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Basic Theory of Nonlinear Mixed Effects 

Individual parameters phi ( ) to a PK/PD model are assumed to have a random distribution 

in a population of subjects, typically a normal distribution with mean MU (μ ) and variance 

OMEGA ( ).  The mean μmay in turn be modeled as a function of a set of unknown but 

to be estimated fixed effects parameters THETA ( ), and a set of covariates, or information 

about individual i, xi.   The deviation of the individual parameter from its mean is 

designated η , so that the following relation holds: 

)i i   μ θ x η          (1.1) 

where θ are those thetas that are related to etas through a mu function, of the above format.  

Thus, the distribution of  can be described as 

1

1/2

1 1
( , )) exp ( ) ( )

det( ) 2
i i ih |  

    
 

       


 (1.2) 

The population parameter density ( , )ih |   is the probability that the particular  would 

occur for an individual, given mean population parameters i and its inter-individual 

covariance  .  The distribution of η  is therefore centered about zero (0), and can be 

described as 

1

1/2

1 1
( , )) exp

det( ) 2
h |  

  
 

0    


 (1.3) 

Not all fixed effects theta are involved in an eta (η ) relationship as shown above.  For those 

theta that are not exclusively expressed in the PK/PD model or error model via mu (), these 

are considered not mu modeled. We shall designate these thetas as θ .  The entire vector of 

thetas is then 

{ , θ θ θ }  (1.4) 

The parameters as designated in NONMEM are THETA for θ , ETA for η , and OMEGA 

for  .  There are also a set of parameters designated as SIGMA in NONMEM, which are 

never mu modeled, and because in our discussion they will be treated in exactly the same 

way as non mu modeled theta, we shall include them in θ to reduce the complexity of the 
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nomenclature.  There may also be some etas that are not related to a MU model, in which 

case 

             (1.5) 

Thus the phi vector includes all etas, whether or not they are involved in a mu function. 

 

For observed data that are modeled as normally distributed, a predictive function may be 

evaluated using the individual PK/PD parameters phi, and/or may be modeled directly from 

fixed effects parameters not be phi/mu modeled, ( ,i f    .  In addition, a residual variance 

matrix V describes the uncertainty of the observed values, and may be directly a function of 

the predicted value if , sigma parameters and other non-mu modeled thetas, and rarely, 

individual parameters  : ( ,i i V f  ) .  The normal data density can be expressed as 

( il | y 

 

11
exp ( ) ( )

2

det

i i i i i

i

 
   

  

y f V y f

V
 (1.6) 

where ( il | y    is the individual data density, the probability of data iy occurring for 

individual i, given individual PK/PD parameters  , and fixed effect parameters  that are 

not mu modeled.   

 

The joint density of data yi and   for an individual is then 

( |ip y    , ( ), ) (i il |  y    ( ( ), )ih |       (1.7) 

The ( il | y  ( , )ih |     is the joint likelihood density of   and yi for a given individual.  

It is integrated over all possible values of  for each individual, so that the “best” population 

parameters  and  are determined by taking into account the joint probability to an 

individual’s data over the entire parameter space of  , rather than at just one particular 

location, such as at the individual’s best fit.  We are therefore interested in evaluating the 

marginal density of yi for any given   and  (or  , ,i  ): 

( | , ) ( |i ip p y y    , , ) (i id l | 




 y    ( , )ih | d




      (1.8) 

for each subject i.  The total marginal density for all m subjects is then 
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( | , ) ( |ip p y y   
1

, , )
m

i
i

d





     (1.9) 

 

It is convenient at this stage to use the negative logarithm of the density, and refer to this as 

the objective function, for each individual: 

log( ( , |i iL p   y   , , ) )i d


     (1.10) 

and for the total data set: 

1

log( ( | , ))
m

i
i

L p L


   y    (1.11) 

Thus, the negative logarithm of the parameter density is 

11 1
log( ( , )) log(det( )) ( ) ( )

2 2
i i ih |               (1.12) 

And the negative logarithm of the data density is: 

log( ( il |  y    11 1
) ( ) ( ) log det

2 2
i i i i i i

    y f V y f V  (1.13) 

 

To fit a model with mean population parameters θ and population variance  to data y, the  

marginal density (1.9) is to be maximized with respect to θ and .  These parameter values 

are then considered the most likely for the observed data y.  Therefore, the maximization of 

the marginal density with respect to θ and  is called the maximum likelihood method.  In 

practice, as an equivalent process, the negative logarithm of the marginal density (1.11) is 

minimized.  This is the goal of the first order (FO), first order conditional estimation 

(FOCE/FOCEI), Laplace, iterative two stage (ITS), and expectation maximization (EM) 

methods. 

 

FOCE and Laplace Methods 

Generally the integral of the joint density (1.10) is very difficult to evaluate 

deterministically, but it may be approximated for classical methods FOCE and Laplace 

using a method described by Beal (part VII of NONMEM manuals [1]).  The derivation is 

given in [2], while we will merely report the results.  Classical NONMEM (FO, FOCE, and 

Laplace) does not require the use of μ modeling, so for this section, we will use the 
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parameterization of θ, η , for all parameters, rather than distinguishing between μ modeled 

and non-μ modeled θ.  For example, the individual’s joint density may be alternately 

expressed as 

( ip y     , ) (i il |  y   ( , ) ( , ( , ) ( , | , )i i ih | l | h | p   y 0 y           (1.14) 

and integration over all values of η  is equivalent to integrating over all values of  : 

log( ( , | , ) )i iL p d



   y      (1.15) 

In order to integrate the individual’s joint density over all ηusing the approximation 

suggested by Beal, we wish first to determine the set ofηat the maximum of this joint 

density, or equivalently, at the minimum of the negative logarithm of the joint density: 

11 1
log( ( , ( , )) log( ( , )) log(det( ))

2 2
i il | h | l |      y 0 y           (1.16) 

We minimize with respect to eta by evaluating 

1log( ( ( , )) log( ( ))i il | h | l |     
  

 

y 0 y
0

   
 

 
 (1.17) 

using typical search strategies.  The at which equation (1.17) is satisfied is called the mode 

of the joint density for subject i, and shall be designated ˆ
i (the hat over the parameter shall 

refer to a mode or point estimate, whereas the line over a parameter refers to a mean).  

Finding the ˆ
i parameters that provide the minimum of the individual’s joint density is 

called  mode a posteriori (MAP) estimation.  This is used to then evaluate an approximation 

of the negative logarithm of the individual’s integral of his joint density as follows: 

1

1 1

log( ( ) ( , ) )

1 1
ˆ ˆ ˆlog( ( )) log(det( ))

2 2

1
ˆlog(det( ( )))

2

i i

i i i i

i i Ni

L l | h | d

l |

L







 

  

   

 

y 0

y

S y |

   

    

  

 (1.18) 

where 1 ˆ( )i i


S y |   is the hessian or information matrix to the data density ˆ( )i il |y   .  

The total approximate objective function is in turn, for m subjects: 

1

m

N Ni
i

L L


   (1.19) 
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(the subscript N refers to classical NONMEM) where the first three terms of (1.18) are 

simply the negative logarithm of the joint density evaluated at the mode ˆ
i , and the last 

term is ½ of the negative logarithm of the determinant of the variance of  under the joint 

density, ( ) ( , )il | h |y 0   .    One can therefore think of the joint density evaluated at the 

mode (that is, the first three terms of equation (1.18) as the “height” of the joint density: 

11 1
ˆ ˆ ˆlog( ) log( ( )) log(det( ))

2 2
i i i i iH l |     y       (1.20) 

where Hi is the “height” of individual i’s joint density.  Similarly, one may think of one-half 

the determinant of the variance under the joint density (the last term of the equation (1.18)) 

as its “width”: 

1 11
ˆlog( ) log(det( ( ))

2
i i iW    S y |  

 (1.21) 

Thus equation (1.18) represents the negative logarithm of the height multiplied by the width, 

resulting in the “area” of the joint density.  The 1 ˆ( )i i


S y |   may be evaluated several 

ways.  One method is to evaluate the second derivative, usually by finite difference 

methods: 

1 2

2
1

1 2

log( ( , ))
( ) , 1to , 1to ,i

i

k k

l |
| k n k n

   
   

   

y
S y

 


 
 (1.22) 

where {} means “matrix containing elements”.  This evaluation is used in the Laplace 

method in NONMEM.  This evaluation guarantees positive definiteness (assuming no 

numerical difficulties arise) when evaluated at the mode (see appendix B).  Another method 

is by the cross product of the first derivatives of the individual data point densities: 

1 2

1

1

log( ( , )) log( ( , ))
( )

im
ij ij

i
j

k k

l y | l y |
|



     
  

   

S y
   


 

 (1.23) 

where mi is the number of data points for patient i (assuming all data are independent). 

Based on its structure, positive definiteness is guaranteed even when evaluated not at the 

mode (see appendix B).  A third method for evaluating 1( , )i


S y |  is by the expected value 

of the second derivative:  
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1 2

1 2 1 2

2
1

1 1 1

log( ( , ))
( )

( , ) ( , ) 1

2

i
i

k k

ij ij i i
i i i

k k k k

l
E

t t
tr



  

    
   

     

      
          

y |
S y |

f f V V
V V V

 


 

     

   

 (1.24) 

which is also positive definite even when not evaluated at the mode.  Equation (1.24) is used 

as the non-Laplace (CONDITIONAL) method  in NONMEM. The 1 1

i

 S  is in turn the 

Hessian (information) matrix of the joint density: 

1 2

1 2 1 2

2

2 2

1

log( ( , ) ( , ))

log( ( , )) log( ( , ))

( , )

i

k k

i

k k k k

i

l | h
E

l h
E E

|





 

 



  
  

     
 

     
    

         



y | 0

y | | 0

S y


   

 

   

   

  

 (1.25) 

and hence its inverse is the variance matrix of  under the joint density, as mentioned 

earlier.  Because the sum of two positive definite matrices is itself positive definite, the 

variance of the joint density as evaluated above is positive definite.  For joint densities that 

are exactly multivariate normally distributed with respect to  , equation (1.18) evaluates 

the joint area exactly.  We shall also refer to 1 ˆ( )i i


S y    as 1ˆ

i


S .  The 1ˆ

i


S must be 

evaluated at the individual i’s mode of his joint density, at ˆ
i , and not at the mean 

population position of =0, so the INTERACTION option in NONMEM must be used. 

 

Keep in mind that while the ˆ
i represents the ith individual’s “best fit” parameters for its 

data, based on its joint density, it is only needed here to evaluate the area under his joint 

density using the above approximation.  In other words, we really don’t need an individual’s 

best fit parameter set theoretically, but we need it practically, in order to evaluate the 

“height” of the density, and thus approximate his joint density area.  There are alternative 

methods of finding the area without needing to know the individual’s “best fit” parameters, 

which we will explore later. 
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Following the evaluation of each individual’s objective function in the manner described 

above, these are summed to form the total approximate objective function LN.  NONMEM 

optimizes LN with respect to THETAS, OMEGAS, and SIGMAS using a variable metric 

method, in which LN is evaluated at a series of values of θ and  , to provide a directional 

search to find the set of θ and   that optimizes LN. The description of the variable metric 

method is beyond the scope of this document, but a good reference is [3]. 

 

Expectation Maximization (EM) Principles 

Maximization-expectation methods separate the process of expectation (integration) and 

maximization.  To find improved estimates for  modeled  , it is convenient to first 

minimize the negative logarithm of (p y |  , )  with respect to  , which is equivalent to 

maximizing (p y |  , )  . We can do this as follows: 

i

i

L



 (1.26) 

log ( , |ip   y   , , )i

i

d







  


 (1.27) 

( , |ip  y   , , ) /

( , |

i

i

d

p 






y

   

 

( , |

, , )

i

i

p

d












y  

  

, , ) /

( , |

i i

i

d

p 




   

y

   

  , , )i d


   
 (1.28) 

log( ( , |ip   y   , , )) / ( , |i ip 
   y     , , )

( , |

i

i

d

p 





y

  

  , , )i d





   

 (1.29) 

log( ( , |ip   y   , , ))
( ,

i

i

i

z | 

 
 

 
y

 
 


, ,i d




      (1.30) 

,

log( ( , |i

i

p
E

  y


  , , ))

i

i

i

 
 

 
g

 


 (1.31) 

where gi is the gradient with respect to i, and  ,iE represents the expected value when 

integrating over all , and 

( ,iz | y 
( , |

, ,
i

i

p 


y  
 

, , )

( , |

i

ip y

 

  , , )i d


   
 (1.32) 
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is called the conditional density of  for individual i.  The conditional density integrated 

over all possible  evaluates to 1: 

( ,iz | y 
( , | , )

, , 1
( , | , )

i i
i

i i

p
d

p d



 



 


y

y

  
  

   
 (1.33) 

The relationship 

log( ( |ip   y 
,

, , )) log( ( , |i i

i

i

p
E

 




y


   



, , ))i

i

 
 

 

 


 (1.34) 

holds for any joint density ( , |ip y   , )i  .  Now, to evaluate specifically for a parameter 

density h that is multivariate normal: 

log( ( , |ip 


y   , , ))
(

i

i

i

z | 

 
 

 
y

 
 


, , )i d




     (1.35) 

log( ( il | 


y  ( , ))
(

i

i

i

h |
z | 

 
 

 
y

  
 


, , )i d




     (1.36) 

( ) (i iz | y
    , , )i d




     (1.37) 

( ) (i iz | y
    , , )

ii d



 g    (1.38) 

We can perform the above algebraic manipulation because  (and therefore  ) appears 

only in the parameter density h, but does not appear in the data density l.  We define 

( ,i iz |  y    , , )i d


     (1.39) 

as the conditional mean  vector for individual i, so that 

i

i

L



( ) (i iz | y

    , , )i d



   

[ ( iz | y
    , , ) (i i id z | 



 y     , , ) ]i d



     

( )
ii i  g



    (1.40) 

There are several ways of determining i which are described later, and are called the 

expectation (=integrating or averaging) step. 

 

Maximization 

To determine the  modeled theta that reduces the objective function, we must solve: 
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1

m
i i

i
i

LL

 


 
 

  



  

1

1

( )
m

i
i i

i









  


g


  


 (1.41) 

So that 


g 0

 (1.42) 

To evaluate (1.41) fully, an optimization algorithm is necessary which varies  , and 

evaluating L at each  . Keep in mind that in addition to i varying with  , 
i also varies 

with  through the conditional density z, so this minimization process can be 

computationally expensive.  Alternatively, we can perform a limited maximization step in 

which i is kept constant, while only i is varied with changes in  .  This separation of the 

expectation step from the maximization step is characteristic of the EM algorithm. 

 

Evaluating  (1.41)  by this limited optimization is equivalent to minimizing the following 

surrogate objective function (keeping i constant): 

 

   

,

1

, ,
1

log( ( , ))

1 1
( ( ) ( ( ) log(det(

2 2

i i

m

i i i i
i

E h

E E m



 

   



   

   

         
  

1 1 1

1

1 1
2 log(det(

2 2

m

i i i i i
i

m  



     
 
          

1 1 1 1 1

1 1

1 1 1
2 log(det(

2 2 2

m m

i i i i i i i i i
i i

m    

 

              
              

1

1

1 ˆ ˆ( ( ) ( ( )
2

m

i i i i c
i

L



              (1.43) 

The Lc is called the (negative) complete data log likelihood, and it can be shown (see [4]) 

that any  that reduces Lc, will reduce L by an at least equivalent amount, or: 

ˆ ˆ( ) ( ) ( ) ( )c cL L L L          (1.44) 

where ˆ
 is an improved value over the present value  .  That is, any improvement 

value ˆ
 that reduces Lc (where i was kept constant), will also reduce L (in which i varies 

with  ), by at least the same amount as it reduced Lc. 
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The easiest way to minimize Lc is to perform a least squares analysis, by producing the 

following positive definite Hessian matrix: 

2 2

2 2
1

( ) ( )
m

c i ci i

i
i

L L
E E



  


   
  

   
H

 

   

1

1

m
i i

i





 


 

 


 
 (1.45) 

And performing the following update with a variable step size α≤1: 

1ˆ


     H g
    (1.46) 

This is the maximization step of the EM algorithm.  If all of the mu’s have linear 

relationships with respect to theta, then the step size that minimizes Lc with respect to the 

mu’s is α=1.  However, if the mu’s are not linearly related to thetas, then α must be adjusted 

to minimize Lc with respect to mu.   This can be done by selecting a value α, evaluate ˆ
cL  

using the proposed ˆ
 , and if ˆ

cL is not smaller than the present L evaluated at the present 

 , try another value of α, etc.   In NONMEM, α=1 is first selected, tested, and if necessary, 

α is reduced by geometrical decrements of square root of 2 until an ˆ
cL is found that is less 

than cL .  More elaborate search algorithms (such as conjugate gradient or variable metric 

methods) for thetas not linearly modeled with respect to mu could be used for the 

expectation-maximization methods, but no real time savings occurs in doing so for 

population analysis problems. 

 

In the next iteration, the updated  are used to evaluate a new set of condional means i in 

the expectation step, followed by a limited maximization step to update  again.  By 

repeatedly performing the expectation step (1.39), and evaluating the maximization step as 

expressed in equations (1.40) through (1.46), the gradient 


g becomes smaller, and 

estimates ˆ
 that maximize the marginal density (satisfy equation (1.42)) are eventually 

obtained [4]. 

 

Again, because  appeared only in the parameter density h as the mean to this multivariate 

normal density, and does not appear in the data density l, and the parameters  to be 



NONMEM7_Technical_Guide.doc  RJ Bauer 

4/24/2019 8:46:00 AM  Page 13 of 91  

estimated appear in the objective function only through  , this allowed us to obtain a 

gradient evaluation with a simple construction as given in (1.41)  For those θ that are not 

expressed in the model through μ the θ may appear anywhere in the joint density.  No 

shortcut evaluation can be made by maximizing just the parameter density portion.  Thus, to 

optimize the population objective function in these θ as well, we need to differentiate the 

entire joint density.  Through a similar process as we showed in differentiating with respect 

to μ, 

iL






  (1.47) 

log( ( , |ip   y   , , ))i



 


( ,iz | 

 
 
  

y  , ,i d



      (1.48) 

,

log( ( , |i

i

p
E

  y


  , , ))i



 

 

 
  

 

g i
 (1.49) 

L







iL






1

m

i




g
1

i

m

i




 g  (1.50) 

A Hessian matrix may be constructed as follows: 


H 

 g i 
g

1
i

m

i

  (1.51) 

ˆ
  



H


1




g  (1.52) 

To minimize the objective function with respect to the inter-subject variance parameters, we 

recognize that Ω is symmetrical, and we must vary only the lower triangular portion of the 

matrix.  Defining A as the lower triangular matrix of  Ω , and minimizing with respect to A, 

we have 

,
1

log( ( | , )) log( ( , | , ))m
i i i

i
i

p p
E



    
   

  

y y

A A


    
= (1.53) 

1

log( ( | ( | , ))
( , )

m
i i

i i
i

l h
z | d






  
     

y
y

A

   
     (1.54) 

 
1

1
Lower diag ( , )

2

m

i i i i
i

z | d





 
    

 
AR R y g     (1.55) 

where 
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 1 1( )( )i i i

 R        (1.56) 

and 
Ag is the gradient with respect to A.  The derivation from equation (1.54) to (1.55) 

requires evaluating partial derivatives of matrix components, the tools for which are derived 

in appendix A.   

 

We define 

 ,( )( ) ( , , ) ( )( )i i i i i i i iz | d



  y              (1.57)  

as the contribution to the evaluated population variance from each individual i.  Then, 

 1 1( )i i iE  
R      (1.58) 

and 

 
1 1

1
Lower ( ) diag ( )

2

m m

i i i i
i i

E E
 

 
    

 
AR R g 0 

 (1.59) 

is equivalent to solving for 

 1 1

1 1

( )
m m

i i i
i i

E m 

 

  R 0      (1.60) 

which suggests the following update for Ω : 

1

ˆ
m

i
im 




    (1.61) 

Note for any given Ω  

 1 1 1 1ˆ ˆLower ( ) diag ( )
2

m
m     

  
 

Ag        (1.62) 

Thus, with repeatedly evaluating the expectation step (1.57), and utilizing the result to  

evaluate the next estimate of the intersubject variance (maximization step (1.61), when the 

“output” ̂ equals the “input” Ω , then the gradient 
Ag is equal to 0. 

 

Note that equation (1.57) may be rearranged as follows, which will be useful later: 

( )( ) ( )( ) ( , , )i i i i i i iz d



     | y              (1.63) 

Defining 

( )( ) ( , , )i i i i iz d



 B | y         (1.64) 
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as the conditional variance of  for individual i, then 

( )( )i i i i i i
  B      (1.65) 

so that 

1 1ˆ ( )( )
m m

i i i i i
i im m

  B
 

       (1.66) 

Thus, the update variance inter-subject variance is evaluated as the sum of the sample 

variance of the conditional means and the average conditional variance.  To summarize, the 

EM algorithm consists of  an expectation step evaluating conditional means 
i and 

conditional variances 
iB , keeping  and Ω constant, followed by a limited maximization 

step to obtain updated  and Ω , keeping i and iB constant. 

 

Evaluating the Expectation step: Importance Sampling 

One can evaluate the area under the joint density and the other integrals by Monte Carlo 

techniques.  The advantage to these methods is that the actual mathematical expression of 

the integral is not necessary for its computation, and the precision to which the integral is 

evaluated depends on the number of random samples generated to evaluate the integral.  

One Monte Carlo method is to use a sampling function that approximates the joint density, 

from which one obtains sample values of  or  . 

 

One possible sampling function is the multivariate normal density that has mean at ˆ
i  and 

variance of 1 1 1ˆ )i

  S as described in the previous section.  To get these values, therefore, 

one first maximizes the joint density with respect to  (or  ) as one would for a MAP 

estimation.  The negative logarithm of the area of this sampling function is exactly LNi of 

equation (1.18).  Thus, the purpose of the randomization method is to modify LNi to the 

extent that the joint density deviates from this sampling density.  In practice, one may start 

with a sampling function that is somewhat larger, by multiplying the variance by a value 

>1: 1 1 1( )i   S .   The area of this sampling function is then 



NONMEM7_Technical_Guide.doc  RJ Bauer 

4/24/2019 8:46:00 AM  Page 16 of 91  

1 1 1

1ˆlog( ( , )) log(det( ))
2

1 1 1ˆ ˆ( ) ( ) log(det( )) log(
2 2 2

i i i

i i i i i

E l |

n   

   

     

y

S

  

     

 (1.67) 

where n is the number of  parameters to be integrated, since  is integrated to form Li.  

 

For the kth random sample selected from this sampling density, the parameter vectors ( )k  

are used to evaluate the logarithm of the joint density at that position: 

( ) ( )log( ( ) log( ( ,k i kl |    y   ( )( | , ))k ih     (1.68) 

To evaluate the normalized log of the joint density, we subtract 

ˆ ˆlog( ( ) log( ( ,i i il |    y   ˆ( | , ))i ih     (1.69) 

To obtain 

( )
ˆlog( )) log( ))k i      (1.70) 

so that this normalized log joint density is 0 at the mode ˆ
i .  We also evaluate the logarithm 

of the normalized sampling function (which is also equal to 0 at ˆ
i ), 

1 1

( ) ( ) ( )

1 ˆ ˆ ˆlog( ( )) ( ) ( )( ) /
2

i k k i i k ie    S        (1.71) 

The logarithm of the ratio between joint density and sampling density is then: 

( ) ( ) ( )
ˆlog( )) log( )) log( ( ))k i k i i kq e         (1.72) 

which evaluates to 

( ) ( )log( ( ,k i i kq l |  y   ˆ) log( ( ,i il |   y  

1 1

( ) ( )

1 1

( ) ( )

)

1 1ˆ ˆ( ) ( ) ( ) ( )
2 2

1 ˆ ˆ ˆ( ) ( )( ) /
2

i i i i k i k i

k i i k i 

 

 



       

 S

         

      

 (1.73) 

Its exponent is the probability of accepting this position by the joint density, relative to the 

sampling density, which we may consider as a weight: 

( ) ( )exp( )k i k iu q  (1.74) 

Thus the following fraction, 
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( )
1

1 r

i k i
k

u
r




   (1.75) 

represents the ratio of the area of the conditional density to the area of the sampling density.   

The r=ISAMPLE is the number of random samples selected for each individual.  This 

fraction is now used to adjust the area of the sampling density Ei, which is known, to obtain 

the true area of the conditional density, which is unknown: 

log( )

ˆlog( ( ,

i i i

i i

L E

l | 

  

 y   1 1 1

/2

1 1 1ˆ ˆ)) log(det( )) ( ) ( ) log(det( ))
2 2 2

log( )

i i i i i

n

i 

       



S        (1.76) 

so that /2log( )n

i   is the “correction factor” that the randomization method adds to our 

original area equation to improve its accuracy.  In NONMEM,  is continually adjusted so 

that i  approximates IACCEPT, up to the limit of the boundaries of   being between 

ISCALE_MIN and ISCALE_MAX (available in NONMEM 7.2). 

 

The above derivation of sample weights and likelihood evaluation for importance sampling 

resulting in equations (1.73) and (1.76) was developed to demonstrate that they are based on 

general principles of obtaining integrals by Monte Carlo methods.   These relationships can 

be simplified by moving all of the elements from Ei to q(k)i, given that the components in Ei 

are constant for all random samples k, so that the use of exp(q(k)i) as a weight factor will not 

be affected.  Furthermore, we may generalize for all sampling densities ( ) ( , )k si i siN    , 

by substituting a general sampling density mean si in place of ˆ
i , and a general sampling 

density variance i si  in place of  
1

1 1

i


 S , so that we obtain: 

( ) ( )log( ( ,k i i kq l |  y   1

( ) ( )

1

( ) ( )

1 1
) ( ) ( ) log(det( ))

2 2

1 1
( ) ( ) ( ) log(det( ))

2 2

k i k i

k si i si k si i si 





    

 

     

     

 (1.77) 

( ) ( )exp( )k i k iu q  (1.78) 

( )
1

1 r

i k i
k

u
r




   (1.79) 
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log( )i iL    (1.80) 

 

The new and improved objective function is then 

1

m

i
i

L L


   (1.81) 

With this technique, we can also evaluate an improved mean and improved variance-

covariance matrix. Letting 

( )

( )

( )
1

k i

k i r

k i
k

u
z

u






 (1.82) 

so that 

( )
1

1
r

k i
k

z


  (1.83) 

then 

( ) ( )
1

r

i k i k i
k

z


    (1.84) 

( ) ( ) ( )
1

( )( )
r

i k i k i i k i i
k

z


  B      (1.85) 

(note also that these are means and variance about the means, as indicated by the line above 

the parameter).  The update equations yield the following: 

1

m
i i

i
i

LL

 


 
 

  



  

1

1

( )
m

i
i i

i









   


g 0


  


 (1.86) 


H

1

1

m
i i

i





 


 

 


 
 (1.87) 

The easiest way to maximize is to perform the following updates: 

1ˆ


     H g
    (1.88) 

ˆˆ ( )i i     

And, according to equations (1.66), (1.64) and (1.57), 
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1 1
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1 1 1

( ) ( ) ( )
1 1

1ˆ ˆ ˆ( )( )

ˆ ˆ( )( ) ( )( )

ˆ ˆ( )( )
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i i i i
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rm m

i i i i k i k i i k i i
i i k
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k i k i i k i i
i k

m m

z
m m

z
m

 

  

 

    

        

  

B


     

 
       


   

 (1.89) 

This is equivalent to performing summary statistics on all of the random samples among all 

of the individuals.  Note that the normalized weights ( )k iz defined in equation (1.82) are 

obtained from sampled evaluations under the joint density ( ( , )i il | h | y     , and are 

therefore empirical evaluations of the conditional density of equation (1.32).  As the number 

of samples approaches infinity ( r  ), equations (1.88) and (1.89) approach the exact 

evaluation of updates that are required, as expressed in equations (1.39) and  (1.66). 

 

For subsequent iterations, the Monte Carlo evaluated conditional mean and variances of the 

previous iteration for that subject may be used as the parameters to the sampling density.  

This multivariate density has mean at pi and, and variance of piB , so we sample from 

( ) ( , )k pi i piN     where subscript p refers to previous iteration, so the pertinent weighting 

function is: 

( ) ( )log( ( ,k i i kq l |  y   1

( ) ( )

1

( ) ( )

1 1
) ( ) ( ) log(det( ))

2 2

1 1
( ) ( ) ( ) log(det( ))

2 2

k i k i

k pi i si k pi i si 





    

 

     

       

 (1.90) 

Followed by 

( ) ( )exp( )k i k iu q  (1.91) 

( )
1

1 r

i k i
k

u
r




   (1.92) 

log( )i iL    (1.93) 

and the additional computations are carried out as before.  Whether the parameters to the 

proposal density are obtained from a MAP estimation, or from conditional means and 

variances determined from a previous iteration, depends on whether METHOD=IMP or 
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METHOD=IMPMAP is used, and the settings of MAPITER and MAPINTER (available in 

NONMEM 7.2). 

 

For those θ that are not expressed in the model through μ, the θ may appear anywhere in the 

likelihood.  To optimize the population objective function in these θ as well, we need to 

perform a finite difference on the entire likelihood for each non-mu modeled  j of θ  

iL







(i

j

L 


  ) (j iL   )

 j

  (1.94) 

log( ( , | (ip  y    ), , )) log( ( , |j i ip  y    , , ))i



 
( ,i

j

z | 

 
 
  

y  , ,i d



      

 (1.95) 

( )

log( ( , | (i

k i

p
z

 y    ), , )) log( ( , |j i ip  y    , , ))i



 

1

ir

k
j



 
  

  

 

 (1.96) 

,

log( ( , |i

i

p
E

  y


  , , ))i



 

j

g


 
 

 
 

ji
 (1.97) 

L







iL






1

m

i




g
1

i

m

i




 g  0  (1.98) 

where 


g i
is the vector of all g

 ji
for which  j  .  A Hessian matrix may be 

constructed as follows: 


H 

 g i 
g

1
i

m

i

  (1.99) 

ˆ
  



 H


1




g  (1.100) 

We now consider the computational expense for importance sampling required to update mu 

modeled theta parameters versus non-mu modeled parameters.  For complex PK/PD 

problems that use the numerical integration ($DES), the greatest computational expense is in 

evaluating the predictive function ( ,i i f t,   .  The evaluation of the individual objective 

function 2log( ( |ip  y    , , )) 2log( ( il |   y   ( , )))ih |    , in particular the data 

likelihood portion ( il | y    requires evaluation of ( ,i i f t,    for every observed value 
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of subject i.  In importance sampling, the individual likelihood is evaluated r times in the 

evaluation of the conditional means and variances, per subject per iteration, regardless of 

how many mu modeled parameters are to be evaluated, according to equation (1.84).  Once 

the conditional means and variances are determined, the individual objective function is no 

longer needed to evaluate the update for these thetas, according to equations (1.86) and 

(1.88).  

 

For non-MU modeled parameters, however, equations (1.96), (1.97),(1.98), (1.99), and 

(1.100) suggest that n r individual objective function calls are required, where n is the 

number of non-mu modeled parameters, one for each log( ( , | (ip y    ), , ))j i   

evaluation. 

 

There is a sub-class of non-mu modeled parameters for which some computation efficiency 

can be made, and these are the SIGMA parameters, or Sigma-like, theta parameters.  Such 

parameters are not used in evaluating the predictive function ( ,i i f t,   , the most 

computationally expensive component, but only in evaluating the residual variance 

( ,i i V f  ) , so NONMEM uses ( ,i i f t,   in evaluating log( ( il y    ))  as well as 

log( ( il y    )))j  during the finite difference step, and will not re-evaluate f: 

2log( ( il |  y 

1

)

[ ( )] ( ,i i i i 



 

y f V f  )[ ( )] log det ( ,i i i i  y f V f   )
 (1.101) 

 

2log( ( il |  y  j 

1

)

[ ( )] ( ,i i i i 



 

y f V f  j  )[ ( )] log det ( ,i i i i  y f V f  j   )
 (1.102) 

Note that for these parameters only the ( ,i i V f  )  has to be re-evaluated (as the Y value in 

the NONMEM control stream file), which is usually a simple algebraic relation.  SIGMA 

parameters are automatically recognized by NONMEM as those for which it can make this 

short-cut.  THETA parameters that are used only in evaluating the residual variance (in the 

evaluation of Y in the control stream file) but not, directly or indirectly, in evaluating the 

predictive function (in the evaluation of F in the control stream file), may be given an S 
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designation in the GRD setting of $EST, and only then will NONMEM utilize the short cut 

for evaluating its partial derivative. 

 

Sigma parameters (but not Sigma-like THETA parameters) can be additionally updated 

efficiently by evaluating their partial derivative gradient contributions analytically, as given 

in Appendix F (available in NONMEM 7.2).  However, if the user specifies that Sigma’s 

GRD value with an N, then their partial derivatives are evaluated numerically by finite 

difference method. 

 

In general therefore, it is best to mu model THETA parameters whenever possible, to take 

advantage of the efficiency available for EM methods, and to specify when thetas may be 

considered Sigma-like, or to take advantage of modeling residual variances via SIGMA 

parameters, as much as possible. 

 

Direct Sampling (available in NONMEM 7.2) 

Direct sampling is much less efficient than importance sampling, and can require 10000 to 

300000 random samples per subject to properly obtain conditional means and variances.  

Direct sampling does not use an “importance” region sampling density, but creates samples 

( )k  directly from the normal distribution population parameter density: ( ) ( , )k iN    (see 

[5]).  The following weight is then associated with the sample, based on the appropriate 

substitutions into equation (1.77): 

( ) ( )( ,k i i ku l |  y     (1.103) 

Conditional means and variances are obtained as shown earlier: 

( )

( )

( )
1

i

k i

k i r

k i
k

u
z

u






 (1.104) 

( ) ( )
1

ir

i k i k i
k

z


    (1.105) 

( ) ( ) ( )
1

( )( )
ir

i k i k i Ri k i Ri
k

z


  B      (1.106) 

As with importance sampling, an average of weights is obtained, 
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( )
1

1 ir

i k i
k

i

u
r




   (1.107) 

From which the integrated objective function is obtained 

log( )i iL    (1.108) 

 

Iterative Two Stage 

Iterative two stage approximates the expectation step by using the conditional modes and 

approximate conditional variances that are evaluated during the MAP estimation method 

that is also used in FOCE or LAPLACE methods, as described earlier.  We can consider an 

approximate update for mu modeled thetas that is applied in iterative two stage, by 

evaluating: 

i

i

L



ˆ ˆ( ) ( )

ii i i i i     g 0
 

       = Ai

i

L


 (1.109) 

Where subscript A refers to “approximate”.  This is an approximation to that extent that the 

mode ˆ
i  

ˆ ˆ( )i i i      

approximates the mean i .  Then as before, 

1

1 1

ˆ
m m

Ai i iA
i

i i
i

LL



  



 

  
     

   
g 0

 
 

   
 (1.110) 

We then perform a Gauss-Newton update: 

1
i i

m

i
 

 H g g    (1.111) 

1ˆ
     H g
    (1.112) 

Then, updating the mus: 

ˆˆ (i i      

Similarly, to update Omega, iterative two stage approximates update (1.66): 

1 1ˆ ( )( )
m m

i i i i i
i im m

   B
 

       (1.113) 

1 1

1ˆ ˆ ˆˆ ˆ( )( )
m m

i i i i i
i im m 

  B


     (1.114) 
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where 

 
1

1 1ˆˆ
i i


 B S   (1.115) 

is the approximate conditional variance evaluated during the FOCE or LAPLACE 

integration step. 

 

The approximate optimization of the iterative two stage method is related to an approximate 

optimization of FOCE’s or Laplace’s LN.  To consider optimizing LN for mu modeled thetas, 

we can conveniently rephrase equation (1.18) as 

ˆlog( (Ni i iL l |  y   1

1 1

1 1 ˆ ˆ)) log(det( )) ) )
2 2

1 ˆlog(det( ( )))
2

i i i i

i i



 

    

S y |

     

 

 (1.116) 

Since ˆ
i is at the mode of the posterior density, then 

log( ( il |  y 
1

ˆ

))
ˆ(

i

i i

 
  

 
0



   


 (1.117) 

It follows that: 
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 (1.118) 
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 

S y
0

 

      

 
 (1.119) 

where the term in parentheses cancels because of equation (1.117).  Comparing equation 

(1.119) with that of (1.110) shows that iterative two stage only approximates the 

optimization of FOCE’s LN because it does not include the contribution of change in the 

information matrix of the joint density with respect to theta (the log(det) term in equation 

(1.119)). 

 

Similarly, we consider differentiating FOCE’s objective function with respect to OMEGA: 
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(1.120) 

 
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 (1.121) 

Here we differentiate the objective function with respect to 1
Ω for convenience.  When the 

gradient with respect to 1
Ω equals 0, then the gradient with respect to Ω also equals 0.  The 

details of the linear algebra manipulations leading to the last part of (1.121) are given in 

appendix A.  Then we can express the exact minimization of LN with respect to Omega as: 
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
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B 0


 

 
 (1.122) 

Note that ˆ
iB represents a linearized approximation to the true conditional variance iB .  We 

may consider an approximate partial gradient to LN with respect to Omega as: 

1 1
1

m
N Ni

i

L L
 



 
 

   1

1 1 1 ˆˆ ˆ
2 2 2

m

i i i
i

 
    

 
B 0   (1.123) 

Solving for the next estimate of Omega from equation (1.123): 

̂ 
1 1

1 ˆ
m m

i
i im m 

  B


  (1.124) 

which is similar to the update of Omega in the iterative two stage algorithm (1.114).  Again, 

the ITS method updates LN only approximately, as it does not take into account the log(det) 

term in equation (1.122). 

 

To summarize, in iterative two stage, θ is updated here using the average of the modes of the 

individual joint densities, which serves only as an approximation to the more precise update 

of the average of the means of the under the joint density, as dictated by the exact equation 

(1.39).  If there is a skewness to each individual’s joint density, such that the means tend to 

differ systematically from the modes, then the iterative two stage update may yield biased 

results. 
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For non-mu modeled theta, iterative two stage in NONMEM falls back on a forward 

difference evaluation of the full likelihood: 

NL







(NL 


  ) (NL   )

 
 g  (1.125) 

Followed by a single step Gauss-Newton update: 


H 

 g i 
g

1
i

m

i

  (1.126) 

ˆ
  



H


1




g  (1.127) 

To summarize, the NONMEM FOCE method optimizes LN , which is an approximation to 

the true objective function L, and iterative two stage further approximates the optimization 

of LN. 

 

All iterative update methods that rely on updating the population parameters θ using the 

average to the individual estimates guarantee “centeredness” of the population parameters 

about the individual parameters by definition.  However, because the FOCE NONMEM 

method uses a search algorithm on an approximate objective function, it does not guarantee 

centeredness.  One can impose the “CENTERING” option to the estimation process in 

NONMEM, which then optimizes a modified objective function of equation (1.18): 

1

1 1

1 1
ˆ ˆ ˆ ˆ ˆ ˆlog( ( ( )) log(det( )) ( ) ( )

2 2

1
ˆlog(det( ( , )))

2

Ni

i i i i

i i

L

l |

|



 

 

  

 

y

S y

           

  

 (1.128) 

where 

1

1
ˆ ˆ

m

i
im 

    (1.129) 

to ensure statistical centering, although not exact centering. 

 

The MCMC method of Expectation in SAEM 

In Markov Monte Carlo sampling, used in the SAEM and BAYES methods, samples are 

generated from a larger variety of proposal densities than in importance sampling.  As 
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implemented in NONMEM, for a given set of population parameters mu and omega, 

proposed parameters phi for each individual are generated by a three mode process.  The 

following is based on references [6] and [7]. 

 

During mode 1, a vector of model parameters is generated from the following proposal 

density or kernel: 

1

1

1 1
log( ( )) log( ( | , )) log( ( | , )) ( ) ( ) log

2 2
i i i ik N h        μ μ μ μ         (1.130) 

For the acceptance test, we need to evaluate the above density along with the following 

backward density, at the present i for subject i: 

1

1

1 1
log( ( )) log( ( | , )) log( ( | , )) ( ) ( ) log

2 2
i i i i i i i i ik N h        μ μ μ μ         (1.131) 

Also, the joint density is evaluated at the present i : 

log( ( )) log( ( |i i ip   y   , , )) log( ( |i i il  y    ) log( ( , ))i ih |      (1.132) 

And at the proposed  

log( ( )) log( ( |ip   y   , , )) log( ( |i il  y    ) log( ( , ))ih |      (1.133) 

Then the test statistic is created: 

1 1 1log( ) log( ) log( ) log( )

log( ( |

ii

i i

t k k

l 

        

y

    

   ) log( ( |il   y    )
 (1.134) 

A unform random deviate u is then generated, log transformed, and if 

1log( )u t  (1.135) 

then the proposed sample set   of parameters is accepted and becomes the new i for 

subject i. 

 

Following mode 1 sampling, proposal kernel mode 1A sampling and testing is performed, in 

which a sample from one of the other subjects is randomly selected.  It is assumed that the 

set of parameters among subjects is normally distributed with mean and variance of the 

present μ and  .  Thus, the statistic t1 of equation (1.134) is used as the acceptance test.  

This method has limited use to assist certain subjects to find good parameter values by 

borrowing from their neighbors, in case the neighbors had obtained good values.   This 
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mode should generally not be used, and can be inaccurate if not all subjects share the same 

μ and  , such as in covariate modeling.  Alternatively, use mode 1A sampling at the 

beginning of an SAEM analysis for a few burn in iterations, then continue with a complete 

SAEM analysis with mode 1A sampling turned off, with more burn in and accumulated 

sampling iterations. 

 

Following mode 1A sampling, proposal kernel mode 2 sampling and testing is performed, 

using the proposal density: 

1

2

1 1
log( ( log( ( , )) ( ) ( ) ( ) log

2 2
i i i ik N    Z Z Z             (1.136) 

where i is the present set of parameters for individual i (it could have been the one accepted 

from the just completed mode 1 sampling), and where 

Z   

which includes a scaling factor .  This scaling factor is adjusted for each subject such that 

samples are accepted at a fractional rate M =IACCEPT.  This scaling factor  is similar to 

the scaling factor γ in importance sampling, and is also subject to the boundary values of 

ISCALE_MIN and ISCALE_MAX (available in NONMEM 7.2).  The backward density is 

1

2 2

1 1
log( ( log( ( , )) ( ) ( ) ( ) log (

2 2
i i i i ik N k    Z Z Z                  (1.137) 

so the test statistic is calculated as: 

2 2 2log( ) log( ) log( ) log( ) log( ) log( )i ii i
t k k                         (1.138) 

A uniform random deviate u is then generated, log transformed, and if 

2log( )u t  (1.139) 

then the proposed sample set   of parameters is accepted and becomes the new i for 

subject i.  

 

For proposal kernel mode 3, each parameter of the vector is sequentially sampled using the 

univariate density: 

1 1 1

3

1 1
( | ) log( ( | , )) ( ) ( )( ) log

2 2
l li l li ll l li ll l li llk N z z z                 (1.140) 
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where subscript l refers to the lth parameter, and 1
llz is the lth diagonal element of 1

Z .  The 

backward density is 

3 3( | ) ( | )l li li lk k     (1.141) 

so the test statistic is: 

3 log( ) log( )l i
t         (1.142) 

Where l equals 
i but with the lth element replaced with l : 

,{ ,l l i l  }  

Once a parameter is tested, the result contributes to the new i for the next parameter in the 

vector to be sampled. 

 

The mode 1B kernel obtains samples using the individual conditional mean and individual 

conditional variance collected from previous iterations as proposal density (a type of 

importance sampling kernel for SAEM). 

 

During the MCMC sampling process, the IACCEPT sets M , ISAMPLE_M1 determines 

the number of mode 1 samplings, followed by ISAMPLE_M1B samplings, followed by 

ISAMPLE_M1A samplings, followed by ISAMPLE_M2 mode 2 samplings, followed by 

ISAMPLE_M3 mode 3 samplings.  The final parameter set i  after the cycle of 

ISAMPLE_M1+ISAMPLE_M2+pISAMPLE_M3 samplings (where p=number of elements 

in vector i ) serves as the results of one chain for subject i.  During each iteration, 

r=ISAMPLE separate chains of vectors i may be collected.  Then, as described with 

importance sampling, the following may be calculated: 

( )
1

r

i k i
k

    (1.143) 

( ) ( )
1

( )( )
r

i k i i k i i
k

  B      (1.144) 

Note that the acceptance/rejection process assured that the collection of ( )k i reflect the 

distribution of the desired conditional density, and weights z are not needed.   
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During the stochastic mode, the updates to the population parameters (both mu and non-mu 

modeled) are then performed as described in importance sampling.  During the 

accumulation mode, update results from previous k-1 iterations are averaged into the 

updates of the present kth iteration.   

 

For mu modeled theta, and Omegas, the conditional means and variances are accumulatively 

updated and saved as follows: 

1

1 1
k kiS iS ik

k

k k


     

   
1 1

2 2( 1) 1
k k kiS iS iS ik ik

k

k k 


   S B B   

2

k k kiS iS iSB S    

followed by update of the main population parameters in the usual manner: 

L








1

1

( )
k

m
i

iS i
i










   


g 0


  


 (1.145) 


H

1

1

m
i i

i





 


 

 


 
 (1.146) 

1ˆ


 

 H g
    (1.147) 

ˆˆ ( )i i     

1 1

1ˆ ˆ ˆ( )( )
k i i k k

m m

iS S i iS
i im m 

   B


       (1.148) 

For non-mu modeled theta, the thetas ˆ
 k of the present kth iteration are updated using 

equations (1.47)-(1.52) using the present iteration’s sampling process, followed by: 

ˆ


ˆ1)
kS k   

1

ˆ
kS 
 ) /k k  (1.149) 

First derivative gradients of non-mu modeled theta are also accumulated (for use in first 

order approximations of standard errors, see Appendix C): 

1

1 1
k kiS iS ik

k

k k


g g g  (1.150) 

In general, the order of accuracy for the various methods is 

Monte Carlo EM (IMP, SAEM, DIRECT) >Laplace>FOCEI>ITS. 
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Three Stage EM Analysis 

There are times when one desires to use information from a previous analysis and 

incorporate it into the present analysis.   This would be in the form of prior information for 

thetas and/or omegas.  The principle on which this is based is as follows.  Let  be the 

priors to the thetas (theta priors, which could be estimates of theta from a previous analysis).  

Let the matrix 1

  be the information matrix (which could be the theta portion of the 

inverse of the standard error variance matrix of a previous analysis) of the theta priors.    

Then  may be called variance to theta priors, or theta variance priors.  Let   be the 

prior to the omegas of the population inter-subject variance-covariance matrix, of dimension 

p  (Omega priors, could be Omega estimates of a previous analysis), let ρ be the degrees of 

freedom of   (degrees of freedom priors, could be the number of subjects in the previous 

analysis).   The contribution to the objective function that incorporates this prior information 

is  

   1log ( | ) log ( | , 1pL N W p              (1.151) 

And is then added to equation (1.11): 

1

log( ( , | , ) )
m

i p
i

L p d L





    y      (1.152) 

where 

11 1
log( ( , )) ( ) ( ) log(det( ))

2 2
N                 (1.153) 

      

1log( ( | , )

1
tr( ) ( 1) ln ln ln

2

W

W W

W d

d n d n



 

  

      





 

 

   
 (1.154) 

(not including constants) where n is the dimension of  .  The degrees of freedom dw will be 

described later.  It follows that the partial derivatives to L contributed by this prior 

information are: 

1( )PL 
  


   


 (1.155) 

1 2

1 2

1 1

1 2( , ) ( )P
j W j

j j

L
c j j z



 



I I    (1.156) 
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where 

1 2 1 2

1 2

( , ) 1 for

1/ 2 for

c j j j j

j j

 

 
 (1.157) 

and 

( 1) /W Wz d n     (1.158) 

Which suggest the following updates.  To determine the  modeled theta that minimize the 

objective function, we must solve adding the contribution from the prior: 

L








1 1

1

( ) ( )
m

i
i i

i




 




    


g  


     


 (1.159) 

and 


H

1 1

1

m
i i

i

 



 


 


 
 

 
 (1.160) 

And performing the following update As before: 

1ˆ


     H g
    (1.161) 

For non-mu modeled thetas, 

iL








,

log( ( , |i

i

p
E

  y


  , , ))i



 

 

 
  

 

g i
 (1.162) 

L







iL








1

1

( )
m

i





      


g

1

1

( )
i

m

i






   g      0  (1.163) 


H 

 g i 
g

1

1
i

m

i





   (1.164) 

ˆ
  



H


1




g  (1.165) 

The inter-subject variances are updated as 

1ˆ ( )( )
1

m m

i i i H
i i

Wm d n
    

    
B

 

        (1.166) 

These were derived from setting partial derivatives of the objective function to 0 and using 

the appropriate “inverse” densities and particular degrees of freedom in the objective 

function. 
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For maximization methods (all methods except BAYES), the degrees of freedom to the 

inverse Wishart is selected as 

1Wd n    (1.167) 

so that the maximization of these densities leads to a centering about the prior inter-subject 

variances, weighted according to the number of subjects from that previous analysis, and 

with a denominator term of m  , yielding an intuitive update.  That is, the density whose 

mode is at 

  is 1( | , 1W n      .  We shall call this the “modal” or maximization 

version of adding the prior information.   The density whose mean is at 

 is 

1( | ,W     ).  A BAYES analysis is concerned with obtaining average population 

parameters rather than best fit or modal population parameters, so it utilizes the degrees of 

freedom 

Wd   (1.168) 

which we shall call the “mean” version of adding the prior information. 

 

The above equations are also suggested by the sample distribution equations listed on page 

341 of [8]. 

 

The priors to Σ  are also inverse Wishart distributed with prior parameters (
ΣΣ ,  ) so 

similar relationships hold, as for  priors.  However, Σ parameters are embedded in the 

data likelihood portion of the total likelihood in a non-linear manner, so updates need to be 

performed by extending the first and second derivatives of the total likelihood with respect 

to Σ , and then using them in the Gauss-Newton update process.  With this in mind, we need 

to find the partial derivative of the prior portion of the objective function with respect to 

each of the cholesky elements to Σ , since this is how we vary the parameters in Σ . Let Λ  

be the cholesky matrix to Σ : 

Σ ΛΛ  (1.169) 

So, 

      1
tr( ) ( 1) ln ln ln

2
L d n d n 

      
       Σ Σ ΣΣ Σ Σ Σ

  (1.170) 
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      1
tr( ) ( 1) ln ln ln

2
d n d n      

       Σ ΣΣ Λ Λ ΛΛ Σ
   (1.171) 

It is the cholesky elements in Λ  that are varied to optimize the likelihood, so, 

( 1)
L

d n

  


      


ΣΛ Λ Σ Λ Λ

Λ

     (1.172) 

 

1 2 2 1 1 2 2 1 1 2 2 1

2 2 1 2

1 1

j k j k j j k k j k j k

j k j k

L L
 

 
   

 

 
        

  
Σ ΣI Λ I Σ Σ Λ I I Σ I Λ Σ Λ I I I Λ I

Λ

       

 (1.173) 

Where  

1for vector element

0 otherwise

j j



I

 

1for matrix element ,

0 otherwise

jk j k



I
 

 

Population Mixture Modeling 

Sometimes the data may be derived from two or more sub-populations, as evidenced by a 

distribution of a parameter among the subjects that appears to be bi-modal, or skewed.  For 

example, suppose the data is first fit with a simple one compartment model, with volume Vc 

and rate constant of elimination k10.  A histogram analysis of the individual k10's suggests a 

bimodal or skewed distribution.  However, none of the known binary covariates (gender, for 

example) explains this bimodality.  Under these circumstances, one can specify the 

probability of an individual belonging to a sub-group, without insisting on the certainty of 

belonging to that particular sub-group. 

 

Consider that we have Nm sub-populations.  Then for each subject i, and for each sub-

population j we have the probability 

1

( | , ) ( , | , )
mN

i j j i
j

p a p d





 y y       (1.174) 

where 
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( , | , )j ip y     (1.175) 

is the density for sub-population model j, for subject i, and aj is the probability of belonging 

to sub-population j.   Then define 

log( ( , | , )ji j iL p d



   y      (1.176) 

so the negative log-likelihood of an individual is: 

1

log( ( , | , )
mN

i j j i
j

L a p d





   y      (1.177) 

1

log( ( , | , )
mN

j j i
j

a p d





   y      (1.178) 

1

log( exp( ))
mN

j ji
j

a L


   (1.179) 

Consider that equations for updating the non-proportion (that is, non-a) population 

parameters {q  are derived from obtaining the partial derivatives of  the objective 

function L: 

1

1

exp( )

exp( )

m

m

ji

j jiN
i

N
j

k ki
k

L
a L

L

a L







 
 

 

q

q
 (1.180) 

or 

1 1

1

m m

m

ji

j jiN N
jii

jiN
j j

k ki
k

L
a r

LL
a

a r
 





 
  

 


q

q q
 (1.181) 

where 

exp( )ji jir L   (1.182) 

and 

1

m

j ji

ji N

k ki
k

a r
a

a r






 (1.183) 

is the probability or weight for individual i, sub-population model j.  As an example, 

1

( ) ( , )
ji

m
ji

i j i i
i

i

L
z | d







  


y g

μ



       (1.184) 
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where 

( , )j i iz | y    (1.185) 

is the conditional density for subject i modeled under sub-model j, then the appropriate 

conditional mean for subject i would be 

1

mN

i ji ji
j

a


    (1.186) 

where 

( , , )ji j i iz | d



  y       (1.187) 

which are then used in the usual way to update the thetas. 

Similarly: 

1

( )
mN

i ji ji ji ji i i
j

a


   B B      (1.188) 

where 

( )( ) ( , , )ji ji ji j iz d



 B | y         (1.189) 

is the conditional variance for individual i, sub-model j, whereupon the update is the usual: 

1 1ˆ ( )( )
m m

i i i
i im m

  B
 

       (1.190) 

The weighted average of the other expectation results are also performed, using the same 

weightings.  The Lji, and therefore aji, is readily obtained during the expectation step as the 

objective function to subject i, under sub-population model j.  In practice therefore, the 

expectation step is done Nm times for each individual, collecting the resulting conditional 

means, variances, and objective function values to each sub-model, and then performing the 

weighted average, as shown above. 

 

A method in keeping with minimizing the total objective function would be to construct 

partial derivatives and partial second derivatives, where for each subject i: 

1 1

exp( ) exp( )

exp( )

m m

m m

ji N i ji N ii

N N

j
k ki k ki

k k

L L r rL

a a L a r
 

   
   

  

 (1.191) 
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2
1 2

1 2 1 2

1 1

exp( ) exp( ) exp( ) exp( )

exp( ) exp( )

m m

m m

j i N i j i N ii i i

N N

j j j j
k ki k ki

k k

L L L LL L L

a a a aa L a L
 

       
  
     

 (1.192) 

since 

1

1

1
m

m

N

N j
j

a a




    (1.193) 

Then, perform the usual Gauss-Newton update, where 
a are all thetas that model the sub-

population proportions in the $MIX module: 

1
a

m
i

i
a

L



 
 

 

a
g

a



 (1.194) 

1 1
a a

m m
i i

i i
i i

a a

L L
g g

 

 
  

 
aH  

 
 (1.195) 

   
1

a aanew aold



  H g    (1.196) 

 

MCMC Bayesian Analysis for Evaluating a Distribution of Population Parameters 

The Markov chain Monte Carlo (MCMC) Bayesian analysis can be used to obtain many 

thousands of population parameter and variance parameters that represent the distribution 

according to their ability to fit the data.  This information is similar to what is obtained by 

boot strap methods, and MCMC Bayesian analysis can be used in their place.  The Bayesian 

analysis may be performed with or without including prior information, but it is 

recommended that there at least be prior information for OMEGA. 

 

There are two main types of Bayesian analysis available in NONMEM.  The most efficient 

is the Gibbs sampling method, and is used to create samples of thetas that are linearly 

modeled with respect to their mu’s, and the inter-subject variances.  This is performed in the 

manner of page 341 of [8].  Updating linearly modeled thetas (designated as 
L

 ) is done as 

follows.  Use the EM update method to obtain estimates ˆ
L

 : 

L
H

1 1

1 L

L L

m
i i

i


 

 



 


 

μ μ
 

 
 (1.197) 

Followed by 
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1ˆ
L L LL

a


 

  H g
    (1.198) 

Next, sample from the following conditional density: 

 1ˆ[ | .] ,
L L

L

N


 


H


   (1.199) 

For the Omegas: 

1ˆ ( )( )
m m

i i i
i im



    
  

B 
 

        (1.200) 

Followed by sampling from an inverse Wishart density: 

  
1

1 ˆ[ ] ,W m 


      (1.201) 

A matrix with an inverse Wishart distribution of m  degrees of freedom could be 

constructed as follows.  Create k vectors of normally distributed random samples: 

(0,1)k Nx  (1.202) 

Then construct 

1

m

m k k
k










 S x x  (1.203) 

1

ˆ ˆ

 L S L
 

   (1.204) 

Where ˆL


is the cholesky of ̂ .  More efficient methods of creating an inverse Wishart 

matrix sample are available.  Because these sample densities are also the conditional 

densities for the respective parameters, the samples are always accepted, and no 

acceptance/rejection analysis needs to be performed. 

 

Sigma parameters (but not Sigma-like THETA parameters) that are isolated residual 

variance coefficients are updated as follows: 

2

2

2
1 1

( )
ˆ

( / )

imm
ij ij

i j
ij

y f

y


 


  

 
 (1.205) 

Followed by sampling from an inverse chi-square: 

2 2 2ˆ( , )N      

Where N is the total number of data points involved in evaluation of that particular sigma. 
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Metropolis-Hastings sampling must be performed on all other types of theta parameters, as 

follows.  For the first mode, for thetas not linearly mu modeled and cholesky decomposed 

sigma elements, designated collectively as  , proposed sample parameters for the k+1th 

iteration are created using 

 
1

0 0 0

1 1
log( ( | , )) ( ) ( ) log

2 2
N


   Z Z Z       (1.206) 

0 and Z  vary according to how many samples have so far been created.  During the first 

several hundred iterations of burn-in, 
0 are the initial thetas at the start of the analysis, and  

Z is a diagonal matrix with diagonal elements that are equal to (0.5* 0)
2
.  During the 

subsequent iterations of burn-in, 0 and Z are the sample means and variances of  collected 

during the previous several hundred iterations.  During the stationary phase, 0 and Z are 

the sample means and variances of all   collected so far since the beginning of the 

stationary phase. 

 

To reflect the probability of choosing these values, the following log density values are 

therefore calculated, based on the respective proposal densities, for mode 1 

1 0 0 0log( ( )) log( ( | , ))k N Z      (1.207) 

The log likelihood of the kth set of population parameters with respect to the data, and with 

respect to positions of the kth set of individual parameters ik  is evaluated also: 

1

log( )) log( ( | , , ))
m

k i ik k ik k
i

p


   y      (1.208) 

The log likelihood of the proposed sample set of population parameters with respect to the 

data, and with respect to positions of the present kth set of individual thetas is evaluated 

also: 

1

log( )) log( ( | , , ))
m

i ik i k
i

p


   y      (1.209) 

The following test statistic is created: 

1 1 0 1 0log( ( | )) log( ( | )) log( )) log( ))k kt k k               (1.210) 

A unform random deviate u is then generated, log transformed, and if 

1log( )u t  (1.211) 
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then the proposed sample set of population parameters is accepted.  If rejected, then the kth 

sample set is used as the k+1th sample set.  This is done PSAMPLE_M1 (an option in 

NONMEM) times. 

 

Next, during the second kernel density mode, the population parameters of the present 

position k may be used to create a sample for the next iteration: 

 
11 1

log( ( | , )) ( ) ( ) log
2 2

k k kN w w


   Z Z Z       (1.212) 

Where k is the accepted theta of the kth iteration, w is a scaling parameter, which is 

adjusted throughout the analysis so that a fraction PACCEPT (option) of random sample 

sets are accepted.  The PACCEPT (option) parameter is set by the user.  

 

To reflect the probability of choosing these values, the following log density values are 

therefore calculated, based on the respective proposal densities: 

2log( ( | )) log( ( | , ))k kk N w Z     (1.213) 

as well as their backward density of mode 2: 

2 2log( ( | )) log( ( | )) log( ( | ))k k kk N w k Z       (1.214) 

The test statistic is created: 

2 2 1log( ( | )) log( ( | )) log( )) log( ))k k k kt k k               (1.215) 

A uniform random deviate u is then generated, log transformed, and if 

2log( )u t  (1.216) 

Then the sample is accepted.  This is done PSAMPLE_M2 times. 

 

As a third kernel sampling mode, samples on each parameter separately and sequentially 

may be made using the univariate distribution 

1 1 11 1
log( ( | , )) ( ) ( ) log

2 2
l kl ll l kl ll l kl llN z z z            (1.217) 

where 1

llz is the llth diagonal element to Z
-1

, for parameter l.  The other parameters are not 

moved when in this mode.  
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To reflect the probability of choosing these values, the following log density values are 

therefore calculated, based on the respective proposal densities: 

3log( ( | )) log( ( | , ))l l kl l klk N w Z     (1.218) 

and backward density of mode 3: 

3log( ( | )) log( ( | , ))l kl l kl lk N w Z     (1.219) 

The test statistic is created for each parameter l: 

3 3 1log( ( | )) log( ( | )) log( )) log( ))l kl kl k k klt k k              (1.220) 

A uniform random deviate u is then generated, log transformed, and if 

3log( )u t  (1.221) 

then the proposed sample set of population parameters is accepted as the k+1th sample set.  

If rejected, then the kth sample set is used as the k+1th sample set.  

 

The third mode is done for each parameter PSAMPLE_M3 times , for n*PSAMPLE_M3 

times  in a given iteration, where n is the number of population parameters in the vector   .   

 

If the user has selected to perform Metropolis-Hastings samplings for Omega elements, then 

for each time that samples of population mean parameters and covariates are created, 

samples of population variances are also created using the inverse Wishart distribution. 

 

For mode 1, using the starting position values (k=0)  (OSAMPLE_M1 times): 

      

1

0

0

log( ( | ( ) , ( )

1
( ) ( ) ( 1) ln ( ) ln ln

2

W m m

m tr m n m n m

 

   

    

           




 

   
 (1.222) 

To reflect the probability of choosing these values, the following log density values are 

therefore calculated, based on the respective proposal densities: 

1

1 0 0log( ( | )) log( ( | ( ) ,( )k W m m         (1.223) 

The log likelihood of the k set of population parameters with respect to the data, and with 

respect to positions of the k set of individual parameters ik  is evaluated also: 

1

log( )) log( ( | , , ))
m

k i ik k ik k
i

p


   y      (1.224) 
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The log likelihood of the proposed sample set of population variances with respect to the 

data, and with respect to positions of the present kth set of individual thetas is evaluated 

also: 

1

log( )) log( ( | , , ))
m

i ik k i
i

p


   y      (1.225) 

During mode 1, the following test statistic is created: 

1 1 0 1 0log( ( | )) log( ( | )) log( )) log( ))k kt k k               (1.226) 

A uniform random deviate u is then generated, log transformed, and if 

1log( )u t  (1.227) 

then the proposed sample set of variances is accepted as the k+1th sample set.  If rejected, 

then the kth sample set is used as the k+1th sample set.  

 

 

For mode 2, the present position k is used (OSAMPLE_M2 times): 

      

1log( ( | ( ) , ( )

1
( ) ( ) ( ( ) 1) ln ( ( )) ln ln ( )

2

k

k k

W w m w m

w m tr w m n w m n w m

 

   

    

           


 

   

(1.228) 

where w is the scaling parameter (separate from that used for the normal distribution 

proposal density for the theta parameters) to allow OACCEPT acceptance rate.   

 

To reflect the probability of choosing these values, the following log density values are 

therefore calculated, based on the respective proposal densities: 

1

2log( ( | )) log( ( | ( ) , ( )k kk W w m w m         (1.229) 

as well as their backward density of mode 2: 

1

2log( ( | )) log( ( | ( ) , ( )k kk W w m w m         (1.230) 

The test statistic is created: 

2 2 1log( ( | )) log( ( | )) log( )) log( ))k k k kt k k               (1.231) 

A uniform random deviate u is then generated, log transformed, and if 

2log( )u t  (1.232) 
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then the proposed sample set of variances is accepted, and serves as the k+1th sample set.  If 

rejected, then the kth sample set is used as the k+1th sample set.  This is done 

OSAMPLE_M2 times. 

 

A single iteration consists of: Gibbs sampling of THETAS, SIGMAS and OMEGAS, 

followed by Metropolis-Hastings sampling of other THETAS, PSAMPLE_M1 times for 

mode 1, then PSAMPLE_M2 times for mode 2, followed by OMEGAS sampled  

OSAMPLE_M1 times for mode 1, then OSAMPLE_M2 times for mode 2.  The final 

sample set of THETAS, OMEGAS and SIGMAS after going through this process is then 

stored in the raw output file as the results to that particular iteration. 
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Conditional Weighted Residuals 

 

We consider the following linear-epsilon residual error model: 

1

( ( )
M

i i im m
m

y f q 


  η η  (2.1) 

for data points i=1 to N of a particular subject, which takes into account intra-subject error 

components within a subject (such as homoscedastic eps(1) mixed with heteroscedastic 

eps(2)) plus possible intra-individual error interaction with other data points, as well as the 

possibility that imq depends on η .  We define the Mx1 normally distributed random vector: 

 , 1 tom m M ε  (2.2) 

with the properties: 

(E  ε 0  (2.3) 

( )E  εε I  

( ) ( ) ( ) 0i k i kE E E     (2.4) 

and the NxN matrix 

 , 1 to , 1 toimq i N m M   Q  (2.5) 

with 1xM row vectors 

 , 1 toi imq m M  q  (2.6) 

Then, for a given η , the expected value over all epsilon is 

1 1

( ) ( ( ) ( ( ) ) ( ( ) ( ) (
M M

i i im m i im m i
m m

E y E f E q f q E f  
 

        η η η η η  (2.7) 

and 

    
1 1 1 1

1 1 1 1

var( ) (( ( ( ( )
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( ) ( ) ( )

i j i i j j
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M M M M
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m k m m

y y E y f y f

E q q E q q

q q E q q q q



    

 

   

   

     

             
   

        

η η

η η η η

η η

 (2.8) 

or 

var( )  y Q Q V  (2.9) 

To integrate over all η  and ε and have an analytical solution, first define 
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( )
mi

i mk

k

q
w







 (2.10) 

as the series of Mxn matrices 

 ( ) , 1 to , 1 toi i mkw m M k n  W  (2.11) 

and the Nxn matrix  

( )
, 1 to , 1 toi

ik

k

f
g i N k n



 
    

 

η
G  (2.12) 

with 1xn row vectors 

( )
, 1 toi

i ik

k

f
g k n



 
    

 

η
g  (2.13) 

We now linearize by Taylor series expansion about η  as follows: 

ˆ ˆ ˆ( ( )i i i i i i iy f            η g η g η q ηW ε ηWε  (2.14) 

If we now integrate over all η  and ε , we have the marginal density of y with mean 

,
ˆ ˆ( ) (i i iE y f 

 η g η  (2.15) 

and variance 

ˆ ˆ ˆ ˆ( ) (( ( )( ( ))i j i i i j j jVar y y E y f y f      η g η η g η  (2.16) 

ˆ ˆ(( ( ) )( ( ) ) )

ˆ ˆ( ) ( ) ( )( ) ( ( ) )

i i i i j j j j

i j i i j j i j

E

E E E E

 

   


                  

           

g η q ηW ε ηWε g η q ηW ε ηW ε

g ηη g q ηW εε q W η ηW εε W η
 (2.17) 

But 

( ) ( ) ( ) ( )
1 1 1 1 1 1

( ) ( ) ( ) ( )
1 1 1 1 1 1

( ( ) ) ( )

( ) ( )

( )

tr( ) tr( )

i j i j

n M n n M n

k i kl j lm m k i lk j lm m
m l k m l k

n M n M n n

i lk k m j lm i lk km j lm
m l k l k m

i j i j

E E E

E w w E w w

w E w w w

   

  

     

     

     

       

      

 

ηW εε W η ηWW η

WΩW ΩWW

 (2.18) 

And similarly, 

ˆ ˆ ˆ ˆ ˆ ˆtr( ) tr( )i j i j i j
      ηWW η WηηW ηηWW  (2.19) 

So (CWRESI) 

ˆ ˆ ˆ( ) ( ) tr ( )i j i j i j i j j i i jVar y y             g Ωg q q q W q W η ηη Ω WW  (2.20) 
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If ˆ 0η  (WRESI) then 

( ) tri j i j i j i jVar y y        g Ωg q q ΩWW  (2.21) 

If Wi=0, that is, interactive component is not taken into account, then (CWRES, [9]) 

( )i j i j i jVar y y   g Ωg q q  (2.22) 

In NONMEM 7.2, if $EST INTERACTION was specified prior to requesting $TABLE 

CWRES, then g and q are evaluated at ˆη η in equation (2.22).  If INTERACTION was not 

specified prior to requesting $TABLE CWRES, then g and q are evaluated at 0η in 

equation (2.22).  In NONMEM 7.1.0 and 7.1.2, regardless of INTERACTION setting in a 

previous $EST statement, g and q are evaluated at ˆη η in equation (2.22). 

 

In NONMEM, the residual error is modeled as follows: 

1 1 2 2...i i i iy f h e h e     (2.23) 

for data point i of a particular subject, where ek refers to the kth residual error component, 

that is in turn modeled to be normally distributed with variance 

1 2 1 2
( )k k k kE e e    

And 

i
ik

k

y
h

e


 


 

Consider a problem where PK data are modeled with mixed homoscedastic error and 

heteroscedastic error, as is PD data, and there is a correlation between certain PK and PD 

data that are sampleed at the same time.  Such a correlation is indicated by the L2 variable 

listed in the data set.  For such a problem, we could have: 

1 2 1 2(2 ) (2 ) ( 1) ( 1)i i i i i i i iy f C f e C e C f e C e          (2.24) 

Where C=1 if the datum is PK, and C=2 if datum is PD.  The Sigma matrix would be 

modeled as: 

11 13

22 24

31 33

42 44

0 0

0 0

0 0

0 0

 

 

 

 

 
 
 
 
 
 

 (2.25) 
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With correlation between certain paired PK,PD data, between their homoscedastic errors 

and heteroscedastic errors. 

 

A grand matrix H’ is produced among all data points for a subject.  Suppose a particular 

subject has four data points: 

1: PK datum at time 1 hour 

2: PD datum at time 1 hour 

3: PK datum at time 2 hours 

4: PD datum at time 3 horus 

 

Data points 1 and 2 are coupled, and the others are not.  An expanded 4x12 matrix H’ is 

produced as follows: 

1

2

3

4

1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

f

f

f

f

 
 
 
 
 
 

 (2.26) 

along with an expanded 12x12 matrix 
eΣ of block diagonal form, consisting of the 4x4 

matrix Σ duplicated three times along the diagonal.  The placement of h’ik in H’ determines 

if two data points are correlated within a shared block diagonal portion of 
eΣ , as is the case 

with data points 1 and 2 , or have separate block diagonals, and therefore uncorrelated, as 

with data points 3 and 4. In this example, M=12, N=4. 

 

Defining matrix Λ  as the lower triangular cholesky matrix to eΣ  (earlier we defined Λ as 

the lower triangular cholesky: we are redefining the nomenclature for this section for 

convenience): 

e
Σ ΛΛ  (2.27) 

It follows that we can construct 

  Q HΛ  (2.28) 

Q ΛH  (2.29) 

Or, considering column vector ih  of the ith column of H, then 

i iq ΛH  (2.30) 
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And the full intra-subject variance would be 

e
     Q Q V HΛΛH HΣ H  (2.31) 

Furthermore, defining 

( )i
i






h
X

η
 (2.32) 

 then 

( ) ( )i i
i i

 
  

 

Λh h
W Λ ΛX

η η
 (2.33) 

So, 

ˆ ˆ ˆ( ) ( ) tr ( )i j i j i e j i e j j e i i e jVar y y             g Ωg h Σ h h Σ X h Σ X η ηη Ω X Σ X  (2.34) 

 

An empirical method for evaluating the population weighted residual is to perform a Monte 

Carlo integration over all possible η .   For a given subject, the expected population 

predicted values is 

( ( ) ( ) ( | 0, )E p d 





   f f η f η η Ω η  (2.35) 

where 

1 1
( | 0, ) exp

22
p



 
  

 
η Ω ηΩη

Ω
 (2.36) 

The expected residual for an observed value is 

( ( ) ( ( ) ( | 0, )E p d  





       r y f η y f η η Ω η y f  (2.37) 

without using linearization methods on η .  Now, since 

( ) (E  y f η  (2.38) 

(( ( ( ( )E
    y f η y f η QQ  (2.39) 

Then the expected population variance is (without using linearization methods on eta): 

(( ( ( ( )E  
     C y f y f   

( (( ( ( ( )) ( ( ) )( ( ) ) )E E E   
         η η f

y f y f f η f f η f V V   

where 
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( ( ) ( )) ( ) ( ) ( | 0, )E p d 





   V Q η Q η Q η Q η η Ω η  (2.40) 

(( ( ) )( ( ) ) ) ( ( ) ( ))E E 
      

η η η ηf
V f η f f η f f η f η f f  (2.41) 

To evaluate the expected weighted residual (EWRES), 

1/2

  

w C r  

where 1/2




C is the inverse square root of the expected population variance matrix. 

 

An expected conditional (without interaction) weighted residual (ECWRES) can also be 

evaluated if we evaluate the intra-subject residual error at the conditional mean, such that 

ˆ
ˆ ˆ( ) ( )

V Q η Q η  (2.42) 

if $EST INTERACTION is specifed followed by $TABLE ECWRES.  But all other 

components are Monte Carlo integrated: 

ˆ  
f

C V V  (2.43) 

 

As of NONMEM 7.2, if INTERACTION in $EST was not specified, followed by $TABLE 

ECWRES, then 

0 ( ) ( )  V Q η 0 Q η 0  (2.44) 

and all other components are Monte Carlo integrated: 

0  
f

C V V  (2.45) 

In NONMEM 7.1.0 and 7.1.2, regardless of INTERACTION setting from the previous 

$EST command, ̂V is used to evaluate ECWRES. 

 

NPDE: 

The NPDE is the normalized prediction distribution error (reference [10]: takes into account 

within-subject correlations), also a Monte Carlo assessed diagnostic item.  For the kth 

simulated vector of data ysk: 

k sk  s y f           (2.46) 

its decorrelated residual vector is calculated: 
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1/2

k k  


s

w C s          (2.47) 

and compared against the decorrelated residual vector of observed values w such that 

1

1
)

K

k

kK
 



   s
u w w         (2.48) 

For K random samples, where 

) 1 0

0 0

x for x

for x

   

 
 

For each element in the vector.  Then, an inverse normal distribution transformation is 

performed: 

 

1( )npde

w u          (2.49) 

 

NPD: 

The NPD is the correlated normalized prediction distribution error (reference [11]: does not 

take into account within-subject correlations), also a Monte Carlo assessed diagnostic item.  

For each vector of data y: 

 1/2( ) ( )
k k k

 ηr V η y f η         (2.50) 

These are then averaged over all the random samples; 

1

1
( )

k

K

c

kK 

  η
u r          (2.51) 

Then, an inverse normal distribution transformation is performed: 

 

1( )npdec c

w u          (2.52) 

 

Models Non-Linearly Modeled in Epsilon 

 

In NONMEM, one may also model the residuals using the epsilons in a nonlinear manner, 

such as: 

y = f*exp(eps(1)) 
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When population analysis is performed, however, NONMEM transposes this model into its 

linear-epsilon residual approximate form: 

y = f+f*eps(1) 

and evaluates the likelihood according to this epsilon-linearization.  All analysis methods 

(classical as well as Monte Carlo) utilize this linearization of the likelihood in epsilon.  

Furthermore, the assessment of NPDE, NPD, EWRES, and ECWRES as described above 

utilize this linearized form with respect to the epsilon model, in keeping with the way the 

data was analyzed. 

 

To most properly analyze the data in a manner that is equivalent to its epsilon exponential 

model form, and to also properly asses the various Monte Carlo population weighted 

residuals, it is best to log-transform the data, and model the residual variance to the log-

transformed data follows: 

y = log(f)+eps(1) 

The residual variance is now linear epsilon modeled, and NONMEM will analyse the data 

exactly according to the true distribution of the data. 

 



NONMEM7_Technical_Guide.doc  RJ Bauer 

4/24/2019 8:46:00 AM  Page 52 of 91  

Epsilon Shrinkage Evaluation 

The general shrinkage evaluation of the pth epsilon is evaluated as 

1

1

( )
( ) 100% 1

( )

m

i
i

m

i
i

S p
R p

N p





 
 

  
  
 

 (3.1) 

summed over subjects i to m, where 

1

1

ˆ ˆ( ) (( ( ) (( ( )
iM

i ikp ik ik ik ik ik
k

S p   



     y f V y f  (3.2) 

1

( )
iM

i ikp k
k

N p n


   (3.3) 

Where in turn 

1k
j k

n


 
  
 

 (3.4) 

is the number of data points of subject i that belong to correlated data cluster k, 

{ , }ik ijy j k y  (3.5) 

the vector of a subset of data points of subject i, which belong to correlated data cluster k of 

subject i.  Also,  

{ , , 1 }ik ijph j k p to n   H  (3.6) 

Where n=number of epsilons.  

2

ikp ijp
j k

h 


    (3.7) 

0 for 0

1otherwise

x x    


 (3.8) 

That is, the delta function is 0 if for the pth epsilon no data point in k contributes to its 

evaluation.  This assures that the epsilon shrinkage evaluation includes only residual terms 

that relate to that epsilon.  For example, it assures that epsilons involved only in PK data 

incorporate only PK data residuals, etc.  And, 

ik ik ik
V H ΣH  (3.9) 

is the residual variance matrix to subject i, data cluster k.   
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If all data points in a subject are independent, then each data point cluster k contains only its 

own data point k, so nk=1 for all k=1 to Mi, the number of data points to subject i, and the 

above vectors and matrices are scalar quantities 
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Appendix A: Matrix Algebra Tools 

 

We wish to determine the derivative of log( ( , )h | Ω  with respect to  and 1
Ω .  

Differentiating with respect to  is easily done as follows: 

1 1log( )log( ( | , )) 1 1 ( ) ( )

2 2

h
      

  
  

Ω       

  
 (4.1) 

For a particular parameter, 

1
1 1log( ( | , )) 1 ( ) ( ) 1 1
( ) ( )

2 2 2
j j

j j

h

 


     

      
 

i i
       

       (4.2) 

where ij is a vector of 0’s except for the jth element, which is 1.  But the scalar terms are 

equal: 

 1 1( ) ( )j j

    i i       (4.3)  

so 

1log( ( | , ))
( )j

j

h



 
  



Ω
i

 
    (4.4)  

and for the entire vector , 

1log( ( | , ))
( )

h  
  



Ω 
  


 (4.5)  

To differentiate log( ( | , )h θ Ω with respect to 1
Ω is more difficult: 

1 1

1 1 1

log( )log( ( | , )) 1 1 ( ) ( )

2 2

h
 

  

     
  

  

Ω       

  
 (4.6) 

To do so, we must develop some partial derivative relationships in linear algebra. Consider 

any non-singular square matrix Z which is related to its inverse by  

1 ZZ I  (4.7) 

Therefore, The partial derivative with respect to some variable x yields 

1 1
1( ) ( )

x x x x

 
   

   
   

ZZ Z Z I
Z Z 0  (4.8) 

It follows that 
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1
1 1

x x


  

 
 

Z Z
Z Z  (4.9) 

Suppose 

jkx z  (4.10) 

then 

 
1

1 1 1 1 1 1, for all 1 to , 1 tojk mj kp

jk jk

z z m n p n
z z


      

       
 

Z Z
Z Z Z I Z  (4.11) 

where jkI is a matrix that is 0 every where except for element j,k which has a value of 1.  Or 

1

1 1mp

mj kp

jk

z
z z

z



 


 


 (4.12) 

Similarly, 

 
1 1

1 1 1 1 1 1 , for all 1 to , 1 tokj jm pk

jk kj kj

z z m n p n
z z z

 
         
           

   

Z Z Z
Z Z Z I Z  (4.13) 

Suppose it is more convenient to differentiate a particular function with respect to the 

inverse of Z, then 

1

1 1 1 1

1 1 1
1 1 1 1 1 1

( ) ( ) ( ) ( )n n n n n n
mp

mj kp jm pk
m p m p m p

jk mp jk mp mp

zf f f f
z z z z

z z z z z



   

  
     

   
          

    

Z Z Z Z
 (4.14) 

or in matrix notation, 

1 1

1

( ) ( )f f 



 
  

 

Z Z
Z Z

Z Z
 (4.15) 

Furthermore, according to linear algebra, for any matrix Z 

1

for any 1 to
n

jk jk
j

z Z k n


 Z  (4.16) 

where jkz is an element of matrix Z, and jkZ is its cofactor.  The cofactor jkZ is the 

determinant of the sub-matrix of Z that does not include row j and column k.  Therefore, 

jkZ does not contain the element jkz .  Again, according to linear algebra, 

1 kj

jk

Z
z 

Z
 (4.17) 

where 
1

jkz  is the j,k element of  Z
-1

.  Therefore 
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1

1

n
jk

jk lk kl
j

lk lk

z
Z Z z

z z






  

 

Z
Z  (4.18) 

or 

1





Z
Z Z

Z
 (4.19) 

More generally, for Z raised to any power p, 

1 1

pp

p p
p p

 
  

  
  

Z Z Z
Z Z Z

Z Z Z
 (4.20) 

It follows that for any variable x which influences the elements of the matrix Z, 

1 1

1 1 1 1

tr

p p
n n n np pjk jk

kj
j k j k

jk

z z
p z p

x z x x x

 

   

    
       

     

Z Z Z
Z Z Z  (4.21) 

So also, 

1
log( ) 1

kl

lk lk

z
z z


 

 
 

Z Z

Z
 (4.22) 

so that 

1
log( )







Z
Z

Z
 (4.23) 

or, for any variable x, 

 

1 1

1 1 1 1

log( ) log( )
tr

n n n n
jk jk

kj
j k j k

jk

z z
z

x z x x x

 

   

    
       

     

Z Z Z
Z  (4.24) 

 

For any nxm matrix Y, any nxm matrix X, and any nxn matrix Z, 

     
1 1 1 1 1 1 1 1 1

m n n n n m n m n

ij jk ki jk ki ij ki ij jk
i j k j k i k i j

tr x z y z y x tr y x z tr
        

             X ZY ZYX YX Z (4.25) 

If m=1, then 

 

     tr tr tr     x Zy x Zy Zyx yx Z  (4.26) 

Derivatives to trace functions can be derived as follows: 

( )
( ) ( ) ( )pm p m m p

mp

tr
tr tr tr

x


   



X ZY
I I I ZY I ZYI  (4.27) 
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Where Ij is a column vector of zeros for all elements except for element j, for which it has a 

value of 1.   Or, 

( )tr 




X ZY
ZY

X
 (4.28) 

Similarly (taking some shortcuts in element/matrix nomenclature), 

( )
( ) ( ) ( )mp m p p m

tr
tr tr tr


        



X ZY
X I Y X I I Y I YX I XY

Z
 (4.29) 

and 

( )tr 




X ZY
XZ

Y
 (4.30) 

Using the above relationships for the following, 

1

1

( ) ( )
( )( )





  
  



    
   


 (4.31) 

It follows that 

1

log( ( | , )) 1 1
( )( )

2 2

h


 
    



Ω 
    


 (4.32) 

and incidentally, 

 1 1 1 1

1

log( ( | , )) log( ( | , )) 1
( )( )

2

h h   



    
     

  

Ω Ω   
        

 
 

 (4.33) 

The above tools also allow us to evaluate the following 

1 11 1

1 1 1 1

ˆlog( )ˆ ˆlog( ) ( ) ( )1 1 1

2 2 2

i
Ni i iL

  

   

     
   

   

S     

   
 (4.34) 

Since 

1 1 1 1 1 1 1

11 1 1 1

ˆ ˆ ˆlog( ) ˆ( )1 1

ˆ ˆ ˆ( )det( )

i i i jk jki

jk jk jk jki jki i

s

s



   

       

       

       
 

     

S S S

S S

  

 
 

 
1

1ˆ
jk jkis


    (4.35) 

or 

1 1

1 1 1

1

ˆlog(
ˆ( )

i

i

 

  



 
 



S
S





 (4.36) 
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It follows that 

 
1

1 1

1

1 1 1ˆ ˆ( )( )
2 2 2

Ni
i i i

L 
 




      


S     


 (4.37) 

and 

1

Ni NiL L


  
   

  

  
 

 (4.38) 

 
1

1 1 1 11 ˆ ˆ( )( )
2

i i i


        
  

S         (4.39) 

Because Ω is symmetrical, the independent parameters which must be varied to minimize 

the objective function consist of only half of the matrix.  Let us define the lower triangular 

matrix A containing independent parameters which relate to the elements of Ω such that 

, for 1 to , 1 to

jk jk

kj jk

a

a j n k j







  
 (4.40) 

or 

diag  Ω A A (A)  (4.41) 

It follows that 

log( ( | , )) log( ( | , )) log( ( | , ))

log( ( | , ))
,

log( ( | , )) log( ( | , ))
2 ,

jk jk kj

jk

jk jk

h h h

a

h
j k

h h
j k

 





 

     
 

  

 
   



   
  

 

Ω Ω Ω

Ω

Ω Ω

     

 

   

 (4.42) 

or in matrix notation, 

log( ( | , )) log( ( | , )) log( ( | , ))
Lower 2 diag( )

h h h     
     

Ω Ω Ω

A Ω Ω

     
 (4.43) 

and equation (1.55) results.  At the minimum, 

L L 
 

 
0

A Ω
 (4.44) 

 

Another trace relationship that appears in probability densities is: 
1 1 1( ) ( )tr tr  Σ R Λ Λ R         (4.45) 
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WhereΛ is the lower triangular cholesky matrix to a symmetrical matrix Σ , and R is also a 

symmetrical matrix.  Derivatives with respect to the cholesky elements is often desired, so, 

 
1 1 1 1

1 1 1 1 1 1

1

1 1 1 1 1

( ) ( )

2 2

tr tr   
     



    

  
        

 

     

Λ Λ R Λ Λ R
Λ Λ Λ Λ R Λ R Λ

Λ Λ

Λ Λ RΛ Σ RΛ

  (4.46) 
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Appendix B: Positive Definite Properties 

A matrix A is defined as positive definite if 

' 0x Ax  (5.1) 

for any vector x 0 .  Consider a matrix constructed as follows 

'A YZY  (5.2) 

where Y is any non-zero nxm matrix, Z is an mxm positive definite matrix, so that A is an 

nxn matrix.  Then, with any non-zero nx1 vector x, 

    x Ax x YZY x v Zv  (5.3) 

where 

v Y x  (5.4) 

is a non-zero mx1 vector.  It follows that 

0  x Ax v Zv  (5.5) 

and A is therefore positive definite.  The sum of two positive definite matrices A and B is 

also positive definite. Let 

' 0

' 0

a

b

 

 

 

C A B

x Ax

x Bx

 (5.6) 

then 

' ' '( ) ' 0a b      x Ax x Bx x A B x x Cx  (5.7) 

 

Thus, matrices of the form 

1

n

i i i
i

Y Z Y  (5.8) 

where Zi is positive definite, are also positive definite. 

 

The second derivative of any objective function L evaluated at its minimum is positive 

definite.  This can be shown by considering that the derivative of L evaluated at its 

minimum L0 is equal to 0 (otherwise, it would not be at a minimum/maximum): 

0

L 
 

 
0

θ
 (5.9) 
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And any small perturbation  from the minimum results in a change in L, called L , that 

is positive, otherwise it would be at its maximum, not its minimum.  By Taylor series 

expansion we have: 

2 2

2 2

0 0 0

1
0

2

L L L
L

      
             

       θ


     

  
 (5.10) 

and therefore the second derivative of the objective function evaluated at its minimum is 

positive definite. 
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Appendix C:  The Fischer Score Matrix for Error Assessment in EM Problems 

 

We wish to evaluate the expected value, over all possible data y and over an infinite number 

of subjects m, of the second derivative of the objective function with respect to the 

population parameters  ,q Ω .  The inverse of that matrix is then the asymptotic error 

matrix to the parameters.  We do this as follows.  Noting that 

( | ) ( , | )i i ip p d



 y q y q   (6.1) 

where 

( , | ) ( | ( | , )i i ip l h y q y      (6.2) 

and 

1

log( ( | )) log( ( | ))
m

i i
i

L p p


    y q y q  (6.3) 

then 

2 2log( ( | )) log( ( | ))
| ( | )

j k j k

p p
E p d

q q q q

      
            

y y

y q y q
q y q y  (6.4) 

21 ( | ) log( ( | )) log( ( | ))
( | )

( | ) j k j k

p p p
p d

p q q q q

    
 

     
y

y q y q y q
y q y

y q
. (6.5) 

But 

2 21 ( | ) ( | )
( | )

( | ) j k j k

p p
p d d

p q q q q

  
   

   
y y

y q y q
y q y y

y q

2 ( | )

j k

p d

q q

 


 

y
y q y

=
21

j kq q



 

=0 (6.6) 

so 

2 log( ( | ))
|

j k

p
E

q q

  
 

   
y

y q
q

log( ( | )) log( ( | ))
( | )

j k

p p
p d

q q

   


 
y

y q y q
y q y = (6.7) 

log( ( | )) log( ( | ))
|

j k

p p
E

q q

    
 
   

y

y q y q
q  (6.8) 

We note that 

log( ( | )) log( ( | ))
( | )

j k

p p
p d

q q

   


 
y

y q y q
y q y = (6.9) 
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1 1 2 2

3 3

1 2 31 1 1

log( ( | )) log( ( | ))
( | )

mm m
i i i i

i i
i i i

j k

p p
p d

q q  

     
         

y

y q y q
y q y = (6.10) 

1 1 2 2

3 3

1 2 31 1 1

log( ( | )) log( ( | ))
( | )

mm m
i i i i

i i
i i i

j k

p p
p d

q q  

   
  

 
y

y q y q
y q y  (6.11) 

Since 

( | ) 1
i

i ip y y q  (6.12) 

then 

log( ( | )) log( ( | ))
|

j k

p p
E

q q

    
 
   

y

y q y q
q = 

1 1 2 2

3 3

1 2 31 1 1

log( ( | )) log( ( | ))
( | )

mm m
i i i i

i i
i i i

j k

p p
p d

q q  

   
  

 
y

y q y q
y q y = (6.13) 

1 1 2 2

1 1 2 2 1 21 2
1 2

2 1

1 1

log( ( | )) log( ( | ))
( | ) ( | )

i i

m m
i i i i

i i i i i i
i i

j k
i i

p p
p p d d

q q 


   
   

 
y y

y q y q
y q y q y y  (6.14) 

1

log( ( | )) log( ( | ))
( | )

i

m
i i i i

i i i
i

j k

p p
p d

q q

   
 

 
y

y q y q
y q y  (6.15) 

But 

1 1 2 2

1 1 2 2 1 21 2
1 2

2 1

1 1

log( ( | )) log( ( | ))
( | ) ( | )

i i

m m
i i i i

i i i i i i
i i

j k
i i

p p
p p d d

q q 


   
   

 
y y

y q y q
y q y q y y  

1 1 2 2

1 1 1 2 2 21 2
1 2

2 1

1 1

log( ( | )) log( ( | ))
( | ) ( | )

i i

m m
i i i i

i i i i i i
i i

j k
i i

p p
p d p d

q q 


     
     

     
y y

y q y q
y q y y q y (6.16) 

1 1 2 2

1 21 2
1 2

2 1

1 1

( | ) ( | )

i i

m m
i i i i

i i
i i

j k
i i

p p
d d

q q 


   
     

     
y y

y q y q
y y  (6.17) 

1 1 1 2 2 21 1

1 2

2 1

1 1

( | ) ( | )
i i

m m i i i i i i

i i
j k

i i

p d p d

q q 


     
     

       

y y
y q y y q y

 (6.18) 

1 2

2 1

1 1

1 1m m

i i
j k

i i
q q 



    
     

     

0  (6.19) 

Furthermore, 
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[ ( | ) / ]log( ( | )) ( | ))1

( | ) ( | )

[ log( ( | )) / ] ( | )

( | )

[ log( ( | )) / ] ( | ,

i ii i i i

j i i j i i

i i i i

i i

i i i

p dp p

q p q p

p p d

p

p z d













     
  

 

  


   

y q qy q y q

y q y q

y q q y q

y q

y q q y q

  

    

    

 (6.20) 

log( ( , | ))
| ,i i

i

j

p
E

q

  
 
  

y q
y q


 

So that 

1

log( ( | )) log( ( | ))
( | )

i

m
i i i i

i i i
i

j k

p p
p d

q q

   
 

 
y

y q y q
y q y = (6.21) 

1

log( ( , | )) log( ( , | ))
| , | , |

m
i i i i

i i
i

j k

p p
E E E

q q

       
           

y

y q y q
y q y q q 

 
 (6.22) 

1

log( ( , | )) log( ( , | ))
| , | ,

m
i i i i

i i
i

j k

p p
E E

q q

      
        

y q y q
y q y q 

 
 (6.23) 

so 

log( ( | )) log( ( | ))
|

j k

p p
E

q q

    
 
   

y

y q y q
q = 

1

log( ( , | )) log( ( , | ))
| , | ,

m
i i i i

i i
i

j k

p p
E E

q q

      
        

y q y q
y q y q 

 
 (6.24) 

We define 

log( ( , | ))
| ,i i

i i

p
E
  

  
 

y q
g y q

q



 (6.25) 

and is the contribution of data from individual i to the total gradient g, where 

1

m

i
i

 g g 0  (6.26) 

at the minimum. 

 

The gradient components are evaluated by methods of differentiation of matrix algebra.  

( )i
i i i


  


g Ω


 


 (6.27) 
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Now, for the lower triangular part of the covariance matrix, 

 1 1 1 1

Lower(

1
Lower ( ) diag ( )

2
i i i

   



 
  

 
Ωg        (6.28) 

To summarize, 

 
1

1

( )
m

i i
i

Var




  qq g g  (6.29) 

where 
1

m

i i
i

g g is known as the Fisher score matrix. 

One caveat is in order.  Note that the structure of the expected value second derivative can 

be written in the form GG where G is a kxm matrix having m column vectors of  ig of size 

kx1, and k is the total number of  population parameters.   If the number of subjects m is less 

than k, then the kxk Fischer score matrix has only a rank of m, and the matrix is not 

invertible.  Thus, this manner of constructing the expected value second derivative only 

holds true as the number of subjects m as well as the number of data points per subject 

approaches infinity.  Put another way, increasing the number of data points towards infinity 

for each subject, while having only a limited number of subjects, especially k<m, will not 

lead the Fischer score matrix to approach the expected value second derivative.  For such 

conditions, the exact second derivative should be evaluated as given in appendix D. 
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Appendix D: The Exact Second Derivative Matrix for Error Assessment 

 

The second derivative matrix for the population parameters and the population variance 

parameters, when the population parameter density is normally distributed, is determined as 

in the previous appendix, but without eliminating the terms that are canceled when taking 

the expected value over all y.  For the second derivative for a normal population parameter, 

we note the following: 

2 2 2
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i

i
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z d
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   

   
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   

q q
q q q q

q q
q q

 

 

 (7.1) 

where we let q represent the vector of all population parameters and variances, and 

( |i ip p  y    , ( ), ) (i il |  y    ( ( ), )ih |       (7.2) 

log( )
( )i

i i

p
z d

 
 


g q

q
  (7.3) 

We already know the first derivatives contributed by each individual i.  For mu modeled 

thetas, 

1 1

log( )
( )i i

i

j j

p

  

  
  

 
Ω


   (7.4) 

Also, 

1 2

1 2

1 1

1 2

log( )
( , ) (( )( ) )i

j i i j

j j

p
c j j



  
     


I I        (7.5) 

where 
1j

I is a vector of 0’s for every element except for element j1, which is valued at 1.  

Also, 

1 2 1 2

1 2

( , ) 1 for

1/ 2 for

c j j j j

j j

 

 
 (7.6) 

Finally, for non-mu modeled thetas, a finite difference formula is employed: 
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log( )ip
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 (7.7) 

We now derive the second derivatives 
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Also: 
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And, since θ show up only in the h() portion of the joint density, and θ show up only in 

the l() portion of the joint density 

1

log( )i

j
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  

 

 
2

0
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 
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 (7.12) 

Defining the individual subject central moments: 

1 1 1
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where 
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and the overall central moments: 
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We now have the following: 
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where 
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etcetera.  And finally: 

 

For the  non-mu parameters: 
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At the minimum of the objective function, 
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we then obtain following simplifications: 
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j j

m

i
i

g




  (7.39) 

 

2 3

2

j j

O

 



  2 1 1 1 2 2 3

1 2
1

(3)

2 3
1

( , )
m n n

j r ij r r r j i
i r r

j

c j j g


   



 
  

  1 2 31
j j j

m

i
i

g 


  (7.40) 

Let us see that, if we take the expected value over all y, and as the number of subset of 

subjects mi sharing a particular set of covariates (and therefore sharing the same ir), 

approaches infinity, we should obtain the results in Appendix C.  First, note that: 
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1 2 3 1 1 2 2 3 3

(3)

1

1
( | ) ( )( )( ) ( | , ) ( | )

im

ir r r r ir r ir r ir j
j

i

p d z d p d
m

      





     y y
y q y y q y q y  = 

 (7.41) 

1 1 2 2 3 3
1

1
( )( )( ) ( | ) ( | )

i

j

m

r ir r ir r ir j j
j

i

l h d d
m

     





    y
y q y   = (7.42) 

1 1 2 2 3 3
1

1
( )( )( ) ( | ) ( | )

i

j

m

r ir r ir r ir j j
j

i

h l d
m

     





    yq y y  = (7.43) 

1 1 2 2 3 3
1

1
( )( )( ) ( | )

im

r ir r ir r ir
j

i

h d
m

     





    q =
1 2 3

(3)ˆ
ir r r  (7.44) 

Since h() is a multi-variate normal density, so therefore the 
1 2 3

(3)ˆ
ir r r is the skewness of a 

normally distributed variable:  

1 2 3

(3)ˆ 0ir r r   (7.45) 

Similarly,  

1

(1)ˆ 0ir   (7.46) 

and 

1 2 3 1 2 3 4 1 2 3 4 1 3 2 4 1 4 2 3

(4) (4)ˆ( | )ir r r i ir r r r r r r r r r r r r r r rp d          y y q y  (7.47) 

is derived from the kurtosis of a normally distributed random variable.  We may now make 

the final simplification: 

1 2

2 1

2

1
j j

m

i i
i

j j

O
E g g

  

   

 
  

   
y

 (7.48) 

1 2 3 4

3 4 1 2

2

1
j j j j

m

i i
i

j j j j

O
E g g 

  

 
  

   
y

 (7.49) 

1 2 3

2 3 1

2

1
j j j

m

i i
i

j j j

O
E g g

 

  

 
  

   
y

 (7.50) 

These results are expected based on the general proof for the expected information matrix 

given in Appendix C for any population parameter density. 

 

For population mixture parameters, the second derivatives are simply: 
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2

1
a a

m

i i
i

a a

O
g g

  


 

 
   (7.51) 

2

1
a

m

i i
i

a

O
g g

  


 

  
 



 (7.52) 

2

a

O

 



  
ai ig g


 

1

m

i

  (7.53) 

2

1
a

m

i i
i

a

O
g g 

  


 

 


 (7.54) 

 

For Three hierarchical stage analysis, the second derivative matrices would have added to 

them: 

2
1

2( )

PO 






 (7.55) 

for all theta parameters (mu or non-mu modeled).  For inter-subject variance components: 

1 3 4 4 3 2

3 4 1 2

1 3 4 4 3 2

2
1 1

1 2 3 4

1 1 1

1 2 3 4

( , ) ( , ) ( )

2 ( , ) ( , ) ( ) ( )

P
W j j j j j j

j j j j

j j j j j W j

O
z c j j c j j

c j j c j j z


 



 

  

 
   

   

  

I I I I

I I I I

 

    

 (7.56) 

Similarly for Sigma parameters, we add the following: 

1 3 4 4 3 2

3 4 1 2

1 3 4 4 3 2

2
1 1

1 2 3 4

1 1 1

1 2 3 4

( , ) ( , ) ( )

2 ( , ) ( , ) ( ) ( )

P
j j j j j j

j j j j

j j j j j j

O
z c j j c j j

c j j c j j z





 

 

  

 

 
   

   

  Σ

I Σ I I Σ I

I Σ I I Σ Σ Σ Σ I

 (7.57) 

If we designate the exact second derivative as described in this appendix as matrix R , and 

the Fischer score matrix (appendix C) as S, then we can construct a variance matrix in a 

manner similar to NONMEM: 

1 1( )Var   qq R SR  (7.58) 

The R matrix is not always numerically positive definite.  For Monte Carlo assessed 

information matrices, the NONMEM program passes the matrix through a positive 

definiteness filter that makes small adjustments to the eigenvalues of R, if necessary. 
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Appendix E: Adjustment of Error Matrix for Constraints and Non-Positive 

Definiteness 

 

The user supplied subroutine CONSTRAINT allows the user to impose constraints on the 

population parameters.  Therefore the error matrix must be adjusted to account for these 

constraints, and it is done as follows. 

 

Let the constraint matrix W be defined as a matrix with elements: 

j

ij

i

q
w

q





 (8.1) 

where qj is the jth population parameter (or Omega variance), which could have a 

dependence on some other population parameter qi. If no dependence exists for parameter j, 

then wij=0 for i j , and wii=1.  If no dependencies are defined for any parameter, then 

W=I, and no correction occurs.  The Error matrix is corrected as follows: 

 

For the R matrix type covariance: 

 
1

( )Var


  qq W WRW W  (8.2) 

The logic behind this equation is as follows.  Parameters that are dependent on other 

parameters are considered secondary parameters, in contrast to the primary parameters that 

are independent of other parameters.  The  
1

WRW term creates the error matrix with 

rows and columns pertaining to the secondary parameters zeroed out, while the errors of the 

primary parameters are adjusted to account for the constraint on the model.  This matrix is 

then multiplied on either side by W and W’, to fill the zeroed secondary parameter rows and 

columns of  
1

WRW  with errors from the primary parameters, in accordance with their 

dependencies on the primary parameters.  The resulting error matrix therefore contains 

errors to the primary as well as secondary parameters, and this matrix is placed in the var 

table by the poperr command, and the varc table by the poperr_corr command. 

 

Similarly for the S matrix: 
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 
1

( )Var


  qq W WSW W  (8.3) 

For the RSR matrix: 

   

    

1 1

1 1

( )Var
 

 

        
   

   

qq W WRW W S W WRW W

W WRW WSW WRW W

 (8.4) 

If a particular parameter is constrained to a fixed value, then W will be singular.  The matrix 

WRW is therefore inverted by the Jacobi method of extracting eignvalues and eigenvector 

matrices. That is, for any symmetric matrix A, the Jacobian process decomposes the matrix 

to: 

A E E  (8.5) 

where is the diagonal matrix of eigenvalues and E is a matrix of eigenvector columns, 

which has the property: 

1 E E  (8.6) 

The generalized inverse of A is then obtained as: 

 A E E  (8.7) 

where  has diagonal elements of 

1
0

0 0

i i

i

i

for

for

 




  

 

 (8.8) 

In addition, the R matrix itself can at times be not positive definite (has negative 

eigenvalues), because of the imprecision of evaluating this matrix using random sampling, 

in the manner decribed in appendix D.  It has been found in practice that using the absolute 

value of the eigenvalues to evaluate the inverse for Monte Carlo constructed information 

matrices effectively yields satisfactory error matrices. This is because negative eigenvalues 

are usually close to 0, and arise in the least important portions of the matrix.  
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Appendix F: Obtaining Analytical Derivatives of Likelihood with Respect to Cholesky 

of Sigma Parameters. 

 

The following is used to provide more rapid analysis for the importance sampling, direct 

sampling, and SAEM methods. 

 

We concern ourselves with the derivatives of the likelihood: 

log( ( il | y   11 1
) ( ) ( ) log

2 2
i i i i i i

     y f V y f V  (9.1) 

With respect to the Sigma parameters.  Consider that the Sigma parameters are involved in 

the construction of the residual variance matrix as follows: 

   V HΣΗ HΛΛΗ  

 (9.2) 

Where Λ  is the cholesky of Σ .  It is the elements of Λ  that are actually varied to optimize 

the objective function, therefore we wish to determine the derivative with respect to the 

elements ofΛ . 

First derivatives: 

log( ( il |  y   
1 1 1 1 1 1

1 log) 1 1
( ) ( )

2 2

i
i

i i i i

j k j k j k  

  
   

  

VV
y f y f = 

 (9.3) 

1 1 1 1

1 1 11 1
( ) ( )

2 2

i i
i i i i i i i

j k j k

tr
b b

  
  

     
   

V V
y f V V y f V  (9.4) 

1 1 1 1 1 1j k j k j k  

  
  
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V ΛΛ
H Η H Η


 (9.5) 

1 1 1 1

1 1 1 1 1 1 1 1

1 11 1{ , ) , ) for 1 to , 1 to }

j k k j

j k j k j k j k

kk jkj j k j j n k n

   

   

    
      

   

    

ΛΛ Λ Λ
Λ Λ I Λ ΛI



 (9.6) 

Second derivatives: 

2 log( ( il |  y 

2 2 1 1

)

j k j k 




 
 (9.7) 
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   

  
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  

     

V ΛΛ
H Η H Η


 (9.9) 
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2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1
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       

     

       
     

       

        

ΛΛ Λ Λ Λ Λ
I I I I



  (9.10) 

Since the Sigma parameters are only in the data likelihood portion of the conditional 

density, then 

log( ( , |ip   y   , , ))i



 



1 1

1 1

1 1

1 1

log( ( , | , , ))

log( ( , | , , ))

i j k i

j k

i j k i

j k

p

l









 




 




y

y

  

  
    (9.11) 

which is used in equation (1.48).   The Sigma-like theta parameters cannot be processed in 

this way, because the user defines sigma-like parameters in H, with unpredictable functional 

relationships to that theta. 
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Appendix G: Degrees of Freedom Assessment for OMEGA Priors 

 

The heuristic justification for Mats Karlsson’s formula: 

2

2N
E

 
  

 

          (10.1) 

Where N is the number of subjects of the previous analysis, is an omega diagonal element, 

and E is its standard error (the error in the estimate of  ), is as follows. 

 

For a normally distributed random variable x, with mean 0, and variance  , the following 

holds: 

( | 0, 0xp x dx x           (10.2) 

Define the random variable y: 

2( )y x x            (10.3) 

So  

2( ) ( | 0, ( | 0, ( )x x p x dx yp x dx y Var x            (10.4) 

Finally, the fourth central moment is: 

4 4 2( ) ( | 0, ( | 0, 3x x p x dx x p x dx            (10.5) 

Then, 

2 2 2 2

4 2 2 2 2

( ( ( ) ( | 0, ( | 0,

( ) ( | 0, 3 2

Var STD y y p x dx y p x dx y

x x p x dx y

          

       
  (10.6) 

For N normal random deviates, the variance of the estimate of its average variance is 

2 2ˆ ˆ( ( ) / ( )N NVar Var N SE E             (10.7) 

Thus, 

22
E

N
            (10.8) 

That is, the standard error of the variance is related by the above equation, as long as the N 

items that contribute to its assessment are normally distributed.  This is the best error in the 

inter-subject variance that can be expected in a set of parameters from subjects with rich 

data for each.  In a population analysis, however, some subjects with few data points will 

not have much information for their parameter.  However, population analysis yields 
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empirical standard errors of Omegas E
, that properly reflect the total information available 

for the Omega.  Thus, given E
, the “effective N” can be evaluated as: 

2

2N
E

 
  

 

          (10.9) 
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Appendix H: Technical Note on NonParametric Analysis 

 

Perform a standard FOCE analysis, to produce vectors of 
i , i=1 to N, at the mode a 

posteriori (MAP estimates, or empirical Bayes estimates (EBE)) for each subject i, 

evaluated at the final population parameters ( ) θ Ω Σ , where N is the number of subjects, 

and Ns is the number of support points.  These best fit etas for each subject serve as the 

anchors, or grid points, for the non-parametric analysis, to be evaluated by subroutine NP. 

 

In the subroutine NP, using data of subject i, and grid point kη (which may have come from 

EBE of subject k of the FOCE analysis for k<=N, or random creation of extra support points, 

for N<k<=Ns) , the data likelihood is evaluated: 

( , , )i kl y η θ Σ           (10.10) 

by subroutine OBJ3, and an initial prior (population density) is evaluated as 

0

1
( ) exp

2
k k k

 
  

 
η η Ωη         (10.11) 

( )k η is stored in vnonpara(1), and file system of subroutine DAT8. 

 

Like other optimization methods, non-parametric estimation is reiterated, until the objective 

function no longer changes.  At any given iteration of the non-parametric optimization, the 

following is assessed. 

 

For each subject i with yi, the set of η  that yields the largest posterior density is evaluated,   

( , , ) ( ) ( , , ) ( ) for all 1,
i ii m m i k k sl l k N    y η θ Σ η y η θ Σ η     (10.12) 

where 
imη produces the largest value of the posterior density for subject i.  ( , , )i kl y η θ Σ is 

stored in VNONPARA(3). The mi is stored in IC(I), and ( , , ) ( )
i ii m ml y η θ Σ η is stored in 

X79(I).  The final mi is stored in VNONPARA(5). 

 

The objective function is evaluated for a given iteration as 

1 1

2 log( ( , , ) ( ))
sNN

i j j
i j

O l 
 

    y η θ Σ η        (10.13) 
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where summing the probability density over all discrete positions jη , j=1 to Ns, is the non-

parametric or discrete density equivalent to integrating over allη  for a continuous density 

function, to obtain a marginal density for each subject i.  These marginal densities are in turn 

multiplied among all subjects i to N, to obtain the joint marginal density.  Since the objective 

function is typically -2log(joint marginal density), it is more convenient to sum the log of 

the marginal densities among all subjects i, i=1 to N, as shown in the above equation.  O is 

stored in OBJNP, and 

1

( , , ) ( )
sN

i j j
j

l 


 y η θ Σ η          (10.14) 

is temporarily stored in U(I). 

 

Normalized posterior densities are also evaluated: 

1

( , , ) ( )
( )

( , , ) ( )
s

i k k
i k N

i j j
j

l
p

l











y η θ Σ η
η

y η θ Σ η

       (10.15) 

The term 

1

1

( , , )

( , , ) ( )
s

N
i k

N
i

i j j
j

l

l 








y η θ Σ

y η θ Σ η

 

is stored in VNONPARA(2). 

 

The posterior densities are normalized in the sense that 

1

( ) 1
sN

i k
k

p


 η           (10.16) 

as required for a proper probability density of η .  The final ( )i kp η  are stored in row subject 

i, column IPROB(K), of the .npi file.  These are averaged among all subjects at a given 

anchor point kη to obtain a posterior, or empirical, assessed “weight” at that anchor: 

1

1
( ) ( )

N

k i k
i

p p
N 

 η η          (10.17) 

The final values are reported as subject 0, IPROB(K), in the .npi file. 

If the following test is satisfied: 
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2

( ) ( )

( )

k k
k

k

p 
 




 

η η

η
        (10.18) 

for some small optimization criterion
2 , then ( )kp η  serves as the new prior density for the 

next iteration (this is the default expectation-maximization update method): 

( ) ( )k kp η η         (10.19) 

If the test fails, it means that ( )kp η is no longer changing sufficiently with respect to its 

previous value ( )k η , and the updates no longer need to be performed for future iterations, 

for that kη .   

 

When for all k the following is satisfied: 

1 for 1 tok k N           (10.20) 

for some small 1 , then the non-parametric optimization is ended. 

 

The following final information is stored: 

( )k η is stored in VNONPARA(1), which is retrieved for each k via sequential calls to 

subroutine DAT8. 

1

( )
sN

k k
k




 η η η         (10.21) 

is stored in EXNPETA(), EXETA(). 

1

( )( ) ( )
sN

k k k
k




  Ω η η η η η        (10.22) 

is stored in COVNPETA(), COVETA(). 

The expected values EXNPETA(j), and expected covariances  COVNPETA(j,k) are 

reported as ETA(j) and ETC(j,k), respectively, in the .npe file. 

 

If INPETA/=0, then 

imη is stored in VNONPARA(2) to VNONPARA(1+neta), where neta is the eta vector 

length, retrieved for each subject i via sequential calls to subroutine DAT8, and also placed 

in the .npd file, labeled as ETM(j), pertaining to eta(j).  That is, the grid point eta vector that 
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best fits subject i is stored in record i of the DAT8 storage system (the entire DAT8 storage 

contains Ns records, where Ns≥N).  

 

If INPETA=0, then cumulative distributions are stored as follows: 

( ) ( )

( )
( )

( ) )
s

i j k j

N

k j i
i

C
 

 
 

  η        (10.23) 

is stored in VNONPARA(1+j), retrieved for each support point k sequentially from 

subroutine DAT8, and also placed in the .npd file, labeled as CUM(j).  Here, ( )i j is the jth 

element of the eta vector belonging to support point i.  That is, ( )( )k jC  is the sum of 

densities )iη for which the jth element of eta is less than or equal to the jth element of 

kη (which is ( )k j ).  In turn, ( )k j is stored in VETA(j), retrieved for each support point k 

from subroutine DAT4, and reported as eta(j) in the .npd file. The )kη for support point k 

is reported in the .npd file in the last column, labeled as PROBABILITY. 

 

See references [16] and [17] for information of supplementary support points and 

bootstrapping. 
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Appendix I: Note on TNPRI 

 

The statistical basis of the frequentist method (TNPRI which stands for Total Normal 

PRIor) ) for priors is that of sampling about some mean, with some measure of 

dispersion, but not requiring a rigid rule of a particular distribution, other than that it has 

some semblance of normal distribution where this makes sense.  

 

Regarding THETAS: 

Let THETA be the theta estimate, and SE be the standard error of the theta estimate.   

 

When no boundaries are given in the $THETA record, then $SIML will generate random 

sample thetas that are normally distributed with mean THETA and variance SE
2
, and 

with suitable correction for correlation between theta(1) and theta(2), etc., in accordance 

with the variance-covariance matrix of the estimates. 

 

When boundary is set, an intermediate variable normal deviate v will be generated with 

mean log(THETA), and variance (SE/THETA)
2
.   Again, the random deviate v for each 

theta(1), theta(2), etc., is corrected to account for correlation (covariance of estimates) 

between theta(1)  and theta(2),  etc.  

 

This log-normal deviate v is then transformed to a final theta sample w as follows: 

Lower bound only: 

w=exp(v)+LB  

(range of v(-inf,+inf) transposes to range of w=(LB,+inf)) 

  

upper bound only: 

w=ub-exp(-v)  

(range of v(-inf,+inf) transposes to range of w=(-inf,UB)) 

 

Lower and upper bound: 

w=LB + (UB-LB)*exp(V)/(1+exp(v)) 
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(range of v(-inf,+inf) transposes to range of w=(LB,UB)) 

 

When SE/mean is small, then the resulting distribution of the thetas is nearly normally 

distributed with mean THETA and standard error SE, as reflected from the original 

estimates and standard errors.  When SE/mean is large, this creates considerable non-

normal distribution in the samples. 

 

 

Regarding OMEGAS (and Sigmas): 

In the case of the OMEGAS, using, the mean OMEGA and its standard error from a 

previous problem, the TNPRI method transposes this into its cholesky form and its 

equivalent standard error, so that each element in the cholesky matrix has  the appropriate 

“mean and standard error”.   Transforming the mean omega elements and their standard 

errors into the equivalent mean and standard errors for the cholesky elements is not 

trivial, but it can be done using matrix algebra and the principal of propagation of errors.  

The principle of propagation of errors itself is accurate only as an asymptotic rule, that is, 

if the error is sufficiently small, then it provides reasonable results.   

 

Also, while having omega elements be normally distributed is not reasonable, the 

underlying cholesky elements can be modeled as normally distributed.  Further, the off-

diagonal elements are allowed to be positive or negative, and these elements are sampled 

as a strict normal distribution.  The diagonal elements of the cholesky matrix can also be 

normally sampled, but with the proviso that the sample be positive. Thus, as with thetas, 

if the standard error is small relative to the mean value, very few if any samples will be 

negative.  If the standard error is large, then a great many samples will end up as 

negative.  To avoid negative values altogether, the additional transformation that is done 

for the cholesky diagonal is to generate a random sample as x=log(cholesky 

estimate)+(se of cholesky estimate)/(cholesky estimate)*r, where r is created as a ~N(0,1) 

deviate, and then exponentiate x, and this is the cholesky diagonal sample.  When 

se/mean is small, exp(log(mean)+SE/mean*r) is very nearly normally distributed with the 

appropriate mean and standard error. 
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Next, the cholesky matrix is multiplied by its transpose to create the random OMEGA 

sample, with the result of being positive definite, and having the appropriate mean and 

dispersion. 



NONMEM7_Technical_Guide.doc  RJ Bauer 

4/24/2019 8:46:00 AM  Page 86 of 91  

 

Appendix J: T distribution Sample Generation 

 

The tdist6 and tdist7 examples described in intro7.pdf use the fact that two normal random 

deviates can be converted into a T distributed normal random deviate.  The derivation is as 

follows. 

From Numerical Recipes reference [19], the Box-Muller algorithms for creating a random 

normal deviate pair is as follows.  Two uniform random deviate pairs u and v are generated, 

and modified: 

2 1U u            (12.1) 

2 1V v            (12.2) 

2 2W U V           (12.3) 

Values of W>=1.0 are rejected. 

Normal deviates x and y are generated as follows: 

2 ( ) /x U LOG W W          (12.4) 

2 ( ) /y V LOG W W          (13.1) 

According to [20], a t-distribution sample of n degrees of freedom can be generated as 

 2/ 1)nU
t n W

W

          (13.2) 

This suggests that rather than starting with uniform deviates u and v, one can use normal 

deviates x and y to generate the t deviate: 

2 2 2log( )x y W           (13.3) 

2 21
exp ( )

2
W x y

 
   

 
        (13.4) 

2 2

2 ( ) /

2 ( )

U LOG W Wx U

LOG W Wx y


 


      (13.5) 

So, 

  2 2

2 2
exp ( ) / 1.0

x
t n x y n

x y
  


      (13.6) 

This transformation is used in the tdist6 and tdist7 examples. 
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From the alternative method of the Box-Muller method ([19]) of using trigonometric 

functions, we note that uniform deviates u and v can be generated from the normal deviates: 

2 21
exp ( )

2
u x y

 
   

 
        (13.7) 

 

1 1

2 2

1 1
tan cos

2 2

y x
v

x x y 

 
  

         

      (13.8) 

Therefore,  

   2/cos 2 1.0nt v n u           (13.9) 

which is a means of generating a t sample using a uniform deviate pair, without having to 

reject uniform random samples, and is the method used for t sample generating function 

TDEV2 in ..\source\GENERAL.f90, for general degrees of freedom n. 
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Appendix K: Transformation of Parameters during Classical NONMEM Estimation 

 

During classical NONMEM estimation, the thetas, omegas, and sigmas are first transformed 

into “unconstrained”  parameters, domain of which is from –inf to +inf, regardless of the 

boundaries on the original parameters.  This allows free movement in the unconstrained 

domain by the estimation process. 

 

In the following discussion, x=parameter in the user domain, l=lower bound in user domain, 

w=upper bound in u=unconstrained parameter, u=unconstrained parameter, and s=scaling. 

 

Scaling is evaluated using the initial values of x at the start of the estimation, and remains 

unchanged throughout the estimation.  The u parameters are varied during the estimation, so 

new values of x are back-calculated from the fixed s and varying u. 

 

Thetas: 

No lower or upper bound: 

( )0.1initialu sign x          (15.1) 

/initial initials x u          (15.2) 

 

Lower bound only: 

0.1u            (15.3) 

( ) / exp( )initial initials x l u          

 (15.4) 

Upper bound only: 

0.1u            (15.5) 

( )*exp( )initial initials w x u          (15.6) 

Upper and lower bounds: 

0.1u            (15.7) 

log( ) log( )initial initial initials x l w x u           (15.8) 

 

The Omegas and Sigmas are transformed as follows 

Choleksy( )C X          (15.9) 

Where 
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TX C C           (15.10) 

And C is lower triangular. 

Then: 

Diagonal elements: 

0.1iiu            (15.11) 

/ exp( )ii ii initial ii initials c u         

 (15.12) 

Off-diagonal elements: 

( )0.1ij initialu sign c          (15.13) 

/ij ij initial initials c u          (15.14) 
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