2 Oor blank coariance matrix set to (Rwerse) S (R inerse)
1 covariance matrix set to Rvarse
2 covariance matrix set to Sverse
3 Oor blank neither R nor S printed.
1 R matrix printed
2 Smatrix printed
3 both R and S printed
4 Oor blank eigewalues not printed
1 dgervalues printed.
5 Oor blank default computation.
1 Soecial computation with a recuwwsi FRED subroutine.
6 Oor blank Print Ceariance Step arrays in normal format.
1 Print Covariance Step arrays in compressed format.
7 1
8 Oor blank
9 Oor blank Normal method of computation
1 Sower method of computation (SLOW)
3 Fast analytical devitive method of compuation (FOCE only)
Addi ti onal COVARI ANCE record (CovT) (A4,4X,614,112,16,16,16,16,16,16,12,12, A10)
Field No. Value Function
1 -1,0,100 SIGLdefault
1-15 SIGLvalue
2 1-15 TOL
3 -1,0,100 SIGLOdefault
1-15 SIGLOvaue
4 1-15 ATOL
5 01 1=NOFC¥
6 01 1=CO/RESUME
7 C-INTBIG SIRSAMPLEvaue
8 C-INTBIG SIRNITERvaue
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9 01 SIRCENTERvalue

10 0-INTBIG PRECOND value

11 0-INTBIG PFCOND value

12 0-2 PRETYPE value

13 0-1 FPOSDEF value

14 0-1 1:THBND=0, 0:THBND=1

15 0-1 1:SIRTHBND=0, 0:SIRTHBND=1
16 ALPHA PRECONDS value

Second |ine of COVT Record (CcovT) (8X,18,14,14,E12.5,E12.5, E12. 5, Al16)
Field No. Value Function

1 O-INTBIG SIRPRINTvalue

2 01 CHOLROFF value

3 01 KNUTHSUMOFFvaue

4 0.0-INF SIRDF

5 0.0-1.0 IACCEPT

6 0.0-1.0 IACCEPTL

7 ALPHA RANMETHOD

ADDI TI ONAL RECORDS FOR COVARI ANCE (8X,112, A)

Record Function
CRAR PARAFPRINT (0-INTBIG), PARAFILE (name be up to 256 characters)
Initial TABLE record (TABL) (A4, 4X, 181 4)
Field No. Value Function
1 Oor blank Table Step conditionally implemented
1 Table Step unconditionally implemented
2 Table Step not implemented

If the value is 2, the next field may be ignored, and there should not appear
ary individual TABLE records.

2 1-10 numbef tables

ADDI TI ONAL RECORDS FOR TABLE (A4, 4X, 112, A)

Record Function
PRAR PARAFPRINT (0-INTBIG),PARAFILE (name be up to 256 characters)
I ndi vi dual TABLE record ( TABL) (A4, 1X, 3A1,14,9(16,12)
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Field No. Value Function
Pos. 1 blank nooption record.
1 an option record follows.
(only if at least one item on the option rec. is non-blank)
1 O-PDT numberof selected data item types
2 1-9999 inde of 1st selected data item type
3 08 sortcode for data items of 1st selected type
-1 Exclude-byitem marked by -1
4 1-9999 inde of 2nd selected data item type
5 08 sortcode for data items of 2nd selected type
etc.
I ndi vi dual TABLE rec. contin. rec. ( )* (A4, 1X, 3A1,14,9(16,12)
(as needed)
Field No. Value Function
1 1-999 inde of 9th. selected data item type
2 0
3 1999 inde of 10th. selected data item type
4 0
etc.
I ndi vi dual TABLE record option rec.( Y(A4,4X, 514,112,112, A12,12,12,12,12,1X A
Field No. Value Function
1 blank E\ery data record appears in the table.
1 Only the first data rec. from each ind. rec. (FIRSTONLY)
2 Only the last data rec. from each ind. rec. (LASTONLY)
3 Only the first and last data rec. from each ind. rec. (FIRSTLASTONLY)
2 1 Wth TABLE file, no printed table (NOPRINT)
2 With TABLE file, printed table appears in the NONMEM output.
3 0 cefault
1 ONEHEADER
4 NOTITLE
8 NOLABEL
5 ONEHEADER NOTITLE
9 ONEHEADER NOLABEL
14 NOHEADER(same as NOTITLE NOLABEL)
4 blank TheTABLE file is opened and is positioned at the start.
1 The TABLE file is positioned at the end (FBRRRD)
5 blank DV, PRED, RES, WRES appear automatically
1 DV, PRED, RES, WRES do not appear unless listed (NOAPPEND)
6 INTSMALL-INTBIG  SEED
7 3INTBIG ESAMPLE
8 ALPHA RANMETHOD
9 01 WRESCHOL
10 -1-1 NOSUB
11 0 No SE to PRED item
1 SE to FRED item

Appendix 4 - NONMEM Control Records (FCON)"
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12 0-1 NPDTYPE
13 ALPHA FORMAT (May be up to 20 characters, so total line length may be up to 89 characters)
Addi ti onal TABLE records (A4, 4X, A
Record Function
FRML LFORMAT (record may be longer than 80 characters)
FRMR RFORMA (record may be longer than 80 characters)
FETA FIXEDETAS number list (record may be longer than 80 characters)
Initial SCATTERPLOT record ( SCAT) (A4, 4X, 181 4)
Field No. Value Function
1 Oor blank Scatterplot Step conditionally implemented
1 Scatterplot Step unconditionally implemented
2 Scatterplot Step not implemented

If the value is 2, the next field may be ignored, and there should not appear
ary individual SCATTERPLQO records.

2 1-20 numbeiof families
I ndi vi dual SCATTERPLOT record ( SCAT) (A4, 4X, 91 8/ 8X, 91 8)
Field No. Value Function
1 1-23 index of data items plotted on abcsissa axis
2 1-23 index of data items plotted on ordinate axis
3 Oor blank a sngle scatterplot
1 aone-way partitioned scatterplot
2 atwo-way partitioned scatterplot

If the value of field 3 is 0 or blank, the nexttfields should be ignored.

4 1-23 index of 1st separator

If the value of field 3 is 1, the next field should be ignored.

5 1-23 index of 2nd separator

6 Oor blank no unit slope line appears
1 unit slope line appears

7 0-99999999 noof the first data rec. for the scatter (FROM)

8 0-99999999 noof the last data rec. for the scatter (TO)

9 Oor blank a line through zero on the ordinate axis if appropriate.
1 aline through zero on the ordinate axis. (ORDO)
-1 noline through zero on the ordinate axis.

10 Oor blank a line through zero on the abscissa axis if appropriate.
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11

12

12

1

-1

Oor blank
1

Oor blank
1

-1-1

Appendix 4 - NONMEM Control Records (FCON)"

aline through zero on the abscissa axis. (ABSO0)

noline through zero on the abscissa axis.

Every data record appears in the scatter.

Only the first data rec. from each ind. rec. (FIRSTONLY)
Every data record appears in the scatter

Only data records with MDV=0 (OBSONLY).

NOSUB
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100,1000 CMT data item 155

100,1000 PCMT data item 155

100,101 MDY data item 153

1.0E+06 140153

154

2000 54

-2LL option of $ESTIMATION record 152, 159

A-

A_0,A_OFLG reservedariable 155

O -level test 48

Abbreviated Code 156

abbreviated code 5, 10
$ABBREVIATED record 148

ABORT 148

ABSO option of $TABLE record 146
ABS 73

absorption, first-order 8

Absorption lag parameter AL& 135
absorption rate KA 10

ACOS 73

additional dose 74

additional PK parameter 55, 72
additive gror model 27, 37, 41, 85, 90
ADDL data item 135

ADVANL1 13

ADVAN2 9

ADVAN57 133

ADVANG68,13-14 133

ADVAN9_15 133

ADVAN 4,71

adwance 3571, 74

$AESINIT record 134

$AES record 134

AES subroutine 132

A(i) reserved ariable 155

ALAGn 135

All Options for SCAVARIANCE 166
All Options for SESTIMATION 159
AMT data item 56, 58

ANALYSIS TYPE 140

$ANNEAL record 153

ANSI FORTRAN 4

APPEND option of $TABLE record 146
ASIN 73

assay 29

assayhias of 25

ATAN 73

ATOL option of SCOVARIANCE record 134, 166
ATOL option of SESTIMATION record 134, 159
auto-correlation 142

AUTO option of $ESTIMATION record 159

-B-

basic PK parameter 55, 72
bias of assay 25

bias of estimate 43

$BIND record 136

INDEX

bioavailability 59-62,72, 79

BLANKOK option of $DATA record 156

BLOCK option of $OMEGA record 139

BLOCK option of $SIGMA record 139

BLOCK SAME(m) option of SOMEGA record 141
BLOCK SAME(m) option of $SIGMA record 141
bolus dose, instantaneous 59

bolus dose, multiple 60

bolus dose, zero-order 134-135

bootstrap 146153

BOOTSTRAP option of SNONPARAMETRIC record
153

BOOTSTRAP option of $SIMULATION record 153
BY option of $TABLE record 146

-C-

calendar date 66

CALL data item 58, 74, 84, 137

CALLFL reserved wariable 134136

calling protocol phrase 136-137

call to ERROR subroutine 58, 136

call to PK subroutine 58, 136

CALPHA option of $ESTIMATION record 159
case insensitity 155

CCONTR subroutine 149

CCV error model 27, 37, 41, 85, 90

CENTERING option of SESTIMATION record 147,
159

central compartment 9, 71

CHAIN option of $CHAIN record 153

CHAIN option of SESTIMATION record 153
Changes to NONMEM Outputs 154

CHECKOUT option of $IATA record 147
checkpoint-restart 142

chi-square 48

CHOLESKY option of $OMEGA record 140
CHOLESKY option of $SIGMA record 140
CHOLROFF option of $C@ARIANCE record 166
Cl 44,129

CINTERVAL option of $SESTIMATION record 159
CIPRED,CIRES,CIWRES reserved label of $TA-
BLE,$SCATTER record 154
CIPREDI,CIRESI,CIWRESI reserved label of $TA-
BLE,$SCATTER record 154

CITER/CNSAMP option of SESTIMATION record 159
CL, clearance 13, 24

clearance CL 13, 24

clock time 56, 65, 69

CMT data item 57, 71

CNTID reserved ariable 158

Code, Abbreiated 156

coefficient of ariation 27

colon ":"in Il data item 69

colon ":"in TIME data item 66
COM,COMACT reservedariable 156
command, operating system 5
COMPACT 155

compartment, central 9, 71
compartment 9

compartment, default dose 9, 71-72
compartment, depot 9, 60, 72
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compartment, dose 57, 59

compartment, equilibrium 133

compartment number 57, 71, 93

compartment, output 25, 57, 60, 64, 72
compartment, prediction 57

compartment, zero-outa 72

COMPRESS option of $OZARIANCE record 144, 166
COMRES,COMSA option of $ABBREVIATED record
156

concentration 23

concentration, plasma 8, 25, 30, 35
concentration, urine 25, 30, 35, 38, 64
concomitant data 55

conditional estimate 147

conditional estimation method 147

conditional estimation method, first-order 147
CONDITIONAL option of SCCYARIANCE record 143,
166

CONDITIONAL option of $ESTIMATION record 159
CONDITIONAL option of $SCATTERPL® record 92
CONDITIONAL option of $TABLE record 92
conditional statement 77

confidence inteal 44-46,129

console control characters 153

constant coefficient of variation (CCV) error model 27,
37,41, 85, 90

constant infusion 62

CONSTRAIN option of $ESTIMATION record 153,
159

constraint, parameter 10, 87, 114

CONSTRAINT subroutine 153

& continuation character 155

continuation line 155

control language, NONMEM 5

$CONTR record 149

CONTR subroutine 149

correlation 36

correlation matrix of estimate 92, 102

Correlation matrix OMEGA,SIGMA output 154
correlation of parameter estimate 45

correlation of residual v§ 117

CORRELATION option of SOMEGA record 140
CORRELATION option of $SIGMA record 140
CORRL2 reservedariable 142

COSs 73

covariance 3689, 139

covariance matrix 36, 39, 103

covariance matrix, full 139

covariance matrix of estimate 92

Covariance matrix OMEGA,SIGMA output 154
COVARIANCE option of SOMEGA record 140
COVARIANCE option of $SIGMA record 140
$COVARIANCE record 10, 87, 91-92, 97, 102
covariance step 91-92, 102, 168
CPRED,CRES,CWRES reserved label of $TA-
BLE,$SCATTER record 154
CPREDI,CRESI,CWRESI reserved label of $TA-
BLE,$SCATTER record 154

CRIT subroutine 149

CTLO CTUP reservedariable 152

CTYPE option of $ESTIMATION record 159

-D-

DAT1,DAT 2,DAT 3 data item 67
data checiut 96,147

data, efect 132,150

data file name 52

data, indvidual 8,23, 69

data item 8, 29, 50

data item, dropping 55, 67, 70

data item label 54

data item, null 50

data items, maximum number of 51, 55
data item, steady-state 58

data, population 55, 89

Data Preprocessor 156

Data Preprocessor 65

data record 50

$DATA record 5265, 97, 144

data set 50

data set, deleting records from 50-51
data set, sequence of 50, 52

data set, size of 50

data, single-response population 23

date, calendar 66

DATE data item 66

days 5467

day-time translation 65, 69

ddexpand utility 159

DECLARE option of $ABBREVIATED record 157
default dose compartment 9, 71-72
degrees of freedom 48, 141

deleting records from data set 50-51
DELIM option of $TABLE record 146
dependentariable 8-923

depot compartment 9, 60, 72

DERCONT option of $ESTIMATION record 159
DERIV1 option of $ABBREVIATED record 156
DERIV2 option of $ABBREVIATED record 156
$DES record 134

DES subroutine 132

DF option of $ESTIMATION record 159
DFS option of $ESTIMATION record 159
DIAG 157

diagonal elements of OMEGA 37
DIAGONAL option of SOMEGA record 139
DIAGONAL option of $SIGMA record 139
diagonal variance-c@riance matrix 89, 139
dispersion dctor 141

distribution of parameter estimate 44

do directve 158

doexpand utility 158

dose, additional 74

dose amount 58

dose compartment, daflt 9,71-72

dose compartment 57, 59

dose gent record 56, 58

dose, implied 60

dose, infusion 59

dose, instantaneous bolus 59

dose, lagged 74

dose, multiple bolus 60

dose, multiple 12

dose-related data item 58

doses, multiple steady-state 63

dose, steady-state 60

dose, zero-order bolus 134-135

DOSTIM reserved ariable 135
DOWHILE(DATA) 138

DROP option of $INPUT record 55, 67, 70, 97
dropping data item 55, 67, 70

drug level 61

duration, modeled 135

duration of infusion 59

DV data item 8, 55-56

dynamic memory allocation 154
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-E-

EBV 154

EBVshrink output 154

ECWRES reserved label of $TABLE,$SCATTER record
155

effect data 132, 150

eigervalue 133,143

EIPRED,EIRES,EIWRES reserved label of $TA-
BLE,$SCATTER record 155

elimination rate K 10, 24

ELS, extended least squares 42

Emax model 132

EM 7

EM method 152

enddo directie 158

end of infusion 59

EONLY option of $ESTIMATION record 159
Epectation-Maximation 7
EPRED,ERES,EWRES reserved label of $TA-
BLE,$SCATTER record 154

£ 32

EPSshrink output 154

EPS \ariable 8489

equilibrium compartment 133

error, estimation 43

error, interindvidual 36

error, intraindvidual 25,36

error message, operating system 53

error message, PREDPP 171

error message, TRANSO®OR 171

error model, addivie 27, 37, 41, 85, 90

error model, CCV 27, 37, 41, 85, 90

error model, constant coefficient of variation (CCV) 27,
37,41, 85, 90

error model 25, 84, 90

error model, gponential 2837, 85

error model, log-normal 28, 37, 85

error model, power function 29, 42, 85

error model, proportional 27, 37

error model, statistical 23

error, MSE mean squared 43

$ERROR record 5, 14, 55, 150

$ERROR record 84, 86

error recoery option 148

error return code 148

ERROR subroutine, call to 58, 136

ERROR subroutine 4-5, 55, 72, 132

error \ariance 1526

ERR \ariable 2584, 89

ESAMPLE option of $TABLE record 147
estimate, bias of 43

estimate, conditional 147

estimate, initial 10, 133

estimate of ETA, indiidual 147

estimate of theta, initial 87

estimate of variance, initial 90, 142, 150
estimate, perturbed initial 88

estimation error 43

estimation method, first-order conditional with interac-
tion 147

estimation method, first-order 147

estimation method, laplacian 147
$ESTIMATION record 10, 87, 91, 97, 153
estimation step 91, 101, 143, 153, 168
ETABARCHECK option of SESTIMATION record 154,
159

ETABAR output 154

ETADER option of $ESTIMATION record 159

n 25

ETA, individual estimate of 147

ETA(k:n) reserved label of $TABLE record 154
ETAnN reserved label of $TABLE record 154
ETASAMPLES option of $ESTIMATION record 159
ETAS(...) 154

ETAshrink output 154

ETAS option of SNONPARAMETRIC record 152
$ETAS record 153

ETASTYPE option of $ESTIMATION record 159
ETASTYP option of SESTIMATION record 154
ETASXI reserved ariable 154

ETA variable 1425, 84, 89

event record, dose 56, 58

event record 56

event record, obseation 56,84

event record, other 56-57, 74

event record, reset-dose 57

event record, reset 57

EVID data item 56, 65

EVID data item, generated 69

exception, floating-point 148

EXCLUDE_BY 155

EXIT statement 148

EXPAND option of SNONPARAMETRIC record 152
expectation feature 152

experiment, replication of 43

EXP 73

exponential error model 28, 37, 85

extended least squares ELS 42

external table file 146

-E-

FAST option of $CO@ARIANCE record 166
FAST option of SESTIMATION record 159
Features, NONMEM 152

F distribution 48

F_FLAG reserved ariable 152

filename option of $BTA record 52

FILE option of SCQAYARIANCE record 166
FILE option of $ESTIMATION record 159
FILE option of $TABLE record 146

final parameter estimate 91

finedata utility 158

FINISH record 52

FIRSTLASTONLY option of $TABLE record 146
FIRSTONLY option of $TABLE record 146
first-order absorption 8

first-order conditional estimation method 147

first-order conditional with interaction estimation method

147

first-order estimation method 147

fixed efects 2355

fixed effects parameter 23, 33

FIXEDETAS 155

FIXED option of SOMEGA record 89, 100, 140
FIXED option of $SIGMA record 89, 100, 140
FIXED option of $THERA record 88,100
flip-flop 172

floating-point eception 148

FNLETA option of SESTIMATION record 159
FOCE method 91

FO method 91

FORMAT/DELIM option of SESTIMATION record 159
FORMAT option of $CO/ARIANCE record 166
FORMAT option of $TABLE record 146

format specification 50, 52, 65, 69-70
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FORTRAN 6,50 indicator \ariable 2935, 77, 81, 85-86

FORTRAN OPEN statement 52 individual data 8, 23, 69
FORTRAN READ statement 53 individual estimate of EA 147
FORWARD option of $TABLE record 146 individual parameter estimate 147
FPARAFILE option of SESTIMATION record 154, 159 individual record 55

FPOSDEF option of $CAARIANCE record 166 INDR1,INDR2 reservedariable 158
fraction, output 72, 79 infinite infusion 62

FROM option of $SCATTERPLDrecord 104 INFINITY 87,97

FSUBS 6 $INFN record 138

full covariance matrix 139 INFN subroutine 132, 138

FULL 155,157 informative form,informatie record name 141
full model 47, 118 infusion, constant 62

FUNCA reserved ariable 157 infusion dose 59

function of parameters 43 infusion, duration of 59

infusion, end of 59
infusion, infinite 62
infusion, multiple 61

-G- infusion, rate of 58
Initial condition 134

GAMLN 73 initial estimate 10, 133
general mixed effects model 39 initial estimate of theta 87
generated EVID data item 69 initial estimate of @riance 90142, 150
generated ID data item 69 initial estimate, perturbed 88
generated MW data item 69 initial estimate step 88, 91, 142
generated subroutine 6 initialization/finalization 138
GG array 98 initial parameter estimate 142
Gnl reserved label of $TABLE record 154 $INPUT record 54, 59, 96
goodness of fit 10, 47, 118 installation of NONMEM 2, 4
gradient 100168 instantaneous bolus dose 59
GRD option of $ESTIMATION record 159 INTERACTION method 91
GRDQ option of SESTIMATION record 159 INTERACTION option of $ESTIMATION record 147,
GRID option of $ESTIMATION record 152, 159 159

interactve @mntrol 153
interdose interal 59,69, 135
INTER file 142
interindividual error 36

-H- interindividual \ariability 36
half-life 43,46 interrupt 148
hierarchical file 51 _'NT _73, .
Hn1 reserved label of $TABLE record 154 !ntra!nd!v!dual error 25, 36
hours 5467 !ntralnd|V|dugl \arlablhty 25,36_
HYBRID option of SESTIMATION record 152, 159 inverse coariance matrix of estimate 92
hyperbolic model 34 IPRD,IRS,CIWRS reserved label of $STABLE,$SCA

hypotheses, joint 47 TER record 154
hypothesis, null 46 IPROB reservedariable 144

hypothesis test 19, 46, 105 IREP reservedariable 145
ISAMPEND option of $ESTIMATION record 159
ISAMPLE_M1A option of $ESTIMATION record 159
ISAMPLE_M1 option of SESTIMATION record 159
ISAMPLE_M2 option of $ESTIMATION record 159
-1- ISAMPLE_M3 option of SESTIMATION record 159
IACCEPTL option of SC®ARIANCE record 166 ISAMPLE option of SESTIMATION record 159
; ISCALE_MAX option of SESTIMATION record 159
IACCEPTL option of SESTIMATION record 159 ISCALE_MIN option of SESTIMATION record 159
IACCEPT option of $SCOARIANCE record 166 —

IACCEPT option of $ESTIMATION record 159 ISFINL reserved ariable 155
. I_SS 133-134155
ICALL reserved ariable 138157 .
- ISSMOD reservedariable 133155
ID data item, generated 69 : :
. iteration 100,168
ID data item 51, 55, 141, 169 ITS method 152
identification numbepatient 51
IFIRSTEM reservedariable 158
IGNORE option of $ATA record 53
11124 54
Il data item, colon ":"in 69 -J-
Il data item 56, 59, 69, 135 .
IIDX reserved ariable 158 joint hypotheses 47
Il option of $DATA record 156
ill-formed data file 156
implied dose 60
INCLUDE record 94 -K-
index plot 107,116
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KA, absorption rate 10

KAPPA option of $ESTIMATION record 159

K, elimination rate 10, 24

KNUTHSUMOFF option of $C®ARIANCE record

166

KNUTHSUMOFF option of SESTIMATION record 159

-L-

L1 data item 141

L2 data item 141, 150, 169

labels, reserd 54

label substitution 156

lagged dose 74

LAPLACE option of $ESTIMATION record 159
laplacian estimation method 147
LAPLACIAN option of SESTIMATION record 147
LAST20 option of $[ATA record 54
LASTONLY option of $TABLE record 146
least squares criterion 41

least squares ELSxtended 42

least squares OLS, ordinary 41

least squares WLS, weighted 41

$LEVEL record 153

LEVWT option of SESTIMATION record 159
LFORMAT option of $TABLE record 146
likelihood ratio test 48, 131

LIKE option of SESTIMATION record 152, 159
linear model 33

linear system 63

link editing 5

LIREC reserved ariable 158

load module 5

log likelihood 48119

LOG,LOG10 73

log-normal error model 28, 37, 85

Loops 157

lower case 155

lower triangular elements of OMEGA 37
LRECL option of $[ATA record 53

-M -

MADAPT option of $ESTIMATION record 159
MAPCOV option of $ESTIMATION record 159
MAPINTER option of SESTIMATION record 159
MAPITER option of $ESTIMATION record 159
MARGINALS option of SNONPARAMETRIC record
152

mass balance 72

MASSRESET option of $ESTIMATION record 159
MATRIX option of $CO/ARIANCE record 143, 166
MAXEVAL option of SESTIMATION record 92, 159,
168

maximum number of data items 51, 55

maximum number of observation records 56

MAX 73

MCETA option of $ESTIMATION record 159

MDV data item 100,101 153

MDYV data item, generated 69

MDYV data item 55, 139

MDVI1,2,3 reserved ariable 153

MDVRES reservedariable 155

mean squared errdvISE 43

METHOD option of $ESTIMATION record 91, 147,
159

Michaelis-Menten model 34, 71
microconstant 72

minimal model 112

minimum value of objecte function 1048, 91, 101
MIN 73

MISDAT option of $DATA record 156
mixed effects model, general 39
mixed effects model 26, 31
MIXEST reserved ariable 148
MIXNUM reserved \ariable 148
MIXP reserved ariable 148

MIXPT reserved ariable 148

$MIX record 148

MIX subroutine 132, 148-149
mixture model 148-149

MNEXT reserved ariable 136
MNOW reserved ariable 136

model iilding 105

modeled duration 135

modeled rate 134

model, Emax 132

model, full 47, 118

model, general mixed fetcts 39
model, linear 33

model, Michaelis-Menten 34, 71
model, minimal 112

model misspecification 102

model, mixed décts 2631

model, mixture 148-149

model, multiplicatve 34, 80

model, one-compartment 8, 13, 23
model, parameter 32

model, pharmacodynamic 132, 139, 150
model, pharmacokinetic 2, 71, 133
model, population 32

model, random éécts 126

$MODEL record 133

model, reduced 47, 118

model specification file 92, 142-143
model, statistical 125-126

model, structural 23, 36, 97, 112
MODEL subroutine 132

model, usedefined 133

MOD 73

monitoring of search 91
monte-carlo method 152, 155
monte-carlo 147

MPAST reservedariable 136

MRG_ data item 152
MSEC,MFIRST reservedariable 158
MSE mean squared error 43

$MSFI record 92, 142

MSFO option of SESTIMATION record 142, 159, 168
MSFO option of SNONPARAMETRIC record 152
MTDIFF reserved ariable 136
MTIME 135

multiple bolus dose 60

multiple dose 12

multiple SESTIMATION records 153
multiple infusion 61

multiple steady-state doses 63
multiplicative model 34,80
multivariate obseration 141

MU modeling 152-153

MUM option of SESTIMATION record 159
MU_reserved araibles 152-153
MXSTEP reservedariable 134
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NBURN option of SESTIMATION record 159

neffi utility 159

nef utility 159

negative djective function 42

nested if 74

nested parentheses 74

NEWIND reserved ariable 157

NEW option of $MSFI record 142

NEW option of $SIMULATION record 145

NINDR reserved ariable 158
NIPRED,NIRES,NIWRES reserved label of $TA-
BLE,$SCATTER record 154

NIREC,NDREC reservedaviable 157
NITER/NSAMPLE option of $SESTIMATION record
159

nmfe74 5

nmfe74 utility 158

nmfe 5

nmtemplate utility 158

NM-TRAN defined 2

NOABORTFIRST 148

NOABORTFIRST option of $THEA record 149
NOABORT 148

NOABORT option of $ESTIMATION record 159
NOAPPEND option of $TABLE record 146
NOCHECKMU option of SABBREVIATED record 153
NOCOV option of $ESTIMATION record 144, 159
NOFASTDER option of $ABBREVIATED record 156
NOFCOV option of $CO/ARIANCE record 144, 166
NOFORNARD option of $TABLE record 146
NOHABORT 148

NOHABORT option of SESTIMATION record 159
NOHABORT option of $THETR record 149
NOHEADER option of $TABLE record 146
NOLABEL option of $ESTIMATION record 159
NOLABEL option of $TABLE record 146
NOMSFTEST option of $MSFI record 142

Non continuous 152

NONINFETA option of SESTIMATION record 159
NONMEM control language 5

NONMEM Features 152
nonmem_general_resed 7

NONMEM 1

NONMEM Outputs, Changes to 154
nonmem_reseed_general 153,58
nonmem_reseed 157

$NONPARAMETRIC record 152
NOOMEGABOUNDTEST option of $ESTIMATION
record 159

NOPREDICTION option of $SIMULATION record 145
NOPRINT option of $TABLE record 146
NOPRIOR option of $ESTIMATION record 149, 159
NOREPLACE option of $MSFI record 142
NOREPLACE option of $SIMULATION record 146,
153

NOREWIND 52

NORMAL option of $SIMULATION record 145
NOSIGMABOUNDTEST option of $ESTIMATION
record 159

NOSLOW option of $SCOVARIANCE record 166
NOSUB option_of $ESTIMATION record 156
NOSUB option of $SESTIMATION record 159
NOSUB option_of $SCATTER record 156
NOSUB option_of $TABLE record 156
NOSUPRESET option of $SIMULATION record 146
NOTHETABOUNDTEST option of $ESTIMATION
record 159

NOTITLE option of $ESTIMATION record 159
NOTITLE option of $TABLE record 146

N output 154

NPDE,NPD reserved label of $TABLE,$SCATTER
record 155

NPOPETAS option of $MSFI record 142

NPROB reservedariable 144

NPSUPP,NPSUPPE option of SNONPARAMETRIC
record 152

NREP reservedariable 145

NSIG option of SESTIMATION record 159

NSPOP reservedaviable 148

null data item 50

null hypothesis 46

NULL option of $DATA record 53

null value 46

null value of parameter 128-129

number of significant digits 97

NUMBERPOINTS option of $THEA record 142
NUMDER option of $ESTIMATION record 154, 159
NUMERICAL option of $ESTIMATION record 159
NUTS_BASE option of $ESTIMATION record 159
NUTS_DELTA option of $ESTIMATION record 159
NUTS_EPARAM option of $ESTIMATION record 159
NUTS_GAMMA option of SESTIMATION record 159
NUTS_INIT option of SESTIMATION record 159
NUTS_MASS option of $SESTIMATION record 159
NUTS_MAXDEPTH option of $ESTIMATION record
159

NUTS_OPARAM option of $ESTIMATION record 159
NUTS_REG option of SESTIMATION record 159
NUTS_SPARAM option of $ESTIMATION record 159
NUTS_STEPINTER option of SESTIMATION record
159

NUTS_STEPITER option of SESTIMATION record
159

NUTS_TERM option of SESTIMATION record 159
NUTS_TEST option of $ESTIMATION record 159
NUTS_TRANSFORM option of $ESTIMATION record
159

NWPRI subroutine 141, 149

-0-

OACCEPT option of SESTIMATION record 159
objective function, minimum value of 10, 48, 91, 101
objective function 4291, 119

OBJI reserved label of $TABLE record 154
observation eent record 56, 84

observation records, maximum number of 56
observed a&lue 4,55-56, 90

OBSONLY option of $TABLE record 146

Odd type data 152

OLKJDF option of SESTIMATION record 159
OLNTWOPI option of SESTIMATION record 159
OLS, ordinary least squares 41
OMEGABOUNDTEST option of $ESTIMATION record
159

OMEGA, diagonal elements of 37

w 41

OMEGA, lower triangular elements of 37
OMEGA 10,26, 36

Q 36,88

$OMEGAPD record 141

$OMEGAP record 141

$OMEGA record 10, 14, 88-89, 97, 139
OMEGA reserved ariable 158

$OMIT record 152

OMITTED option of $COYARIANCE record 166
OMITTED option of SESTIMATION record 159
one-compartment model 8, 13, 23
ONEHEADERALL option of $TABLE record 146
ONEHEADER option of $TABLE record 146
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ONEHEADERPERFILE option of $TABLE record 146
ONLYREAD option of $MSFI record 142
ONLYSIMULATION option of $SIMULATION record
145

on/of status 5765, 78

operating system command 5

operating system error message 53

OPTMAP option of $ESTIMATION record 159
ORDO option of $SCATTERPLDrecord 93146
ORDER option of $ESTIMATION record 154, 159
ordinary least squares OLS 41

OSAMPLE_M1 option of $ESTIMATION record 159
OSAMPLE_M?2 option of $ESTIMATION record 159
other @ent record 56-57, 74

OTHER option of $SUBROUTINE record 149
outlier 108

output compartment 25, 57, 60, 64, 72

output fraction 72, 79

Outputs, Changes to NONMEM 154

output-type 5765, 72, 137

OVARF option of $ESTIMATION record 159

-pP-

PACCEPT option of SESTIMATION record 159
PARAFILE option of SCQYARIANCE record 154, 166
PARAFILE option of SESTIMATION record 154, 159
PARAFILE option of $SIMULATION record 154
PARAFILE option of $TABLE record 154
PARAFPRINT option of SCG®ARIANCE record 166
PARAFPRINT option of $ESTIMATION record 159
parallel computing 154

parameteradditional PK 55, 72

parameter ALAG, Absorption lag 135
parameterbasic PK 55, 72

parameter constraint 10, 87, 114

parameter estimate, correlation of 45

parameter estimate, distribution of 44

parameter estimate, final 91

parameter estimate, indgilual 147

parameter estimate, initial 142

parameter estimate 41

parameter estimate, precision of 43, 92, 128, 131
parameterfixed dfects 2333

parameterization 2413, 46, 72, 76

parameter model 32

parametemull value of 128-129

parameterPK 10, 71

parameterrandom efects 26,126

parameterscale 1024, 71, 77

parameters, function of 43

parametertime varying 35

PARAMETRIC option of $SIMULATION record 145
partial denative 6

partitioned scatterplot 93, 104

PASSRC reservedaviable 138

PASS subroutine 138

patient identification number 51

PCMT data item 57, 71

PD in $SIZES 154

PD in $SIZES 51

PDin SIZES 51

PDT in $SIZES 146, 154

perturbed initial estimate 88

PFCOND option of $C@ARIANCE record 166
pharmacodynamic model 132, 139, 150
pharmacokinetic model 2, 71, 133
phenobarbital>@ample 1224, 89-90, 105, 132, 151

@ 23

PHI 73

$PHIS record 153

PHITYPE option of SESTIMATION record 159

PK parameteradditional 55,72

PK parametetasic 55,72

PK parameter 10, 71

$PK record 5, 10, 55, 71

PK subroutine, call to 58, 136

PK subroutine 4-5, 55, 72, 132

plasma concentration 8, 25, 30, 35

plot, index 107, 116

population data 55, 89

population data, single-response 23

population model 32

positive cefinite 140

POSTHOC option of SESTIMATION record 147, 159
power function error model 29, 42, 85

PR_CT reservedariable 152

PRDERR 149

PRDFL reservedariable 152

precision of parameter estimate 43, 92, 128, 131
PRECOND option of $C@ARIANCE record 166
PRECONDS option of $C@ARIANCE record 166
PRED error receery option 148

PRED error return code 148

predicted @alue 4,56

predicted value PRED 11, 92

prediction compartment 57

PREDICTION option of $ESTIMATION record 159
PREDICTION option of $SIMULATION record 145
PREDI,RESI,WRESI reserved label of $TABLE,$SIEA
TER record 154

PREDPP error message 171

PREDPP library 4

PREDPP 171, 155

PRED, predictedalue 1192

$PRED record 6, 97

PRED_,RES_,WRES _ reservegriable 158

PRED subroutine 1, 71, 97, 132, 138

PRED subroutine, recur&a 3, 143
PreprocesspData 156

P reserved ariable 148

PRETYPE option of $C@ARIANCE record 166
PRINT option of $CO®ARIANCE record 143, 166
PRINT option of $ESTIMATION record 92, 159, 169
PRINT option of $TABLE record 146

prior 141

$PRIOR record 149

PRIOR subroutine 149

$PROBLEM record 8, 96, 144

proportional error model 27, 37

PR_Y reservedariable 152

PSAMPLE_M1 option of SESTIMATION record 159
PSAMPLE_M2 option of $ESTIMATION record 159
PSAMPLE_M3 option of SESTIMATION record 159
PSCALE_MAX option of $ESTIMATION record 159
PSCALE_MIN option of $ESTIMATION record 159
P VAL output 154

p-value 131

“R-

random effects model 126
random effects parameter 26, 126
random efiects 2632, 80
RANDOM subroutine 145, 152
random wariable 6,73, 81, 84
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random wariable 81

RANMETHOD option of $CO@ARIANCE record 166
RANMETHOD option of SESTIMATION record 159
RANMETHOD option of $TABLE record 147

RATE data item 56, 58

rate, modeled 134

rate of infusion 58

raw data aerage feature 152

RAW _ data item 152

raw output file 154

RECOMPUTE option of SNONPARAMETRIC record
152

record length 53

RECORDS option of $BTA record 52156

recovery option, error 148

recursve FRED subroutine 35, 143

reduced model 47, 118

relative ime 56,66

REPEAT1 option of SESTIMATION record 152, 159
REPEAT2 option of $ESTIMATION record 152, 159
repeated values xn 141

REPEA option of SESTIMATION record 143, 159
Repetition feature 152

REPLACE option of $ABBREVIATED record 156
REPLACE option of $SIMULATION record 146, 153
replication of &periment 43

REQUESTFIRST option of $SIMULATION record 146
REQUESTSECOND option of $SIMULATION record
146

RESCALE option of $MSFI record 143

reserved labels 54

reserved ariable 7

reset-dosevent record 57

reset gent record 57

residual error 25, 32

residual RES 16, 92, 115

residual vsy, correlation of 117

RES, residual 16, 92, 115

RESUME option of $SCRARIANCE record 144, 166
return code, error 148

REWIND option of $SIMULATION record 145
REWIND 52

RFORMAT option of $TABLE record 146

root.agh output file 154

root.fgh output file 154

root.xxx output file 154

RPT_ data item 152

RPTI,RPTO,RPTON reserveanable 152

R covariance matrix 143

-S-

S1IT,S2IT reservedariable 144

SINIT,S2NIT reservedariable 144

S1INUM,S2NUM reservedariable 144
SADDLE_HESS option of $ESTIMATION record 159
SADDLE_RESET option of $ESTIMATION record 159
SAME option of $SIGMA record 140

saturation model 34, 80

scale parameter 10, 24, 71, 77

scatterplot, partitioned 93, 104

$SCATTERPLQ record 8792-93, 97

scatterplot 1151, 57, 59, 92-93

scatterplot step 104

SD in SIZES 54

SD option of SOMEGA record 140

SD option of $SIGMA record 140

SEED option of $ESTIMATION record 159

SEED option of $TABLE record 147

SEOMEG reservedariable 158

SE output 154

sequence of data set 50, 52

SESIGM reservedariable 158

SE (standard error) 44

SETHET reservedariable 158

SETHETR reservedariable 158

SIGDIGITS option of SESTIMATION record 91
SIGLO option of $CO®ARIANCE record 144, 166
SIGLO option of SESTIMATION record 159
SIGL option of SCOYARIANCE record 144, 166
SIGL option of $ESTIMATION record 159
SIGMABOUNDTEST option of $ESTIMATION record
159

g 41

$SIGMAPD record 141

$SIGMAP record 141

$SIGMA record 14, 87-89, 97, 139

SIGMA reserved ariable 158

SIGMA 15,32

2 32,88

significant digits, number of 97

SIMEPS subroutine 145

SIMETA subroutine 145

$SIMULATION record 144

simulation step 99, 144

single-response population data 23

SIN 73

SIRCENTER option of $CARIANCE record 166
SIRDF option of $CUARIANCE record 166
SIRNITER option of $SCOARIANCE record 166
SIRPRINT option of SCUARIANCE record 166
SIRSAMPLE option of $CWARIANCE record 166
SIRTHBND option of SCOARIANCE record 166
size of data set 50

$SIZES record 154

SKIP_ reservedariable 144

SLKJDF option of SESTIMATION record 159
SLOW option of SCO/ARIANCE record 144, 166
SLOW option of SESTIMATION record 159
SORT option of $ESTIMATION record 152, 159
SPECIAL option of $CUARIANCE record 143, 166
SQRT 73

SS data item 56, 58

S covariance matrix 143

standard déation 27,90, 116

standard error of estimate 92

standard error 8, 10, 44-45, 102, 129, 143

standard error vs. standardsidgion 44

STANDARD option of SOMEGA record 140
STANDARD option of $SIGMA record 140
statistical error model 23

statistical model 125-126

STDOBJ option of $SESTIMATION record 159
steady-state data item 58

steady-state doses, multiple 63

steady-state dose 60

steady-state &l 61-62, 64

steady-state 135

STIELTJES option of SESTIMATION record 152, 159
STRAT,STRATF option of $SIMULATION record 146,
153

structural model 23, 36, 97, 112

SUBPROBLEM option of $SIMULATION record 144
subroutine, generated 6

$SUBROUTINE record 134

$SUBROUTINE record 71, 73, 97

$SUBOUTINES record 149

subroutine, usesupplied 6
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subroutine, usewritten 149

sum of squares 10, 41

superposition 63

superproblem 144

$SUPER record 144

SUPRESET option of $SIMULATION record 146
SVARF option of $ESTIMATION record 159
symbolic label substitution 156

synorym 54

system, linear 63

-T-

table_compare utility 158

table file, aternal 146
table_quant utility 158

$TABLE record 87, 92-93, 97
table_resample utility 158

table step 104

table 5759, 92

table_to_xml utility 158

tabs in data file 156

# tag label output 154

tag label # output 154

TAN 73

TEMPLT reserved ariable 148152
THBND option of $COYARIANCE record 166
theophylline gample 8

THETABOUNDTEST option of $ESTIMATION record

159
THETAFR reservedariable 158

0 41

theta, initial estimate of 87

$THETAI record 153

$THETAP record 153

$THETA record 1087, 97

$THETAR record 153

THETA 10, 73

THIN option of $ESTIMATION record 159
TIME/24 54,67

TIME data item, colon ":" in 66

TIME data item 56

TIME option of $DATA record 156

time, relatve 55, 66

time varying parameter 35

TNPRI subroutine 149

TOL option of SCOVARIANCE record 134, 166
TOL option of SESTIMATION record 134
TOL option of $SSUBROUTINE record 134
$TOL record 134

TOL subroutine 132

to NONMEM Outputs, Changes 154

TO option of $SSCATTERPLO record 104
TRANS1 73

transgeneration 13857

TRANSLATE option of $DATA record 5467, 156
translation 2472, 98

TRANSLATOR eror message 171
TRANSLATOR warning message 5
TRANS 4,24, 72

TRUE option of $SIMULATION record 145
true-value ariable 81

TSTATE reserved ariable 155

TTDF option of $ESTIMATION record 159
typical value 3680, 90

UNCONDITIONAL option of $CO/ARIANCE record

143, 166

UNCONDITIONAL option of $SCATTERPL® record

92

UNCONDITIONAL option of $TABLE record 92
UNCONSTRAINED ERS 140,153
unexplained ariability 119,126

UNIFORM option of $SIMULATION record 145
UNIT option of $SCATTERPL® record 93

unit slope line 11, 93

units 24,77

upper case 155

urine collection 30, 64

urine concentration 25, 30, 35, 38, 64

urine wlume 2530, 64

user-defined model 133

user-supplied subroutine 6

user-written subroutine 149

USMETA subroutine 149

-V -

value, null 46

value, obsered 4,55-56, 90

value, predicted 4, 56

VALUES option of SOMEGA record 141
VALUES option of $SIGMA record 141
value, typical 36, 80, 90

VARCALC 155

variability, interindvidual 36

variability, intraindvidual 25,36

variability, unexplained 119126

variable, dependent 8-9, 23

variable, indicator 29, 35, 77, 81, 85-86
variable, random 6, 73, 81, 84
variance-c@ariance matrix, diagonal 89, 139
variance-coariance matrix 42

VARIANCE option of SOMEGA record 140
VARIANCE option of $SIGMA record 140
variance 1036

VECTRA reserved ariable 157

VERSION option of $MSFI record 142
volume of distribution V 8, 24-25

V, volume of distrilution 8,24-25

W -

warning message, TRANSITPOR 5
$WARNING record 156

weighted least squares WLS 41

weighted residual 92

weighted residual WRES 92, 115, 117
WIDE option of $OATA record 53

WLS, weighted least squares 41
WRESCHOL option of $TABLE record 147
WRES, weighted residual 92, 115, 117

-X -

xml_compare utility 158
XVID1-5 data item 155
LNTWOPI 159

-205-



-Y -
year 2000 54

YLO YUP reserved ariable 152

¥ a1
y 23

-7Z-

ZERO option of $ESTIMATION record 152, 159
zero-order bolus dose 134-135
zero-out a compartment 72



