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Users Basic Guide

Preface to 3rd Edition

The appearance of this 3rd edition of the Users Basic Guide coincides with the appearance of
NONMEM 77 Version III Level 1. The 2nd edition was written before NONMEM 77 was developed,
and its appearance coincided with that of Version II of the earlier IBM-specific NONMEM.Therefore,
much has happened to the NONMEM program since the 2nd edition which should be documented in the
Users Basic Guide, and this 3rd edition achieves this goal. In addition, with this edition there are many
changes to the document which substantially improve its readability and clarity. Howev er, the organiza-
tion and examples used in the 3rd edition are little changed from those used in the 2nd edition.

The IBM-specific NONMEM has not been distributed since it was superceded in 1984 by NON-
MEM 77, a program that can be used with any machine with an ANSI FORTRAN 77 compiler. There is
not as much opportunity today as there was earlier to confuse these two programs, and so there is not as
much necessity when referring to the current program to follow the name ’NONMEM’ with the term
’77’. Consequently, with the appearance of Version III of NONMEM 77 it will henceforth be called sim-
ply NONMEM, and this practice is reflected in this 3rd edition of the Users Basic Guide.

The new features in Version III are:

1. Theproblem summary has been streamlined.

2. NONMEMcan provide some help in obtaining initial estimates forθ , Ω andΣ.

3. Theappearance of any giv en task specification record is optional.

4. Tables can be either printed or stored in (machine-readable) files.

5. A new task can be performed which simulates data according to the user-specified model.This
data can be analyzed by performing the estimation, covariance, tables and scatterplot tasks.

6. Theobjective function can be partly defined by user-code.

Features 1-4 are described in this Guide.Features 5-6 are described in the 2nd edition of NON-
MEM Users Guide, Part II, whose appearance also coincides with the appearance of Version III.

It is advisable that a new NONMEM user read this Guide and try running and understanding some
or all of the examples found herein. The user can check that he has correctly installed the program by
comparing the output he obtains with the output displayed in this document.There might be some rather
small discrepancies in so far as the computations are somewhat machine dependent. All the output in
this Guide is obtained using a SUN model 2, equipped with a SKY floating-point coprocessor and run-
ning SUN UNIX 4.2 Release 3.4. All the output is obtained using Double Precision NONMEM; see sec-
tion A.1.
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A. Intr oduction and General Background

A.1. TheNONMEM Program

The NONMEM Project is an undertaking by researchers in the Schools of Medicine and Pharmacy
of the University of California, San Francisco.The project is a continually evolving one, aimed at pro-
viding methodological results and computer tools for the analysis of data that may be described by
regression type models with mixed effects, i.e. both fixedandrandom effects, any of which may enter the
model nonlinearly. Data of this sort arise frequently in clinical pharmacological projects, and to various
degrees in other scientific fields.They arise when there are multiple (or repeated) measurements taken
on a number of experimental units.

Version III Level 1 of NONMEM, a computer program to analyze data using anonlinearmixed
effectsmodel, is now being distributed. Itis written in ANSI FORTRAN 77. It is reliable, and attention
has been paid to the input of control information, to the output of results, and to program diagnostics.
The inputs to the program consist of data files, control information, and user-coded subroutines.The
required formats for these inputs are not, however, user-friendly. The NONMEM Project has paid more
attention to the development of more important aspects of the program - that is until recently. At the
same time as Version III is being distributed the NONMEM Project is also distributing for the first time
another program, NM-TRAN, a preprocessor to NONMEM that translates inputs specified in a more
user-friendly way to the formats required by NONMEM. This translator is documented in NONMEM
Users Guide IV, NM-TRAN Guide. Also, much effort has been made to make NONMEM efficient.
However, this efficiency is measured with respect to the types of computationally intensive tasks the pro-
gram performs, tasks that sometimes call for using a large-scale computer, or a smaller dedicated
machine.

Versions I-III incorporate an important methodological restriction. Although fixed effects may
enter the model nonlinearly, random effects must enter the model linearly. Therefore, the goal described
at the beginning of this section is not fully met.However, if a model is contemplated in which some ran-
dom effects enter nonlinearly, it may often be approximated well-enough by a model in which all random
effects enter linearly. This approximation is described in a number of references (Sheiner et al 1977,
Beal, 1984a), as well as being illustrated in chapter F of this document.Research is in progress within
the NONMEM Project that could lead to a future version of NONMEM in which this restriction is
relaxed. Exceptfor the example discussed in chapter F, all the examples in this document involve lin-
early occuring random effects.

Another program restriction concerns the number of possible levels of nesting of the random
effects. NONMEMprovides only one level of nesting. With one level of nesting there is one group of
random effects and another group nested within the first group.This is usually adequate for pharmacoki-
netic and pharmacodynamic applications. One advantage of NONMEM over other programs for mixed
effects models is that the random effects in the first group can be multivariate, and the random effects in
the second group can be multivariate.

There really are two NONMEM programs, single- and double-precision versions. Theuser can
choose to use either. Many problems with few parameters to be estimated can be run successfully with
the single-precision version. Problemswith many parameters usually need double-precision arithmetic.
If the computational time requirement does not pose a particularly difficult problem, the user should sim-
ply use the double-precision version. Thisversion is not simply the single-precision version with all
floating-point variables and arrays declared double precision.Rather, care has been taken to use double-
precision only where it is necessary. When the computational time requirement does pose a problem, the
user might first try using single-precision. If a problem develops (see section C.3.5.1), then the user
might try using double-precision.
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A.2. Purpose and Organization of the Document

This document, the Users Basic Guide, is first of a six part series of user documentation for the
NONMEM system. The other five parts are:

Part II - Users Supplemental Guide
Part III - NONMEM Installation Guide
Part IV - NM-TRAN Guide
Part V - NONMEM-PREDPP Introductory Guide
Part VI - PREDPP Guide

This first part contains the essential information about how to use NONMEM. It is presumed that the
reader has had some previous experience with using a nonlinear regresssion type program and that he
knows how to interpret the output from that program.

Part II contains supplemental information about using NONMEM, and Part III contains program
installation information and describes the program file structure.Part IV is a reference guide for NM-
TRAN (see section A.1).Part V is a primer designed for beginning users who wish to use NONMEM for
analyzing pharmacokinetic data.For such users it might be helpful to begin by reading Part V, rather
than this document.Part VI contains detailed user-information about PREDPP, a useful software pack-
age to be used with NONMEM by those analyzing pharmacokinetic data.

The Users Basic Guide is organized around realistic examples, progressing from a simple nonlin-
ear regression example to an example of a nonlinear model with several one-level nested random effects.
These examples are taken from the field of Clinical Pharmacology. Thus those persons who are not very
familiar with nonlinear mixed effects models may, by carefully following this progression of ideas,
become more familiar with the concepts. Presumably though, a NONMEM user is familiar with simple
nonlinear regression and has some familiarity with mixed effects models; he understands that he is faced
with data manifesting several variance components, and he knows how to begin to model his data in
terms of these components.As stated above, for the beginner with pharmcokinetic data it might be help-
ful to first study NONMEM Users Guide, Part V. With each example the inputs and outputs of the pro-
gram that pertain to that example and that are not clear from the previous examples, are explained. The
experienced NONMEM user should be helped by the Appendix which summarizes the program’s control
records.

A.3. NONMEM Features

The important ability of NONMEM to help analyze complicated statistical regression type models
has already been noted in section A.1. Other features of the program are briefly listed here.

i Derivatives of the regression function and certain weighting functions with respect to model
parameters need not be supplied.

ii The estimates of fixed effect parameters may be constrained.

iii Initial estimates of the parameters to be estimated need not be given.

iv The iterative search involved in obtaining the final parameter estimates has good convergence be-
haviour even when parameter estimates are constrained under a null hypothesis.

v A file may be output at the end of the search that allows the search to be conveniently and
smoothly continued (or computations depending on the results of this search to be performed) in a
subsequent run, without once again starting the search from the beginning.

vi An estimate of the covariance matrix of the (parameter) estimate is carefully computed.

vii Tables and scatterplots of data items, and also of predictions, residuals, and weighted residuals,
may be output.
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viii The amount of data that may be input is not limited.

ix Multiple problems may be implemented during a single NONMEM run.

Elaboration of some of these features occurs in section A.4 below; all are treated in detail in chapters C-
F. Other less frequently used features that are described in NONMEM Users Guide Part II are:

x Variance-covariance components may also be constrained in certain ways.

xi Thereis considerable flexibility in defining the objective function.

xii Transgeneration of the data may occur before and after parameter estimates are obtained.

xiii Data may be simulated (as well as subsequently analyzed) under the specified model.

xiv Eigenvalues of the estimated correlation matrix of the (parameter) estimate may be computed.

One simple constraint on covariance components, i.e. constraining all of these to be zero, is described in
Part I.

A.4. Major NONMEM Tasks

There are six major NONMEM tasks that may be undertaken in any giv en NONMEM problem.
These six tasks are performed in what are called the six program steps. Each of these steps are optional,
though some step depend on the results of previous steps.

In the first step, the Simulation Step, data are simulated under the user-specified model. The par-
ticulars of this step are discussed in NONMEM Users Guide, Part II.

In the second step, the Initial Estimation Step, initial estimates of model parameters are computed.
Initial estimates may be specified by the user, and often this is not difficult. But on occasion some help is
needed, and the user may leave any particular initial estimate blank, in which case the Initial Estimation
Step is executed.

In the third step, the Estimation Step, final estimates of the model parameters - fixed effect parame-
ters and variance-covariance components - are obtained.For this purpose an objective function (e.g. a
least squares objective function) in the model parameters is minimized, and the final estimate (as a vec-
tor) is taken to be the minimum point.The minimization is carried out by implementing a numerical
search in parameter space for the minimum point.Actually, NONMEM reparametrizes the model, the
objective function is expressed internally in terms of the new parameters, and the search is implemented
in the transformed parameter space. The default objective function is the extended least squares objec-
tive function (Beal, 1984a,b) which is often appropriate with continuous-valued type observations mod-
eled in terms of a regression function whose values predict these observations. Therecan be other types
of observations, e.g. dichotomous observations or failure-time observations, where another objective
function would be more appropriate. NONMEM allows the user to define many other types of objective
functions.

The numerical search is implemented according to an algorithm by R.A.Fletcher, 1972, modified
by IMSL (whose code forms the basis for the NONMEM code), and further modified by the NONMEM
Project. Thisalgorithm is a derivative-free quasi-Newton type minimzation algorithm for an arbitrary
objective function. It is presumed that the user has some familiarity with the types of numerical prob-
lems that can be encountered with minimization algorithms.

In the fourth step, the Covariance Step, an estimate for the covariance matrix of the estimate
obtained in the Estimation Step is computed.The accuracy of this covariance estimate increases as the
number of (statistically independent) observations increases. It is not a simple matter to know how reli-
able the covariance estimate is for any giv en problem. Thisdifficulty is encountered with any nonlinear
regression program.The examples used in this document involve only moderate amounts of data, but in
this respect they are similar to many problems run over the years by NONMEM users. On the other
hand, the original impetus for the NONMEM Project was to develop an ability to analyze large quantities



Users Basic Guide 4

of pharmacokinetic data arising during routine patient care, and the large data requirement underlying the
covariance estimate would not be a particular problem in this context. In any case, some elements of the
covariance estimate may be better estimated than others. This goes along with the fact that some model
parameters may be better estimated than others.For example, parameters in the regression function are
usually estimated better than variance components, and variance components are usually estimated better
than covariance components. The covariance estimate at least provides certain important qualitative
information. Inthis document it is called the covariancematrix, for short, and the square roots of its di-
agonal elements are the estimates of the standard errors of the parameter estimates.

The covariance matrix involves derivatives of the objective function with respect to model parame-
ters. Thesederivatives are computed numerically, using a complex algorithm based in part on the method
described by Nelder and Mead (1964).In addition to computations of the covariance matrix, computa-
tions of the inverse covariance matrix, the standard error estimates, the correlation matrix (derived from
the covariance matrix), and the eigenvalues of the correlation matrix are all performed in the Covariance
Step.

In the fifth step, the Tables Step, all data items of selected types may be tabulated. Therecan be
several tables, and each table can be printed or stored in a file.Each row of a table corresponds to a dif-
ferent data record, and each column corresponds to a different type of data item.With each data record
there are three additional types of data items, called the NONMEMgenerateddataitems,which do not
occur in the data set itself, but they are included in all tables.As do the other data items in the data
record, these three data items relate to the observation in the data record.With the default objective func-
tion (i.e. the extended least squares objective function) these three data items are: the prediction of the
observation, the residual difference between observation and prediction, and the weighted residual differ-
ence. With other user-defined objective functions, other NONMEM generated data items can be defined.
Also, the rows of a table may be sorted on the data items of one type, and then sorted within that sorting
on the data items of another type, etc.

In the sixth step, the Scatterplot Step, data items of one type can be scatterplotted against the data
items of another type.A scatterplot can be used to plot functions as well as relationships that show "scat-
ter". A scatterplot of y vs x may also include the line y=x (useful when prediction is scatterplotted
against observation), and a scatterplot of residual or weighted residual data items always includes the
"zero line". Moreover, families of scatterplots of y vs x may be generated.Each member of a family is
obtained using only the data records with the same value of some third data item type, u.A family mem-
ber exists for each different value of u occuring in the data set.In addition, families, each of whose
members is obtained using only the data records with the same values of some third and fourth data item
types, u and v, may also be generated. Using the transgeneration feature (see NONMEM Users Guide,
Part II), data items to be tabled or scatterplotted may be defined in terms of the final parameter estimate.

A.5. RandomInterindividual Effects

Typically with population type pharmacokinetic data, there are repeated observations, i.e. mea-
sured responses, on each of a number of experimental units. The experimental units are animal or human
subjects, and presumably, they are chosen randomly from the population of interest. If there were no
measurement error in the responses, and if for fixed values for a set of measurable independent variables,
a subject always had the same response, then usually, one would still not be able to predict this response
with full certainty. This is because there are usually intersubject, or what we call interindividual, differ-
ences in response which cannot be explained solely in terms of the measureable independent variables.
Rather, they are attributable to effects whose values are unknown and which we treat as random, and we
call these effects randominterindividualeffects.The rationale for treating these effects as random is that
as individuals are randomly chosen, so are the interindividual values associated with the effects in ques-
tion. Thevalues of a random interindividual effect are constant for all observations from a given individ-
ual. Inthe context of NONMEM the values of a random interindividual effect, as they vary from individ-
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ual to individual, are to be regarded as being statistically independent.The rationale for this is that indi-
viduals are assumed to be chosen not only randomly but alsoindependentlyone from the other. The val-
ues of random interindividual effects are unknown. Fixed interindividualeffectsare the effects whose
values can be measured. (These need not be treated as random, and so they are regarded asfixed.) The
concept of random interindividual effects is central to NONMEM. This concept sets the program apart
from other nonlinear regression programs but makes it similar to other repeated measures type programs.

With models where no random effect is nested within another random effect, NONMEM treats all
random effects as random interindividual effects. Inother words, the values of all random effects vary
only from individual to individual. Consider, for example, any simple nonlinear regression model.There
is no nesting of random effects since the model has only one random effect (statistical residual effect).
The value of this effect varies from observation to observation, but each observation can be identified
with a different individual. Eithereach observation indeed comes from a different individual, or when
the observations do not come from different individuals, because these observations are regarded as being
statistically independent, then for the purposes of modeling, they can be regarded as coming from differ-
ent individuals. (Inthe latter case, and when all observations indeed come from a single individual, the
population about which inference is made is, of course, this individual.) Therefore,the random effect
can be (and with NONMEM it is) treated as a random interindividual effect.

With models where there is a one-level nesting of random effects NONMEM treats the random
effects in the group at the outside of the nest as random interindividual effects. NONMEMtreats the ran-
dom effects in the nested group as randomintraindividualeffects.Their values vary from observation to
observation within an individual. In this context by an observation we mean either a univariate observa-
tion, or, when appropriate, a multivariate observation.

The random interindividual effects are denoted byη1, η2, etc. Theirvariance-covariance matrix is
denoted byΩ and is called OMEGA in the NONMEM printout.The random intraindividual effects are
denoted byε1, ε2, etc. Their variance-covariance matrix is denoted byΣ and is called SIGMA in the
NONMEM printout.
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B. Data,Control, and File Records

B.1. DataRecords

The datasetconsists of a sequence of datarecords,essentially one for each different observation
(although see the discussion below about data records with missing dependent variable data items).A
data record, in turn, is a sequence of dataitems(the same number of data items in each data record).One
of these data items is the associated observation, also called thedependentvariable (DV) dataitem. The
other data items in the data record may be loosely regarded as specific items needed to predict the DV da-
ta item under the user-specified statistical model. The data items of each data record are placed on a
number of contiguous FORTAN records, and this set of FORTRAN records is read by NONMEM as a
unit, i.e. with a single I/O list, under a user-supplied FORTRAN format specification. The format speci-
fication may consist of E, F, and X format codes.An I code is not allowed. For example there may be
nine data items per data record, and these may be distributed over two FORTRAN records.

Example B.1.i:

1.2 3.6 4.7 .27E01 Record 1

0.5 9.8 6.5 .12E00 3 Record 2

and read with the format specification (3(F3.1,2X),E6.2/3(F3.1,2X),E6.2,2X,F1.0).

In NONMEM the data records with DV data items associated with a given individual are grouped
together. This is accomplished in part by including in each data record a data item identifying the indi-
vidual with which the DV data item in the record is associated. This data item is called theidentification
(ID) dataitem. An ID data must always appear in the data record, except when every data record would
ordinarily have adifferentID data item, in which case the ID data items are not necessary. In the above
example the ninth data item might be the ID data item, although there is no requirement that the ID data
item be integer-valued. Thegrouping of the data records is acomplished by including ID data items in
the data recordsand by arranging that all data records with the same ID data item be contiguous in the
data set.Tw o or more data records are understood to be contiguous if the sets of FORTRAN records on
which the data items of these data records are placed (one set of FORTAN records per data record) occur
contiguously in the data file. The data records with the same ID data item are collectively called an
individual record.This ID data item is also called theID dataitemof theindividual record.

ID data items can be constructed with a little more flexibility than indicated above. The ID data
item of an individual record A must differ from that of the following individual record B.However, it
can be the same as the ID data item of the individual record following B. The rule is that only the two ID
data items of two contiguous individual records must differ.

As mentioned in section A.5, when the statistical model has non-nested random effects, the obser-
vations are regarded as arising from different individuals, even if, indeed, they do not. Theobservations
in simple nonlinear regression models, for example, are so regarded. Inthis situation each data record
containing an observation should be contained in a different individual record.

Data records may be designated as missing DV data items.Such records are useful for a variety of
reasons. For example, suppose that the prediction of the DV data item depends on the value of time,
another data item in the data record.Suppose also that one wants to plot predictions vs time, and for this
purpose, one wants to develop predictions at time points other than those for which there correspond DV
data items in the data set.One can construct additional data records with these time points and designate
them as missing DV data items. Predictions will be generated for these data records, and these predic-
tions can appear in tables and be used in scatterplots.There will be DV data items on these records, but
they will be "dummy" items. The user can let them be zero or any other value(s). NONMEMwill not
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use the DV data items on these records - not for the purpose of estimation.However, all data items on all
records will be used for the purpose of constructing tables.For the purpose of constructing a scatterplot
where one of the axes of the plot corresponds to the DV data item, or the residual data item, or the
weighted residual data item, data records designated as missing the DV data item are not used.

If there are to be data records designated as missing DV data items, then all data records must have
a missingDV (MDV) dataitem. A MDV data item must be either zero or one.A zero MDV data item
means that the DV data item in the record is not missing; a one means that it is missing.If there are
MDV data items, there must also be ID data items (even if there is but one data record in each individual
record). Adata record with MDV data item equal to zero is called an observationrecord.When there are
no MDV data items in the data set, all data records are observation records.An individual record need
not have any observation records; that is, it may be comprised only of data records designated as missing
DV data items.

In a model with one-level nested random effects there are random interindividual effects, and
nested within them, there are random intraindividual effects. Therandom interindividual effects may be
called randomlevel-one effects,and the random intraindividual effects may be called randomlevel-two
effects.(There are two lev els of random effects,but there is only one level of nesting.) Ina statistical
model for the DV data items, the values of random level-one effects are different only for DV data items
in different individual records.The ID data items are used to group data records into individual records.
The ID data item is also called thelevel-one (L1) dataitem, and an individual record is also called a
level-onerecord.Now suppose that multivariate observations are obtained from each of a number of indi-
viduals. Inthe statistical model the values of random level-two effects are different only for DV data
items that are elements of different observations. (Ifall observations are univariate, the values of random
level-two effects are different for all DV data items.) Therefore, when there are multivariate observations
modeled with one-level nested random effects, another type of data item must be used to group data
records according to the observations with which their DV data items are associated. This data item is
called thelevel-two (L2) dataitem. The grouping of the data records by observation is accomplished by
including L2 data items in the data recordsandby arranging that all data records related by the same L2
data item be contiguous in the data set.The data records related by the same L2 data item are collective-
ly called a level-two record.This L2 data item is also called theL2 dataitem of thelevel-two record.Ob-
viously, a lev el-two record should be totally contained within a level-one record.

L2 data items can be constructed with a little more flexibility than indicated above. The L2 data
item of a level-two record A must differ from that of the following level-two record B. However, it can
be the same as the L2 data item of the level-two record following B.The rule is that only the two L2 data
items of two contiguous level-two records must differ.

The DV, ID, MDV, and L2 data items are the data items in the data set that are of particular con-
cern to NONMEM, and they are called the NONMEMdataitems.Other data items in the data set are of
concern only to user-supplied subprograms.

B.2. Control Records

The controlrecordscontain the instructions to NONMEM.The sequence of control records is
called the controlstream.Each control record is comprised of one or more FORTRAN 80 character
records. Allcontrol records begin with a 4 character preface such as ESTM, SCAT, and THTA (abbrevi-
ating ESTIMATION, SCATTERPLOT, and THETA, respectively). The fields on a control record begin
in position 9, except where noted otherwise.If a control record needs to be continued on more than one
FORTRAN record, the fields on each of the continuation records begin in position 9 also, and the first 8
positions are left blank.
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Example B.2.i:

THTA 1.1 2.2 3.3 ... 9.9

10.10 11.11 (continuationrecord)
column no.: 9 1 2  7

7 5  2

Some control records have only one field, 72 characters long, in which a character string is placed.
Such records are said to have characterformat.They cannot be continued.

Example B.2.ii

PROB THETHEOPHYLLINE DAT A
column no.: 9

Most control records have one or more 4 character fields in which integers are placed. These integers are to be right-adjusted in
the fields. This type of control record has at most 18 fields per FORTRAN record. Such records are said to have integerformat.

Example B.2.iii:

SCAT 0 2
column no: 1 1

2 6

Some control records, like that in Example B.2.i above, hav eone or more 8 character fields in which FORTRAN fixed point
numbers are placed. This type of control record has at most 9 fields per FORTRAN record. Such records are said to have fixed
point format.

There are 21 functional types of control records, as listed in Table B.2.i.However, many of these
are optional.
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Table B.2.i
Control Record Types

Record type Preface
FILE record FILE
PROBLEM record PROB

DATA record DAT A
ITEM record ITEM
INDEX record INDX
LABEL record LABL
FORMAT record FORM

FIND record FIND
STRUCTURE record(s) STRC

THETA CONSTRAINT record THCN
THETA record THTA
LOWER BOUND record LOWR
UPPER BOUND record UPPR
DIAGONAL record(s) DIAG
BLOCK SET record(s) BLST

SIMULATION record SIML
SOURCE record(s) SORC
ESTIMATION record ESTM
COVARIANCE record COVR
TABLE record(s) TABL
SCATTERPLOT record(s) SCAT

The record types are divided into five major groups. The first group is comprised of the FILE and
PROBLEM records.The second group is comprised of the datasetspecificationrecords;these records
define the characteristics of the data set. The third group is comprised of the modelspecificationrecords;
these records, along with the user-supplied subroutine PRED, define the simulation/data-analytic model.
The fourth group is comprised of the initialestimaterecords;these records give the initial parameter esti-
mates, or information that can be used to obtain these estimates.They also may contain information that
can be used to obtain final parameter estimates.The fifth group is comprised of the taskspecification
records;these records define the tasks that are to be implemented in order to simulate/analyze the data.

B.3. FileRecords

The control stream is stored in a file. There are other files used by NONMEM (for a complete list-
ing of these see NONMEM Users Guide III).For example, the data set can be stored in a separate file.
(The data set can also be "embedded in the control stream", in which case it is effectively stored in the
file containing the control stream.) The file mentioned in point v of section A.3 is another example. Itis
called a ModelSpecificationFile. Each of these two examples is an example of a file that exists at the us-
er’s option (unlike the file containing the control stream) and that must be opened by NONMEM itself,
i.e. instructions to open the file must be given to NONMEM. This type of a file is called an optional
NONMEM file. (There may be files that are opened by user-supplied subroutines. These are regarded
differently. For discussion of these see NONMEM Users Guide, Part II.)
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The filerecordscontain the instructions to open the optional NONMEM files.The sequence of file
records is called the filestream.Each file record is formatted exactly like a character-formatted control
record (see above), with the exception of the problem delimiter record. The name of a file is placed in
the character field (left adjusted). There are 4 functional types of file records, as listed in Table B.3.i.

Table B.3.i
File Record Types

Record type Preface
DATA record DAT A
MODEL SPECIFICATION FILE INPUT record MSFI
MODEL SPECIFICATION FILE OUTPUT record MSFO
TABLE record TABL

All these records are optional.They may occur in any order, with the one exception that when a MODEL
SPECIFICATION FILE INPUT record and MODEL SPECIFICATION FILE OUTPUT record both
occur for the same problem, the latter must preceed the former. There can be only one file record of each
type per problem. The file records for any one problem must be followed by a problem delimiter record,
i.e. a record consisting of asterisks in positions 1-4. If there are no file records with a problem, only the
problem delimiter record should appear.

When the data set is contained in a separate file, the name of this file is placed in the field of the
DATA record. AModel Specification File occurs in two ways, as a file to be input when continuing a
search, and as a file to be output to allow a search to be continued later. The MODEL SPECIFICATION
FILE INPUT record and the MODEL SPECIFICATION FILE OUTPUT record correspond to these two
files; the name of the file is placed in the field of the corresponding record.Each table generated in a
given problem may be stored in a common file called a TableFile The name of the Table File is placed in
the field of the TABLE record.
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C. SimpleNonlinear Regression

C.1. An Example

Although the main purpose of NONMEM is to handle more complicated statistical models than the
simple nonlinear statistical regression model, the example discussed in this chapter will help illustrate
and explain many aspects of NONMEM. Also, since some of the features illustrated in this chapter are
not part of every nonlinear regression program, the user may be interested in using NONMEM with sim-
ple nonlinear regression models.These features include the ones listed as i-ix in section A.3. The fea-
tures listed as x-xiv (not illustrated in this chapter) could also apply to simple nonlinear regression.

Typical of a simple nonlinear regression situation is the one discussed here where the plasma con-
centation of the drug theophylline has been observed at various times after an oral dose has been admin-
istered to a subject. The regression function is taken to be the "one-compartment model with first-order
absorption" (Gibaldi and Perrier, 1982):

f(θ1,θ2,θ3, x1, x2) =
θ1x1

θ3(θ1 − θ2)
(exp (−θ2x2) − (exp (−θ1x2))

where there are three regression parameters,θ1, θ2, and θ3, and two independent variables: x1, which
denotes the amount of the dose, and x2, which denotes time. The simple nature of the situation refers to
the statistical model which is defined by

yi = f(θ1,θ2,θ3, x1 i, x2 i) + η i

where yi is the ith value of the dependent variable, x1 i and x2 i are the associated values of the indepen-
dent variables (x1 is subscripted here, although its value remains constant), and theη i are statistically
independent random errors with means 0 and common varianceσ 2. This variance is another model
parameter which is to be estimated. Note that the variance of yi is also the constantσ 2.

To proceed with the data analysis one needs to inform NONMEM about

i the organization of the data set

ii someunderlying model structure: in this case the number of regression parameters and the fact that
there is only one random effect

iii the way to compute values of the regression function

iv initial estimates of the model parameters

v the tasks to be performed

The data set specification records take care of i, the model specfication records take care of ii, the initial
estimate records take care of iv, and the task specification records take care of v. A user-supplied FOR-
TRAN subprogram, PRED, takes care of iii. These four sources of input will be discussed in the remain-
ing sections of this chapter. Before turning to this discussion, some remarks about estimation with sim-
ple nonlinear regression are in order.

Traditionally, estimates of the regression parameters are obtained by searching for those valuesθ̂1,
θ̂2, θ̂3, of the parameters that minimize the function

O(θ1,θ2,θ3) =
I

i=1
Σ (yi − f(θ1,θ2,θ3, x1 i, x2 i))

2

where I is the number of observations. Sucha function is called an objective function. This particular
function is called the leastsquares(LS) objective function.The estimatêσ 2 of σ 2 is obtained by dividing
the minimum value of the objective function by I (or sometimes by I minus the number of regression pa-
rameters, i.e. I-3 in this case).For simple nonlinear regression, NONMEM uses a slightly different ob-
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jective function:

O(θ1,θ2,θ3,σ 2) = I log σ 2 +
I

i=1
Σ (yi − f(θ1,θ2,θ3, x1 i, x2 i))

2/σ 2

and takes the valuesθ1, θ2, θ3, σ 2 of the four model parameters minimizing this function to be the
parameter estimates. However, it may be easily verified that

θ1 = θ̂1, θ2 = θ̂2, θ3 = θ̂3, σ 2 = σ̂ 2.

This objective function is called the extendedleastsquares(ELS) objective function. It is a special case
of a more general ELS objective function described in later chapters. This general objective function is
used by default with NONMEM because it can be used with statistical models that are more complicated
than a simple nonlinear regression model, while, as just noted, a special case of it can also be used to ob-
tain simple least squares estimates. In its general form use of the ELS objective function provides statis-
tically consistent estimates under the assumption that the data arise from the data analytic model (Beal,
1984b). With simple nonlinear regression models, or with different models, different objective functions
from this default function may be used to obtain parameter estimates (see NONMEM Users Guide, Part
II).

C.2. PRED

The regression function f is computed for various values of the regression parameters and indepen-
dent variables. Theuser-supplied subroutine PRED is expected to return the appropriate value of f for
any such set of values. Theargument list for PRED is

ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H.

The arguments ICALL and INDXS are discussed in sections C.4.2 and C.4.1, respectively. The argument
NEWIND is discussed in section C.3.5.2.The argument H is discussed in chapters E and F. THETA is a
one-dimensional array in which the values of theθ ′s are passed.DATREC is another one-dimensional
array in which a data record is passed, including, in our example, the data items corresponding to the val-
ues x1 i and x2 i, for some i, of the independent variables. PREDis called many times, and when it is
called, it is called in bursts. Duringa burst of calls, the values in THETA are held fixed, and the data
records from an individual record are passed one after the other in the order in which they appear in the
individual record. This is called a burst of the individual record.In the example ID data items are not
used, and so every data record is an individual record. In this case every burst of an individual record
will consist of a single call.

Using the values in THETA and DATREC, PRED must compute the value of f and return it in the
argument F. This is illustrated in Fig. 1, where one possible code for a PRED which implements the
example is given. With simple nonlinear regression the value 1.0 must be returned in the first entry of the
one-dimensional array G. The reason for this is made clearer in chapter D.

The PRED subroutine may be as complicated as is needed. In particular, it may call other user-
supplied subroutines to accomplish various tasks.The following dimension statement should always be
included:

DIMENSION THETA(*),DATREC(*),INDXS(*),G(*),H(*)

as well as the statement:

DOUBLE PRECISION THETA,F,G,H
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when Double Precision NONMEM is being used. When double precision is used, the floating-point
computations in PRED based on the values in THETA should be done in double precision.Failure to do
so can result in failure to estimate the parameters altogether.

C.3. Control Records

C.3.1. Introduction

The first control record in the control stream must be the FILE record, a record that applies to all
the problems occuring in the NONMEM run.This record is not to be confused with a file record appear-
ing in the file stream.However, this record is very much concerned with file records. Character format is
used. Thecharacter field contains the name (left-adjusted) of a file containing the file stream.If no file
records are to be used (meaning that no optional NONMEM files are to be used), then the word NULL
can be placed in the field, and it is then understood that there is no file stream. See, for example, the con-
trol stream shown in Fig. 2.

A problemspecificationis a sequence of control records providing the control information for a
given problem. Thecontrol records are chosen from the list given in Table B.2.i (but cannot include the
FILE record), and the order in which they appear in the problem specification must follow the order in
which they appear in the table.A NONMEM run can consist of a single problem.A control stream is
constructed which consists of the FILE record followed by a problem specification. This is illustrated by
the control stream in Fig. 2.Multiple problems can occur in a single NONMEM run simply by con-
structing a control stream consisting of the FILE record followed by the concatenation of a number of
problem specifications.

The first control record of a problem specification must always be the PROBLEM record.Charac-
ter format is used.A heading for the computer printout is placed in the field. See Fig. 2. The next four
control records of the problem specification in that figure are data set specification records, the DAT A,
ITEM, LABEL, and FORMAT records. Theseare discussed in section C.3.2.The next record is a model
specification record, the initial STRUCTURE record. This is discussed in section C.3.3.The next five
records are initial estimate records, the THETA CONSTRAINT, THETA, LOWER, UPPER, and DIAG-
ONAL records. These are discussed in section C.3.4.The last five records are task specification records,
the ESTIMATION, COVARIANCE, TABLE, and SCATTERPLOT records. Theseare discussed in sec-
tion C.3.5. This entire discussion is summarized in the Appendix.

The entire computer printout which results from using the PRED routine and control stream given
in Figs. 1 and 2, respectively, is giv en in Figs. 3-18. Explanation about this printout is given below along
with detailed explanation about the control records.The first page of printout is a rather self-explanatory
page summarizing the information given in the problem specification. It is called the problemsummary.

C.3.2. DataSet Specification Records

C.3.2.1. DAT A Record

Control parameters giving a global characterization of the data set are given in the DAT A record.
This record must appear in a problem specification. Integer format is used.

The data set may be embedded in the control stream as in Fig. 2.If the number of data records is
small, this is often the most convenient procedure.Then a blank or 0 is placed in field 1, and a blank or 0
is placed in field 2.

Alternatively, the data set may be contained in a separate (sequential) file, in which case a 1 is
placed in field 1.With the first problem the file is read once only, until all data records in the data set are
read. NONMEMknows when to stop reading data records because the number of data records is placed
in field 3. If there is a subsequent problem which uses the same data set, the file will need to be rewound



Users Basic Guide 14

before it can be read again. Thisis accomplished by placing a 1 in field 2. If a subsequent problem in
the same run uses a second data set, one contained in the same file as is the first data set and placed
immediately after it, then with this subsequent problem the file should not be rewound. Thereading of
the file must continue from where it ended with the first problem. This is accomplished by placing a 0 or
blank in field 2.

As stated above, the number of data records in the data set is placed in field 3.With large data sets,
it may not be convenient to have to know this number, and there is a way in which field 3 can be ignored;
see NONMEM Users Guide, Part II.

The number of data items per data record is placed in field 4.This number must be between 1 and
20. Thisdoes not represent a significant limitation; data records designated as missing DV data items
can effectively serve as continuations of data records.

The DAT A record in Fig. 2 illustrates the above remarks.

C.3.2.2. ItemRecord

The main function of the ITEM record is to specify where various data items of interest are found
in the data records. This record must appear in a problem specification. Integer format is used.

The index, i.e. the position in the data record, of the ID data item is given in field 1, the index of
the DV data item is given in field 2, the index of the MDV data item is given in field 3, and the index of
the L2 data item is given in Field 7. Since a DV data item must always be present in the data record, the
integer in field 2 must always be at least 1.However, if the records do not include ID data items, a blank
or 0 should be placed in field 1, and similarly with respect to fields 3 and 7.The ITEM record in Fig. 2
illustrates these remarks. Since ID, MDV, and L2 data items are not included in the data records, 0’s are
placed in fields 1, 3, and 7 (a blank acts like a 0).

A blank or 0 should be placed in field 4 unless the INDXS feature is used; this feature is discussed
below in section C.4.1.

If the user wants to specify alphanumeric labels to be used in the output for the different types of
data items, then a 1 should be placed in field 5. If the user wants NONMEM to specify labels, then a
blank or 0 should be placed in field 5.In this case the labels will be VR 1, VR 2, etc. for the first, sec-
ond, etc. type data items in the data record.The problem specification of Fig. 2 indicates that labels are
to be user-specified.

C.3.2.3. LABEL Record

Labels to be used in the tables and scatterplots for the different types of data items are given in the
LABEL record. Each label consists of 4 alphanumeric characters, including blanks.The LABEL record
is optional. When it appears, labels forall the different types of data items must be supplied. When it
appears, a 1 must also be placed in field 5 of the ITEM record (see above).

The format of the LABEL record is special; it is unlike any of the formats of the other control
records. Thereare as many fields in the LABEL control record as there are data items in a data record.
(However, see NONMEM Users Guide, Part II for a discussion of specifying labels for the NONMEM
generated data items.)Each field has four positions, and the label for the ith data item is placed in the ith
field. Thefields are separated by 4 blanks.See Fig. 2. At most 9 labels can be placed in the fields of a
LABEL record comprised of one FORTRAN record, and if there are more than 9 data items per data
record, the LABEL record can be continued with other FORTRAN records (9 labels per FORTRAN
record).
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C.3.2.4. Format Record

The FORTRAN format specification used to read the data items (see section B.1) is supplied in the
FORMAT control record.This record must appear in a problem specification (except see the discussion
in NONMEM Users Guide, Part II, regarding the first field of the DAT A record). Theformat of the FOR-
MAT record is special; it is unlike any of the formats of the other control records. The specification,
including both left and right enclosing parentheses, is placed anywhere in the FORTRAN record immedi-
ately following the FORTRAN record containing the preface. See,for example, Fig. 2. This allows the
specification to be as long as 80 characters (including left and right enclosing parentheses).

In Fig. 2 the data records follow the FORMAT record, and thus thedataset is embeddedin the
controlstream.Embedding the data set in the control stream is always accomplished in this way. In Fig.
2 each data record contains 3 data items.The first data item is the dose amount, the second data item is
the time, and the third data item is the DV data item.

C.3.3. ModelSpecification Records

C.3.3.1. STRUCTURE record

There is just one model specification record needed for a simple nonlinear regression problem, the
initial STRUCTURE record.The dimension of the parameter space is obtained from the information
given in this control record. Sometimes additional STRUCTURE records are needed in a problem speci-
fication. Theinitial STRUCTURE record is required unless a Model Specification File is input (see sec-
tion C.4.4). Integer format is used.

There are 8 fields on this record, but only 3 of these are of concern with simple nonlinear regres-
sion. Thelength of THETA is placed in field 1. In the example this number is 3.The number of random
interindividual effects is placed in field 2. In the example this number is 1.The only random effect isη,
and as explained in section A.5, it is a random interindividual effect. A 1 is placed in field 6. This has
the effect of informing NONMEM that the variance-covariance matrixΩ of all random interindividual
effects is diagonal.With simple nonlinear regression, where there is only one such effect, Ω is a simple
scalar quantity (σ 2), and this is the simplest example of a diagonal matrix.

C.3.4. Initial Estimate Records

C.3.4.1 Introduction

Initial estimates of the model parameters are used in several ways. If a minimization search for
parameter estimates is carried out, the search will begin at the initial estimates.When a search is contin-
ued from a previous problem, and a Model Specification File is input for this purpose, then the search
begins from where it left off in the previous problem. In this case initial estimate records are not
required. Ifa search is not undertaken, tables and scatterplots can still be generated, and the NONMEM
generated data items (e.g. prediction, residual, and weighted residual data items) will be computed using
the initial estimates (unless, again, a Model Specifcation File is used). An initial estimate should repre-
sent the best guess of the population value of the parameter. Some appropriate scale for the parameter
should be implied by the initial estimate. The value 0 (a number which has no scale) is never allowed
unless the parameter is fixed to this value. Parameters can be fixed in value; this will be described below.
There can sometimes be problems in guessing at population values. NONMEMprovides some help in
this regard. Thisis illustrated in section C.3.4.6 below and in section C.4.5.

C.3.4.2. THETA CONSTRAINT Record

Control parameters concerned with constraining the elements of THETA are given in the THETA
CONSTRAINT record. Constraints on THETA elements are necessary when NONMEM must obtain
initial estimates of some of these elements; see section C.4.5.They also may be used for obtaining final
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estimates of these elements. In this latter context, the minimization search is undertaken in a constrained
parameter space. Each THETA element may be individually constrained (or not) to lie in an interval of
the form (a,b), where a may be−∞ and/or b may be∞. Or perhaps a=b, in which case the element is
fixed to the value a. The value a is called the lowerbound,and the value b is called the upperbound.

Integer format is used with the THETA CONSTRAINT record. This record is required unless a
Model Specifcation File is input.(However, there is the following exception to this rule which should
only be of interest to Version II users. The THETA CONSTRAINT record is new to Version III. It is
used in part to replace the use of fields 4 and 5 of the initial STRUCTURE record. Field 1 on the
THETA CONSTRAINT record is equivalent to field 4 of the INITIAL STRUCTURE record. Field 5 of
the INITIAL STRUCTURE record is unnecessary with Version III.Version III ignores fields 4 and 5
unlessthe THETA CONSTRAINT record is missing from the problem specification.Fields 4 and 5 of
the initial STRUCTURE record will be deactivated with Version IV.)

If none of the THETA elements are to be constrained, a 0 is placed in field 1.In Fig. 2 a 1 appears
in field 1, indicating that some of the THETA elements are to be constrained. There is one other field in
this record; it is described in section C.4.5.

C.3.4.3. THETA Record

Initial estimates of the elements of THETA should be placed in the fields of the THETA record.
The initial estimate of the ith element is placed in the ith field.Fixed point format is used. This record is
required unless a Model Specification File is input.

In the THETA record of Fig. 2 the three initial estimates are 1.7, .102, and 29. These estimates
were obtained using the"method of residuals" (sometimes called the "peeling" or "feathering" method)
for fitting exponentials, described in Gibaldi and Perrier, 1982, Appendix C.

C.3.4.4. LOWER BOUND Record

If a finite lower bound is to be given for some THETA element, then lower bounds must be given
for all THETA elements in the LOWER BOUND record. (Also, in this case upper bounds must be given
for all THETA elements in the UPPER BOUND record.)However, any THETA element can be effec-
tively unbounded from below by using the lower bound−∞. These lower bounds should be placed in the
fields of the LOWER BOUND record. The lower bound for the ith element is placed in the ith field.A
lower bound−∞ is given by the value -1000000.Fixed point format is used.This record is required
when and only when there is a THETA CONSTRAINT record with a 1 in field 1.Lower bounds are
shown in Fig. 2.

C.3.4.5. UPPERBOUND Record

If a finite upper bound is to be given for some THETA element, then upper bounds must be given
for all THETA elements in the UPPER BOUND record.(Also, in this case lower bounds must be given
for all THETA elements in the LOWER BOUND record.)However, any THETA element can be effec-
tively unbounded from above by using the upper bound∞. These upper bounds should be placed in the
fields of the UPPER BOUND record. The upper bound for the ith element is placed in the ith field.An
upper bound∞ is given by the value 1000000.Fixed point format is used. This record is required when
and only when there is a THETA CONSTRAINT record with a 1 in field 1. Upper bounds are shown in
Fig. 2.

C.3.4.6. DIAGONAL Record for Ω
The initial estimates of the elements of the variance-covariance matrixΩ of the random interindi-

vidual random effects are given in the DIAGONAL record for Ω. Recall that with simple nonlinear
regressionΩ is specified to be diagonal (see discussion above about the initial STRUCTURE record).If
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Ω is not diagonal, the initial estimates would be given in BLOCK SET records; see section D.5.3.The
initial estimate of the ith diagonal element is placed in the ith field of the DIAGONAL record. Fixed
point format is used. This record is required whenever there are random interindividual effects, unless a
Model Specification File is input.

With simple nonlinear regressionΩ = σ 2, a simple scalar quantity. Most nonlinear regression pro-
grams do not require the user to supply an initial estimate ofσ 2; NONMEM is no exception. Whenever
the fields of the DIAGONAL record are left blankand a 2 is placed in position 8 of this record, NON-
MEM will try to obtain an initial estimate ofΩ using the data. See the DIAGONAL record in Fig. 2.

When initial estimates are user-supplied, then there must be initial estimates for all diagonal ele-
ments, i.e. no field can be left blank. An initial estimate of a population interindividual variance compo-
nent should represent the best guess of this component, and it is best to overestimate the component,
rather than underestimate it.The matrixΩ can be fixed to its estimate. This is accomplished by placing
a 1 in position 8 of the DIAGONAL record.

Whenever NONMEM is asked to obtain an initial estimate, the Initial Estimate Step is imple-
mented. Theprintout from this step consists of a display of all the elements of the initial parameter esti-
mate. For the example, see Fig. 4. There the initial estimates of theθ ′s are given under the heading
THETA - VECTOR OF FIXED EFFECTS and are the ones given in the THETA record, and the initial
estimate ofσ 2 is given under the heading OMEGA - COV MATRIX FOR RANDOM EFFECTS and is
1.17, a number computed by NONMEM.

C.3.5. Task Specification Records

C.3.5.1 ESTIMATION

The Estimation Step is controlled by information given in the ESTIMATION record. When this
records is included in a problem specification, the Estimation Step can be executed. Whenit is absent
from the problem specification, the Estimation Step is not implemented. Integer format is used.

A blank or 0 is normally placed in field 1.A 1 can be placed in this field, and then even though the
ESTIMATION record appears, the Estimation Step is not implemented, and the remaining fields of the
ESTIMATION record may be ignored.

During a minimization search, the objective function must be computed at a number of points in
the parameter space, and the number of such evaluations is a measure of the work done during the Esti-
mation Step.The user establishes an upper limit to this number and places this limit in field 2.The
search will terminate unsuccessfully if this particular number (or a slightly greater number) of objective
function evaluations is attained. In this case a final parameter estimate results which is usually better
than the initial estimate, but it is not optimal.The search may be conveniently and smoothly continued in
a subsequent NONMEM run, and without starting the search from the beginning and specifying a larger
upper limit to the number of function evaluations. Thisis described in section C.4.4. It requires writing
a Model Specification File. In Fig. 2 the numberof maximumfunctionevaluationsis given as 240.

The minimization search is divided into stages called iterations.At the end of each iteration a pa-
rameter estimate results. It is called the iterationestimate.The value of the objective function at the esti-
mate at iteration m is larger than the value of the objective function at the estimate at iteration m+1.The
iteration estimate at the 0th iteration is taken to be the initial estimate. The search terminates only when
the the two estimates at two successive iterations agree inat leastthe first r significant digits (including
leading zeros after the decimal point) with respect to each of the parameter components. Recall that in
our simple nonlinear regression example there are four parameter components,θ1, θ2, θ3, and σ 2. The
number r is specified by the user and is placed in field 3. In this regard the user should be aware that the
minimization search is actually carried out in a reparametrized space established by NONMEM (see be-
low), and, to be precise, the criteria for a successful termination apply to estimates of parameters in this
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space. However, usually a reasonable approach to specifying r when, as suggested above, the initial esti-
mates are the user’s best guess of the population values of the parameters, is as follows. For each param-
eter component, let q be the number of significant digits (excluding leading zeros after the decimal point)
in its initial estimate that the user feels with a fair degree of certainty are accurate. The number q could
be zero, of course. Let m be the minimum value of q over all parameter components, and let r be m+2, or
m+3. With Double Precision NONMEM, r could be a little larger, m+4 or m+5. If after examining the
output, the user feels that the search should be continued using a greater value of r, this may be done con-
veniently in a subsequent run (see section C.4.4). In Fig. 2 r is set to 4.

The progress of the search may be monitored, and a summary of the progress after every n itera-
tions, starting with the first iteration, will be printed.The number n is placed in field 4. Summaries after
the 0th iteration and last iterations are also printed.If no summaries are wanted, a blank or 0 should be
placed in field 4. Examples of these summaries are given in Fig. 5, where summaries after every 2 itera-
tions are printed; this output results from the problem specification of Fig. 2.

A summary at the end of an iteration includes the iteration estimate.The estimate is given in terms
of a reparametrization established by NONMEM. The new parameters are called the scaledtransformed
parameters(STP).In a simple nonlinear regression, each of the STP is obtained by transforming and then
scaling one of the original parameters. The first several of the STP are obtained in order from the first
several θ ′s, and the last of the STP is obtained fromσ 2. Each STP is scaled so that the absolute value of
its initial estimate is 0.1 (see the summary of the 0th iteration in Fig. 5).

A summary also includes the value of the objective function evaluated at the iteration estimate.
Notice from Fig. 5 that these values decrease from iteration to iteration.A summary also includes the
gradient vector of the objective function with respect to the STP and evaluated at the iteration estimate.
It can be seen in Fig. 5 that the gradient vector at the last iteration is a several orders of magnitude
smaller than that at the 0th iteration.This reflects the fact that the final estimate effectively minimizes
the objective function. Lastly, a summary also includes the number of function evaluations computed
during the iteration.

Three lines of output are always generated by the Estimation Step in addition to iteration sum-
maries. The first line gives the reason the minimization terminated.In Fig. 5 the reason given is that the
criteria for a successful termination were satisfied.Another reason could have been that the maximum
number of function evaluations was attained.A third reason could have been that the search algorithm
could not conclude that a minimum had been attained due to round-off problems. Ifthe search termi-
nates for either the second or third reasons, the termination is referred to as being unsuccessful. The sec-
ond line gives the total number of times the objective function was evaluated during the search. The third
line gives an estimate of the numberof significantdigits in the final estimate.This number is a decimal
fraction. Letn1 be the integer part of this number, and let n2 be the greatest integer that could have been
placed in field 3 with the effect that a successful termination would have resulted (there being no upper
limit to the number of function evaluations). Whenthe maximum number of function evaluations is not
attained, then n1 = n2. When the maximum number of function evaluations is attained, n1 ≤ n2. When
the termination is successful, n1 is, of course, no less than the integer in field 3.The number of signifi-
cant digits in the final estimate for the example (see Fig. 5) is 8.5.

When the search terminates unsuccessfully due to problems with rounding errors, this means that
changes in the objective surface around the minimum are too small to be distiguished from machine
round-off effects. Thisdetermination depends on computed information about the surface curvature.
There are several possible user-responses. Ifthe number of significant digits in the final estimate is satis-
factory, and if the gradients at the minimum are several orders of magnitude smaller than the gradients at
the initial estimate, then cautiously ignore the message. If single-precision NONMEM was used, try
using double-precision NONMEM. If the initial estimates are within a few percent of previously
obtained final estimates which result from a successful termination, then re-run, using initial estimates
that are perturbed≥ 10% from these final estimates.One common reason for round-off problems is that
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the model is over-parameterized. Ifthe suggested user-responses given above neither apply nor help,
then the user should consider a model with fewer parameters.

The iteration summaries can be useful in a few ways. First,one can use them to check that the
search indeed converged to a local extremum of the objective function surface, by checking that the gra-
dients are relatively small. It is possible for the message that the search terminated successfully to be
issued while the search, in fact, did not converge to a local extremum, let alone a local minimum.Sec-
ond, one can use them to check that some mistake has not been made or that the model is not extremely
overparameterized, by checking that the parameter estimate changes during the search.This, of course
can also be done by comparing the final parameter estimate to the initial parameter estimate, but this is
easy to check at a glance from the iteration summaries. Sometimes a coding error in a user-supplied rou-
tine results in a parameter not having any influence on the fit, in which case its estimate will not change
during the search. If the model is extremely overparameterized, this too may result in no change in some
parameter estimate. Sometimes the search will extend into a region of the parameter space where numer-
ical difficulties will occur and error messages reflecting these difficulties will be output.If these mes-
sages are intermingled in the earlier iteration summaries, but do not appear in the later summaries, and if
the final parameter estimate is reasonable, one may conclude that the search returned to a more reason-
able and less problematic area of the parameter space before terminating.

Lastly, there can be indication with the 0th and early iteration summaries that some mistake has
been made. If at the 0th iteration, the gradient vector is zero, this could indicate that numerical constants
have not been set appropriately in NONMEM itself at installation time (see Users System Guide) or that
double precision NONMEM is being used while double precision is not being handled correctly in a
user-supplied subroutine. In the latter case, often a user forgets to declare some variable (depending on a
θ ) as a double precision variable. Whenthe value of the objective function at the 0th iteration estimate is
an extremelylarge (usually the largest floating point number representable on the machine), and the gra-
dient vector is also zero, this usually indicates that there has been a mistake in either user-supplied code,
the data, or the initial estimates. In particular, the user should check these three things for mistakes that
could affect partial derivatives since the symptomology in question results when the variance-covariance
matrix of the data from some individual is initially estimated to be singular.

Whether or not the Estimation Step is implemented, the final parameter estimate is printed.In the
latter case, the final estimate is taken to be the initial estimate. Fig. 7 shows the final estimate for the
example. Thenumber .899, appearing under the heading OMEGA - COV MATRIX FOR RANDOM
EFFECTS - ETAS, is the final estimate ofσ 2. The minimum value M of the objective function is also
printed. Fig.6 shows this minimum value for the example. With simple nonlinear regression, and using
the ELS objective function, M coincides (except for a parameter-independent additive constant) with -2L,
where L is the logarithm of the likelihood of the data evaluated at the maximum likelihood parameter
estimate,under the assumptionthat theη i are normally distributed. Theminimum value may be used
across runs to develop likelihood ratio type tests of hypothesis about the parameters (Gallant, 1975).

C.3.5.2. COVARIANCE Record

The Covariance Step is controlled by information given in the COVARIANCE record. When this
record is included in a problem specification, the Covariance Step can be implemented. When it is absent
from the problem specification, the Covariance Step is not implemented. This may be done when, for
example, the user is focusing on the Estimation Step only. The Covariance Step may be implemented in
a subsequent run without repeating the Estimation Step (see section C.4.4). It is an error to include the
COVARIANCE record when the Estimation Step is not implemented and a Model Specification File is
not input. This is because the validity of the covariance matrix depends heavily on the condition that the
parameter estimate minimize the objective function, and NONMEM wants to be assured that such an
estimate is available. Integer format is used.
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A blank or 0 is normally placed in field 1. This means that the Covariance Step is conditionally
implemented,i.e. it is implemented only if the Estimation Step terminates successfully. Howev er, this
condition can be over-ridden by placing a 1 in field 1. Then regardless whether the Estimation Step ter-
minates successfully, the Covariance Step is also implemented. Also, a 2 can be placed in field 1, and
then even though the COVARIANCE record appears, the Covariance Step is not implemented, and the re-
maining fields of the COVARIANCE record may be ignored.

There are other fields in the COVARIANCE record, most of which are described in NONMEM
Users Guide, Part II. Field 5 is discussed below; this discussion is relevant only when the computation
implemented in PRED is recursive.

Implementation of the Covariance Step results in a printout of the estimates of the standard errors
of the parameter estimates, the covariance matrix, the inverse of the covariance matrix, and the correla-
tion form of the covariance matrix. The reader is reminded that the standard error estimates are the
square roots of the diagonal elements of the covariance matrix.Fig. 8 shows the standard error estimates
for the example. Thenumber .545, appearing under the heading OMEGA - COV MATRIX FOR RAN-
DOM EFFECTS - ETAS, is the standard error estimate forσ̂ 2. Fig. 9 shows the full covariance matrix.
The label OM11 refers tôσ 2. The covariance ofσ̂ 2 with any one of theθ̂ ′s is not zero, reflecting the fact
that for the purpose of computing the covariance matrix, the random errors in the models (theη i) are not
assumed to be normally distributed.

The user should be familiar with the covariance matrix associated with use of the least squares
objective function. Thecomputation of this matrix does not rest on a normality assumption about theη i

(Jennrich, 1969), although the computation can also be justified under the assumption that theη i are nor-
mal, using maximum likelihood theory (Hoadley, 1971). Similarly, the covariance matrix associated with
use of the extended least squares objective function does not rest on a normality assumption (Beal,
1984b). Thiscovariance matrix includes the variance ofσ̂ 2 and the covariances ofσ̂ 2 with the θ̂ ′s.
Under the normality assumption, a similar covariance matrix can be computed, one, however, where
these covariances are always zero.

Fig. 10 shows the correlation matrix, and Fig. 11 shows the inverse of the covariance matrix.

Field 5 of the COVARIANCE record is concerned with PRED routines which are recursive.
Another PRED which implements the very same example and produces virtually the same output is given
in Fig. 19. It is an example of a recursive PRED, i.e. the value of the argument F returned with a given
data record depends on computations taking place in PRED with previous data records. The computation
is based on the superimposition principle with linear kinetic systems which in this case allows the regres-
sion function for the ith observation to be written recursively as

f(θ1,θ2,θ3, x1 i, x2 i) = B(θ1,θ2,θ3, di−1, x2 i − x2 i−1) + f(θ1,θ2,θ3, x1 i, x2 i−1) exp (−θ2(x2 i − x2 i−1))

where

B(θ1,θ2,θ3, d,δ ) =
θ1d

θ3(θ1 − θ2)
(exp (−θ2δ ) − exp (−θ1δ ))

di = di−1 exp (−θ1(x2 i − x2 i−1))

where the initial conditions are

f(θ1,θ2,θ3, x10, x20) = 0

x20 = 0

d0 = x11
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and where the time points x2 i are ordered from low to high values, and the dose amounts x1 i are constant.
The function B is the Bateman function. PRED calls the subroutine BATE which computes this function.
The code for BATE is giv en in Fig. 20.

For the purpose of computing the covariance matrix, a burst of an individual record (see section
C.2) can occur immediately after another burst of the same individual record. When both (i) a recursive
PRED is used,and (ii) the recursion extends across individual records, this pattern of bursts will cause a
problem. Whenconditions i and ii hold, then for PRED to work correctly, a burst of an individual record
must be immediately preceeded by bursts of the preceeding individual records, and these bursts must
occur in the order in which the individual records appear in the data set. By placing a 1 in field 5 of the
COVARIANCE record, NONMEM will only use this more appropriate pattern of bursting. (Wheneither
i or ii does not hold, it is far more efficient, but not necessary, to place a blank or 0 in field 5). So the rule
is: whenever a recursive PRED is used,and when the recursion extends across individual records, a 1
should be placed in field 5, indicating that the computation of the covariance matrix should be done in a
special way. The SPECIAL COMPUTATION referred to in the middle of Fig. 3 is this computation.In
Fig. 3 it is stated that the special computation is not performed. This is because a blank is placed in field
5 of the COVARIANCE record of Fig. 2.Recall that in the example each data record is an individual
record. Therefore,if the recursive PRED were used, a 1 should be placed in field 5, and then the problem
summary will state that the special computation is performed.

There is another aspect of the PRED in Fig. 19 which should be noted. In order to initialize the
recursion the routine must be made aware of which data record being passed is the first data record of the
data set The argument NEWIND has the value 0 only when the data record being passed is this first data
record. Theother values it can have are 1 and 2. When the record is the first record of an individual
record, the value of NEWIND is 1 (except with the first individual record, where this value is 0).When
the record is the second or subsequent record of an individual record, the value of NEWIND is 2.

C.3.5.3. TABLE Records

The Table Step is controlled by information given in the TABLE records. When these records are
included in the problem specification, the Table Step can be implemented. The records consist of an ini-
tial TABLE record followed by one or more individual TABLE records. When they are absent from the
problem specification, the Table Step is not implemented. Integer format is used.

A blank or 0 is normally placed in field 1 of the initial TABLE record. This means that the Table
Step is conditionallyimplemented,i.e. it is implemented only if the Estimation Step terminates success-
fully. Howev er, this condition can be over-ridden by placing a 1 in field 1.Then regardless whether the
Estimation Step terminates successfully, the Table Step is also implemented. Also, a 2 can be placed in
field 1, and then even though the initial TABLE record appears, the Table Step is not implemented, and
the remaining fields of this record may be ignored.Also, in this case no individual TABLE records
should appear.

The number of tables to be generated is placed in field 2 of the initial TABLE record. Each table is
defined by an individual TABLE record, and the tables will appear in the printout in the same order as
that in which their defining individual TABLE records appear.

The tables can be printed, or stored in a Table File, or both. If they are only to be printed, a blank
or 0 is placed in field 3 of the initial TABLE record. If they are only to be stored in a Table File, a 1 is
placed in field 3, and if they are both to be printed and stored, a 2 is placed in field 3. When they are
stored, they are stored one after the other in the Table File, which is a sequential file. The records of this
file are exactly the records that appear in the output file when the tables are printed (except that the FOR-
TRAN carriage control characters are not included).

A table is a tabulation of the data items of selected type.The rows of the table correspond to data
records, and the columns of the table correspond to the selected data item types. The number of data
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item types selected to appear in a table is placed in field 1 of the defining TABLE record. This number
must be between 0 and 8. The total number of columns of the table actually equals this number plus 4,
because with each table an additional 4 columns are appended by NONMEM. These 4 columns corre-
spond to the DV data item type and the 3 NONMEM generated data item types (see section A.4).Conse-
quently, the user need not select the DV data item type to appear in a table. When the NONMEM gener-
ated data items types are the prediction, residual, and weighted residual, then 0 is tabulated for residual
and weighted residual data items with data records designated as missing.

In the example corresponding to Fig. 2 only one table is to be generated; it is to be printed only.
There is only one data item type selected for tabulation, the time data item type. Fig. 13 shows this table.
Note that since the default objective function is used, the three NONMEM generated data items that
appear in the table are the prediction, residual, and weighted residual data items. (In this example, where
the statistical error model is homoscedastic, the weighted residual data item is the residual data item
divided by the final estimate ofσ , the positive square root of the final estimate ofσ 2.) Theseare labeled
PRED, RES, and WRES.These labels can be changed, as can the computation of the NONMEM gener-
ated data items themselves (see NONMEM Users Guide, Part II).

After the first field of an individual TABLE record, there follow two fields for each selected data
item type. The index of the data items of given type is placed in the first of these two fields, and a sort
code is placed in the second field. Use of these sort codes to sort the rows of the table on the data items
of selected types is described in section D.5.4. Blanks or 0’s should be placed in sort fields unless a sort
is desired.In this case the column order of the selected data item types corresponds to the order in which
the indices of the data items are placed in the TABLE record.

Example C.3.5.3.i:

TABL 3 3 2 7
column no.: 1 1  2  3

2 6  4  2

In this example three types of data items are selected for tabulation. Thefirst column of the table consists of the data items
whose index is 3, the second column consists of the data items whose index is 2, and the third column consists of the data items
whose index is 7.

There is a limitation of 900 rows per table. If the number of data records, n, exceeds this limit, any
one table will not use all the data records.However, all data records are used in the following way. Each
individual TABLE record actually defines a number of tables.A first table is generated which uses data
records 1 through min(n, 900). If n > 900, then a second table is generated which uses data records 901
through min(n, 1800).And so on.

C.3.5.4. SCATTERPLOT Record(s)

The Scatterplot Step is controlled by information given in the SCATTERPLOT records. When
these records are included in the problem specification, the Scatterplot Step can be implemented.The
records consist of an initial SCATTERPLOT record followed by one or more individual SCATTERPLOT
records. Whenthey are absent from the problem specification, the Scatterplot Step is not implemented.
Integer format is used.

A blank or 0 is normally placed in field 1 of the initial SCATTERPLOT record. Thismeans that
the Scatterplot Step is conditionallyimplemented,i.e. it is implemented only if the Estimation Step ter-
minates successfully. Howev er, this condition can be over-ridden by placing a 1 in field 1. Then regard-
less whether the Estimation Step terminates successfully, the Scatterplot Step is also implemented.Also,
a 2 can be placed in field 1, and then even though the initial SCATTERPLOT record appears, the SCAT-
TERPLOT Step is not implemented, and the remaining fields of this record may be ignored.Also, in this
case no individual SCATTERPLOT records should appear.
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Families of scatterplots are generated. The number of families to be generated is placed in field 2
of the initial SCATTERPLOT record. Eachfamily is defined by an individual SCATTERPLOT record,
and the families will appear in the printout in the same order as that in which their defining individual
SCATTERPLOT records appear.

The simplest kind of a family consists of a single scatterplot of two types of data items, one for use
along the abscissa axis and one for use along the ordinate axis. Examples of these families are shown in
Figs. 15-18. These families are defined by the individual SCATTERPLOT records of Fig. 2. The first
family consists of the plot of the DV data items vs the time data items. The second family consists of the
plot of the prediction data items vs the time data items. The third family consists of the scatterplot of the
residual data items vs the time data items.Whenever residuals or weighted residuals are plotted, the
"zero line" is also shown. Thefourth family consists of the scatterplot of the prediction data items vs the
DV data items. Note that in this scatterplot the line with slope equal to 1 is shown. Thisline is called the
unit slopeline, and it can be optionally included in any scatterplot. Also,notice that the axes on which
the predictions and residual data items are plotted are labeled PRED and RES, respectively. The labels
used in the scatterplots are the same ones used in the tables (see section C.3.5.5). More complicated fam-
ilies than those illustrated in Figs. 15-18 are described in section D.5.5.

In each individual SCATTERPLOT record the index of the data items to be plotted on the abscissa
axis is placed in field 1, and the index of the data items to be plotted on the ordinate axis is placed in field
2. For the purpose of defining scatterplots, the indices of the NONMEM generated data items are n+1,
n+2, and n+3, where n is the number of data items per data record as specified in the DAT A record. Ifthe
unit slope line is wanted with the scatterplots of a particular family, then a 1 is placed in field 6; other-
wise a blank or 0 is placed in the field.

C.4. Additional Features

C.4.1. INDXS

In the PRED in Fig. 1 the positions of the dose and time data items in the data records are assumed
to be 1 and 2, respectively. It would be convenient to have a code which is independent of an assumption
about the positions of data items in the data records. Such a code is given in Fig. 21. It will work with
the data set embedded in the control stream of Fig. 22, which is just like the data set embedded in the
control stream shown in Fig. 2. It will also work with the data set emdedded in the control stream shown
in Fig. 23 which is just like that embedded in the control stream of Fig. 2 except that the positions of the
dose and time data items are reversed. Thecode employs an indirect addressing feature. Suppose, as in
the example, two data items are needed in the computation, and in the code they are numbered 1 and 2 (1
- dose; 2 - time). The position of the Ith such data item in the data record is given by INDXS(I), where
INDXS is a one-dimensional array appearing in the argument list to PRED.For example, for PRED to
work correctly with the data set shown in Fig. 23, INDXS(2) must equal 1.

The user sets the appropriate values in INDXS by placing the Ith value in the Ith field of the
INDEX record. Integer format is used for the INDEX record. This record is optional, but if the indirect
addressing feature is used in PRED, then it should appear in the problem specification. It can actually be
used for the more general purpose of communicating integer-valued numbers to PRED. When it used, it
is placed after the ITEM record in the problem specification. In this case the number of indices occuring
in the INDEX record is placed in field 4 of the ITEM record.These remarks are illustrated in both Figs.
22 and 23.

C.4.2. ICALL

Since in the example dose is a constant, the dose need not be given on any data record.Rather, the
dose could be obtained by PRED itself during an initial stage, and thereafter be available in PRED’s local
storage. Indeed,there exist PREDinitializations,special calls to PRED during which PRED computa-
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tions can be initialized; At a PRED initialization the routine is not expected to return values in F and G.
PRED must be able to recognize these special calls. The first argument to PRED is ICALL. At a PRED
initialization ICALL has the value 0 or 1. When PRED must return values in F and G, ICALL has the
value 2. At a PRED initialization the values in THETA are the initial estimates (or if an initial estimate
of someθ is not given, then the midpoint between the lower and upper bounds is used), and the data
record passed in DATREC is the first data record. So even though the call is a PRED initialization and
PRED is not checking ICALL, usually no difficulty is encountered when PRED proceeds to compute F
(see Fig. 1).

A PRED that checks ICALL is shown in Fig. 24. At ICALL=1, the dose is read by PRED on
FORTRAN unit 5. Unit 5 is the unit connected to the file containing the control stream.With a control
stream containing just one problem specification the entire control stream is read by NONMEM before a
PRED initialization, so no difficulty arises by including records in this file after the control stream which
are to be read by PRED. The sequence of records in the file might look like that shown in Fig. 25 which
consists of a control stream followed by a record to be read by PRED and containing the dose.Of
course, the "dose record" could also be in a file connected to a different FORTRAN unit from 5.The
control stream in Fig. 25 is just like that of Fig. 2, but it is adjusted for the absence of dose in the data
records.

There are a number of PRED initializations.The first one occurs at the beginning of the NON-
MEM run and allows PRED computations to be initialized over all problems. This is signalled to PRED
with ICALL=0. The other PRED initializations follow, one occuring at the beginning of each problem.
These are signalled to PRED with ICALL=1.Since in the example there is only one problem, at
ICALL=0 PRED simply returns control to NONMEM, waiting for ICALL=1 at which time the problem
is initialized by obtaining the dose.

At a PRED initialization (all) the data can also be transgenerated. See NONMEM Users Guide,
Part II.

There also exist PREDfinalizations,special calls to PRED enabling computations in the routine to
be finalized. Such computations could produce output not generated by NONMEM itself. There is one
PRED finalization at the end of each problem.These calls are signalled to PRED with ICALL=3. At a
PRED finalization the first data record of the data set is passed in DATREC, but the values in THETA are
the final estimates. Therefore, one can, for example, compute and output the maximum value of the re-
gression function with respect to time, i.e.

dose

θ3
exp (−

θ2

θ1 − θ3
) log (

θ1

θ2
)

evaluated atθ equal to its final estimate. Printed output from PRED may be placed in the same file as
that containing NONMEM output, the file connected to unit 6.However, this may not be satisfactory
since such printout follows the problem summary and preceeds the printout from the Estimation, Covari-
ance, Tables, and Scatterplot steps. If this is done, then a page skip should begin this printout.During a
PRED finalization, the data can also be transgenerated, and the transgenerated data are then available for
tables and scatterplots.

C.4.3. Usingthe MDV Data Item

The idea of including additional data records with only dummy DV data items to "fill out" a plot of
prediction vs an independent variable (e.g. time) has been mentioned in section B.1. Some elaboration of
that discussion and an illustration is given in this section.

Examination of the plot of prediction vs time given in Fig. 16 shows that the curve has a "gap"
between 12 and 24 hours. The control stream in Fig. 26 is very similar to that of Fig. 2, but the data
includes data records with time data items 16 and 20 hours, so that the plot of prediction vs time has less
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of a gap. Theplot is shown in Fig. 27. None of the other plots are affected by the presence of the two
new data records since data records designated as missing are not used with scatterplots involving the
DV, residual, or weighted residual data items. Also, the output from the Estimation and Covariance steps
is not affected by the presence of the two new data records. The table simply has two additional rows in
which the residual and weighted residual data items are 0.

There are other differences between Figs. 2 and 26.First, MDV data items are included.The
MDV data item is 1 in the records with times 16 and 20, indicating that these two records are designated
as missing DV data items.Actually, dummy data DV data items exist in these two records (the number 0,
since for convenience and perspicuity, blanks are used, and blanks translate to 0). Second, ID data items
also are included sincewheneverMDV data items exist, so must ID data items. The ID data item 9 is
used in each of the two additional data records.However, any ID data items whatsoever could have been
used in these two records, and the computation would not have been affected. Third,the presence of both
ID and MDV data items is indictated in the ITEM record.Fourth, other minor changes occur since now
there are 5 data items per data record altogether; see, for example, the SCATTERPLOT records.

C.4.4. ModelSpecification File

The minimization search implemented in the Estimation Step will terminate either successfully or
unsuccessfully. In either case the last iteration estimate may be placed in an output file. The information
in the model specification records is also recorded in the file. Therefore, the file is called the Model
SpecificationFile (MSF). This file is useful when, for example, the user wishes to proceed cautiously
with a large and possibly difficult minimization search and not allow the search to proceed too far before
reviewing the results. This can be done by setting the maxmum number of function evaluations to an ap-
propriately small number. Then if the results are encouraging, the search can be continued in a second
problem in a subsequent NONMEM run.Since the MSF contains the model specification and initial esti-
mate information that is needed in this second run (the initial estimate would now be the last iteration es-
timate of the first problem), it can be input in the second problem, and the model specification and initial
estimate records need not be included.However, the benefit in using an MSF is greater than that in just
allowing certain control records to be omitted. The MSF also contains useful information about the cur-
vature of the objective function in the area of the last iteration estimate. This allows a search which is
continued using the MSF to proceed in an informed and efficient manner, just as if it were not aborted in
the first problem. This is referred to as a smoothcontinuation.This is in contrast to what would happen
if the user were to specify the last iteration estimate of the first problem in the initial estimate records of
the second problem. In this case the search proceeds less efficiently since information about the curva-
ture of the objective function is not available and must be freshly obtained. Indeed, if the last iteration
estimate of the first problem is nearly optimal, the search could terminate due to rounding errors.

The benefit in using an MSF becomes even greater in another situation.Suupose the user chooses
a number of maximum function evaluations which is so large that it seems that it would not be attained,
but in fact, it is attained.In this event the search would need to be repeated, or at least continued.It
would be unfortunate if the search were expensive in terms of time and/or money. With a MSF, it could
be easily and smoothly continued.

Or to take yet another example, the user may wish to first examine the results of the Estimation
Step, even if it terminates successfully, before implementing the Covariance Step. Since the computation
in the Covariance Step depends heavily on the final estimate minimizing the objective function, then
when the Estimation Step is not implemented, NONMEM does not even allow the Covariance Step to be
implementedunlessan MSF is input.

Another control stream is given in Fig. 28. This one differs from that in Fig. 2 in just a few
respects. First,the maximum number of function evaluations, as given in the ESTIMATION record is
50. Sincethe search is known to use 114 function evaluations (see Fig. 5), use of this control stream
results in an unsuccessful termination of the search due to the maximum number of function evaluations
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being exceeded. Thisis indicated by the output from the Estimation Step shown in Fig. 30.Second, a 1
is placed in field 6 of the ESTIMATION record, indicating that a MSF is to be output. (Field 5 is
described in NONMEM Users Guide, Part II.) When field 6 contains a blank or 0, then a MSF is not out-
put. Lastly, a file name in the FILE record is given since a nonnull file stream must be specified (see sec-
tion B.3). This name is: FILESTREAM.The records in the file FILESTREAM are shown in Fig. 29.
They consist of the MODEL SPECIFICATION FILE OUTPUT record, giving the name (MSF1) of the
Model Specification File, and the problem delimiter record.

From the progress of the search, as indicated in Fig. 30, there is little reason to think that success-
ful termination would not have resulted had the maximum number of function evaluations been consider-
ably greater than 50.A run using the MSF as an input file is therefore undertaken. Acontrol stream for
this run is given in Fig. 31. This control stream also differs from that in Fig. 2 in just a few respects.
First, the model specification and initial estimate records of Fig. 2 are replaced by a new model specifica-
tion record, the FIND record. The FIND record informs NONMEM that a MSF is input.For most pur-
poses, the fields of this record can be ignored (for details though, see NONMEM Users Guide, Part II).
Second, the maximum number of function evaluations is now 150. Third,a 1 is once again placed in
field 6 of the ESTIMATION record, indicating that another MSF is to be output from this second prob-
lem. Fourth, again, a file name is given in the FILE record.Fig. 32 shows the records in FILESTREAM
for this problem.They consist of the MODEL SPECIFICATION FILE OUTPUT record, the MODEL
SPECIFICATION FILE INPUT record (the order here is necessary; see section B.3), and the problem
delimiter record. The iteration summaries resulting from this problem are given in Fig. 33. Notice that
they can be attached to the iteration summaries resulting from the first problem (Fig. 30), and together
they giv e the summaries shown in Fig. 5.

C.4.5. Initial Estimates forθ

In the example perhaps that element ofθ for which it is most difficult to obtain an initial estimate
is θ1, the rate constant for absorption. Fig. 34 shows a control stream exactly like that in Fig. 2 except
that the initial estimate for this parameter is left blank.Whenever any initial estimate is left blank, the
Initial Estimate Step is implemented, and NONMEM tries to obtain the initial estimate.Any number of
initial estimates may be left blank.The output from the Initial Estimate Step for this control stream is
given in Fig. 35. There an initial estimate forθ1 is given as 1.5. Theoutput from the other steps is essen-
tially like that for the control stream in Fig. 2.

In order to obtain an initial estimate for an element ofθ the user must supply finite lower and upper
bounds for the element. These bounds, over all elements for which NONMEM must obtain initial esti-
mates, form a "rectangular" parameter space, and a number of points, n, in this space are examined in
succession. Theinitial estimates are obtained from that point giving the lowest value of the objective
function. (Aninitial estimate forσ 2, or for any other variance-covariance component in the model which
is not specified by the user, is determined by a given value forθ .) Thereis a default value for the number
n which is taken to be 10% of an estimate of the number of objective function evaluations that will be
necessary to minimize the objective function in the Estimation Step.This default may be overridden.
The desired value for n may be placed in field 2 of the THETA CONSTRAINT record.
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D. Nonlinear Regression with Nonnested Random Effects

D.1. Intr oduction

In this chapter the example discussed in chapter C is elaborated in order to begin illustrating the
large variety of modeling possibilities using NONMEM.

The statistical model considered in chapter C has exactly one random effect. Assuch, it is a partic-
ular example of a class of regression models with possibly more than one random effect and where no
random effect is nested within any of the others. An example of such a model, again a nonlinear regres-
sion model with just one random effect, but which does not have the simple error structure of the exam-
ple of chapter C, is discussed in sections D.2 and D.3.Another example with two random effects is dis-
cussed in sections D.4 and D.5.

D.2. Examplewith One Random Effect

In recent years a variant of the statistical model discussed in chapter C has been found useful in
kinetic situations. Letθ = (θ1,θ2,θ3,θ4), and let

yi = f i(θ ) + gi(θ )η i

where

f i(θ ) = f(θ1,θ2,θ3, x1 i, x2 i)

gi(θ ) = f(θ1,θ2,θ3, x1 i, x2 i)
θ4

and f is as in chapter C.Again, there is only one random effect,η, whose values for the observations in
the data set, theη i , are statistically independent random errors with means 0 and commmon varianceσ 2.
However, with this model

var (yi) = σ 2f i(θ )2θ4,

i.e. the variances of the yi are proportional to an (unknown) power of the mean values of the yi . If θ4 = 0,
the model reduces to the simple nonlinear regression model.If θ4 = 1, the coefficient of variation of the
yi is constant across i, viz.σ . In order to implement this model it is important to note that in the expres-
sion for this model the random effect occurs linearly and that its coefficient is a value of a function g
evaluated atθ ; see section D.3.

The ELS objective function with this model is:

O(θ ,σ 2) = n log σ 2gi(θ )2 +
n

i=1
Σ (yi − f i(θ ))2/(σ 2gi(θ )2)

The efficacy of using this objective function with this model is discussed in Sheiner and Beal, 1985 and
Beal and Sheiner, 1988. Theobjective function can also be written

O(θ ,σ 2) = n log σ 2gi(θ )2 +
n

i=1
Σ 


(yi − f i(θ )) / (σ gi(θ ))



2

The quantity in square brackets being squared is the weightedresidualfrom yi , the residual divided by its
standard deviation. Theweightedresidualsare defined as the weighted residuals from all observations yi .

D.3. Implementationof Example 1

A code for PRED which implements the example is given in Fig. 36. The only difference between
this code and the code in Fig. 1 is the value that is returned in G(1).In the earlier code, the value is uni-
formly equal to 1. In this code the value gi(θ ) is returned. (Thisvalue is uniformly equal to 1 only when
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θ4 is fixed to 0.) In general, the Ith linear coefficient of the Ith random interindividual effect is returned
in G(I). Here, though, there is only one random interindividual effect in the model.

A control stream for this example is given in Fig. 37. The essential difference between it and the
one in Fig. 2 is that it specifies that there are 4θ ′s, rather than 3. The initial estimate ofθ4 is unspecified,
but is constrained to be between 0 and 3 (see section C.4.5).Also, this control stream specifies that a plot
of weighted residual vs time be obtained, rather than specify that a plot of residual vs time be obtained.

The minimum value of the objective function is computed to be 8.778, not really different from
that obtained with the simple nonlinear regression, 8.940. The final estimates of the parameters of the
regression function are also only a little different:θ1 = 1. 87(vs 1.94),θ2 = . 105 (vs .102),θ3 = 31. 7(vs
32). Theestimate ofθ4 is .45, so that the variances of the yi are estimated to be approximately propor-
tional to the fi . Howev er, the imprecision in this estimate is large (the standard error estimate is about
400% of the point estimate), and the presence of this parameter in the model is only to provide robustness
in the presence of possible heteroscedasticity (Beal and Sheiner, 1988). Theplot of weighted residual vs
time is also very similar to the earlier plot of residual vs time.

D.4. Examplewith Two Random Effects

This example is very similar to the one given in chapter C. An oral dose of theophylline is admin-
istered to a single subject, but at various times both plasmaand saliva concentrations are measured.At
some times only plasma concentration or only saliva concentrations are measured. Therefore, there will
be two types of observations in the data set. The regression function for the plasma concentrations is
taken to be the "one-compartment model without absorption"

fp(θ2,θ3, x1, x2) =
x1

θ3
exp (−θ2x2)

because although an oral dose was administered, the observations were taken after the absorption phase
of the process was effectively over, and only an exponential elimination phase was in progress.The
regression function for the saliva concentrations is taken to be

fs(θ1,θ2,θ3, x1x2) = θ1fp(θ2,θ3, x1x2)

That is, the predicted saliva concentration is modeled to be proportional to the predicted plasma concen-
tration. Thesetwo models can be combined into a single regression function as follows.

f(θ1,θ2,θ3, x1, x2, x3) = fp(θ2,θ3, x1, x2) if x3 = 0

θ1fp(θ2,θ3, x1, x2) if x3 = 1

where x3 is the plasma-saliva indicator variable (it has the value 0 if the observation is a plasma concen-
tration, and the value 1 if the observation is a saliva concentration).

In the statistical model the observations are doubly subscripted: yi j is the jth observation from the
ith time point. When both plasma and saliva are measured, j assumes the values 1 and 2. When only
plasma or only saliva is measured, j assumes the value 1. The statistical model is given by

yi j = f(θ1,θ2,θ3, x1 i  j, x2 i  j, x3 i  j) + (1 −x3 i  j)η1 i + x3 i  jη2 i

where x1 i  j, x2 i  j, and x3 i  j are values of the independent variables associated with yi j , and the (η1 i,η2 i) are
statistically independent random error vectors with 0 means and common variance-covariance matrixΩ.
This 2× 2 matrix is another model parameter to be estimated. It contains two possibly different variance
components, one corresponding to plasma concentrations and one corresponding to saliva concentrations,
since each type of concentration is measured with a possibly different scale. It also contains a covariance
component since we wish to account for the possibility that when the two types of concentrations are
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measured at the same time point, these measurements (after adjustment for the fixed effects of time and
dose) may be statistically correlated. Under the model, when both the observations yi 1 and yi 2 are
present at the ith time point, since one of them is affected byη1 i and the other is affected byη2 i, and
since these random effects can covary, so then can the two observations. Thetwo observations together,
(yi 1, yi 2), therefore, form a multivariate observation. We let yi denote the column form of this vector.
When only one observation is present at the ith time point, then yi denotes this single number. There is
no nesting of the two random effects. Therefore,they both are treated as random interindividual effects,
and as with simple nonlinear regression, the observation vectors yi are regarded as coming from different
individuals (see section A.5).

The model can be rewritten

yi j = f i j (θ ) + g1 i  jη1 i + g2 i  jη2 i

where

f i j (θ ) = f(θ1,θ2,θ3, x1 i  j, x2 i  j, x3 i  j)

g1 i  j = 1 − x3 i  j

g2 i  j = x3 i  j

This linear expression in theη′s, where the coefficients are given as g’s, is similar to the way the model
of section D.2 is expressed, and it is called the NONMEMlinearmodelschematic.The term ’linear’ here
refers to linearly occuring random effects and not to linearly ocurring parameters.By virtue of the obser-
vation vector being multivariate at some time points, this model is a type of multivariate nonlinear regres-
sion. Theabsence of a plasma or saliva measurement at some time point makes the situation unbalanced,
or from another point of view, there are missing data.

Let I denote the number of time points. Also, for fixed i, let fi denote the column vector of values
of the fi j , let g1 i denote the column vector of values of the g1 i  j, and let g2 i denote the column vector of
values of the g2 i  j. The ELS objective function is given by

O(θ , Ω) =
I

i=1
Σ 


log det Ci(Ω) + Ri(θ , Ω)′Ri(θ , Ω)



where

Ri(θ , Ω) = Ci(Ω)−1/2(yi − f i(θ ))

Ci(Ω) = giΩgi ′

gi = (g1 i, g2 i)

The matrix Ci is the variance-covariance matrix of yi . The vector Ri is the vector of weightedresiduals
from theobservationsyi . As with the previous example, it has the form residual (vector) divided by stan-
dard deviation (matrix), and it is "squared" in the expression for the objective function. Theweighted
residualsare defined to be the weighted residuals from all obervations yi .

D.5. Implementationof Example 2

D.5.1. Introduction

A code for PRED which implements the example is given in Fig. 38. Note that the values g1 i  j(θ )
and g2 i  j(θ ) are returned in G(1) and G(2), respectively. As with the previous example, these are the
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coefficients ofη1 i andη2 i in the NONMEM linear model schematic. In general, the value returned in
G(I) is the coefficient of the Ith random interindividual effect in the NONMEM linear model schematic.

A control stream for this example is given in Fig. 39. The data set is embedded in it, and like the
data of the previous example, the first, second, and third data items in a data record are the dose, time,
and DV data items, respectively. Howev er, there is also a fourth type of data item, the plasma-saliva indi-
cator data item. This is labeled P/S. The DV data item is either a plasma concentration or a saliva con-
centration, according as the P/S data item is 0 or 1, respectively. Since all observation vectors are
regarded as arising from different individuals (see section D.4), and since some observation vectors con-
tain two elements, a plasma and a saliva concentration, ID data items must be present in the data records.
These will assure that both elements are identified with the same individual. Sincethe individual
changes as time changes, the time data item has been chosen to serve as the ID data item. Therefore, a 2
appears in field 1 of the ITEM record.A separate fifth type of data item could have been used for the ID
data item.

The control stream contains a new model specification record, the STRUCTURE record forΩ,
which is discussed in section D.5.2. It also contains a new initial estimate record, the BLOCK SET
record forΩ which is discussed in section D.5.3.Also, sort codes appear for the first time in the TABLE
record, and separators appear for the first time in the SCATTERPLOT records. Theseare discussed in
sections D.5.4 and D.5.5.Selected printout which results from using the PRED and the control stream
given in Figs. 38 and 39, respectively, is discussed in section D.5.6.

D.5.2. STRUCTURE Record for Ω
There are two STRUCTURE records in Fig. 39, the initial STRUCTURE record and the STRUC-

TURE record forΩ. Reg arding the first of these, since there are now 2 random interindividual effects, a
2 is placed in field 2.The matrixΩ could be constrained to be diagonal, in which case a 1 is again
placed in field 6. However, for the sake of this example, no such constraint is wanted. Therefore,
instead, a 1 is placed in field 7.This signals thatΩ is to be regarded as a full matrix. Another option is
to regard Ω as a block diagonal matrix, in which case yet another value is placed in field 7; see NON-
MEM Users Guide, Part II.

When a 1 is placed in field 7 of the initial STRUCTURE record, i.e. whenΩ is not constrained to
be diagonal, the most number of random interindividual effects there can be is 5.

When a 1 is placed in field 7 of the initial STRUCTURE record, the STRUCTURE record forΩ
must appear after the initial STRUCTURE record.Integer format is used. When a 1, in particular, is
placed in field 7 of the initial STRUCTURE record, a 1 is placed in field 1 of the STRUCTURE record
for Ω, and the number of random interindividual random effects is placed in field 2. The information in
this record is redundant in this example; it is already given in the initial STRUCTURE record.The
requirement that the record appears is related to the possiblility just mentioned thatΩ can be block diag-
onal, and in this case the information contained in the record is not redundant.

D.5.3. BLOCK SET Record for Ω
A DIAGONAL record for Ω does not appear in Fig. 39.Instead, a BLOCK SET record forΩ

appears. Theinitial estimates of the elements ofΩ are given in the BLOCK SET records forΩ whenΩ
is not constrained to be diagonal. More than one such record is only necesssary whenΩ is constrained to
be block diagonal, and it is this situation that gives rise to the terminology ’BLOCK SET’ (see NON-
MEM Users Guide, Part II).Fixed point format is used. The initial estimates are placed in the fields in
the following order:Ω11, Ω12, ..., Ω1K, Ω22, Ω23, ..., Ω2K, ..., ΩKK , where K is the dimension ofΩ.
These estimates number K(K+1)/2 altogether. (Recall thatΩ is symmetric.) If Ω is to be fixed to these
initial estimates, then in addition, a 1 is placed in position 8 of the record. In the BLOCK SET record of
Fig. 39, a 2 appears in position 8, and the fields are left blank, indicating that NONMEM is to obtain the
initial estimates. When one field is left blank, all fields must be left blank.
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D.5.4. Sortingin Tables

As mentioned in section C.3.5.3, rows of tables may be sorted on the data items in specified col-
umns. Thereis some reason for utilizing this feature in the example, namely, to separate the rows with
plasma concentration DV data items from those with saliva concentration DV data items. This separation
may be done by selecting the P/S data items for tabulation and by indicating that the rows of the table are
to be sorted firstly on these data items. Then the first rows will contain only P/S data items equal to 0,
and the last rows will contain only P/S data items equal to 1. The sorting is indicated by a 1 placed in the
sort field following the field containing the index of the P/S data items.Accordingly, in the individual
TABLE record in Fig. 39, field 4 contains the index of the P/S data items, and a 1 is placed in the follow-
ing field. There are 2 types of data items selected for tabulation (note the 2 in field 1), the P/S data items
and the time data items. Since it is also useful to sort the rows with plasma concentration DV data items
on their time data items, and to sort the rows with saliva concentration DV data items on their time data
items, an indication that the rows are to be sorted secondly on the time data items is also given. Thissec-
ond level sorting (a sort within a sort) is indicated by a 2 placed in the sort field adjacent to the field fol-
lowing the field containing the index of the time data items.Refering to the same individual TABLE
record once again, it may be seen that field 2 contains the index of the time data items, and a 2 is placed
in the following field. The resulting table is given in Fig. 40.

In general, the rows of any individual table may be sorted first on the data items appearing in a
specified column by placing a 1 in the sort field following the field containing the index of these data
items. Therows of the table may be sorted second on the data items appearing in another specified col-
umn by placing a 2 in the sort field following the field containing the index of these data items.A third
level sort may be defined similarly, and so on, up to an 8-level sort. Therecan be no sort on the NON-
MEM generated data items. These data items are not ones the user selects for tabulation, and only data
items of selected types may be sorted. Although the DV data items always appear in a table, the user
may explicitly select these for tabulation and thereby also sort on them. If this is done, the DV data items
will appear in two columns. They will appear in the fourth column from the right as usual, and they will
also appear in some other column.

The column order of the data item types selected to appear in the table corresponds to their sort
codes. Thedata item type with sort code 1 corresponds to column 1, the data item type with sort code 2
corresponds to column 2, etc.For example, in the table of Fig. 40, the P/S data items appear in column 1,
and the time data items appear in column 2.Any data item types with sort code blank or 0 correspond to
columns occuring after those columns with sorted data items, and the column order of these data item
types corresponds to the order in which their indices are placed in the TABLE record.

As explained in section C.3.5.3, when there are more than 900 data records, each individual TA-
BLE record generates a number of tables, so that all data records are used. All sorting is done within
each of these tables separately. This implies that if, for example, (i) sorting is specified only on ID data
items, (ii) these data items are all positive integers, and (iii) the data records with ID data item equal to 1
are data records 900 and 901, then the first of these two records is used to obtain the first row in the first
table, and the second record is used to obtain the first row in the second table.

D.5.5. SeparatingScatterplots

A family of scatterplots may be defined by separating a given scatterplot, called the baseplot, into
a number of separate ones.To do this, a third data item type, called the separator, is specified, in addition
to the two types of data items defining the given scatterplot. Supposethe values for the separator that ap-
pear in the data set are: v1, v2, ..., sorted from lowest to highest value. Thenone scatterplot of the family
consists of those points of the base plot resulting from all data records with the value v1 of the separator;
another consists of those points of the base plot resulting from all data records with value v2 of the sepa-
rator; etc. The family members appear in the printout in the same order as the sorted values of the sepa-
rator. The family is called a one-waypartitionedscatterplot.
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This feature is useful in the example where it is desirable, for example, to separately plot the
plasma concentrations vs their predictions, and the saliva concentrations versus their predictions.By
choosing the P/S data item type for the separator, the base plot of the DV data items vs the prediction
data items can be separated into the two desired plots.The P/S data item type has two values, 0 and 1.
The points of the base plot resulting from all data records with P/S data item equal to 0 form one of the
desired plots, while the remaining points of the base plot, resulting from all data records with P/S data
item equal to 1, form the other plot.

To use this feature two additional fields of the individual SCATTERPLOT record defining the fam-
ily are used.As usual, the indices of the data items defining the base plot are placed in fields 1 and 2.A
1 is placed in field 3; this indicates that one separator is used. Also, the index of the separator is placed
in field 4. See, for example, the last SCATTERPLOT record of Fig. 39.

Altogether, eight families of scatterplots are defined in the problem specification of Fig. 39.Four
single-member families, CONC vs TIME, PRED vs TIME, RES vs TIME, and PRED vs CONC, using
the labels that appear on the scatterplots, are defined.Four two-member families are also defined, using
the same base plots and using the P/S data item type as a separator. The entire set of thirteen scatterplots
is given in Figs. 41-52.

Some general remarks concerning scatterplots involving residual and weighted residual data items
are in order. These scatterplots are often used to detect model weaknesses. Residuals, in particular, can
be scatterplotted against the values of an independent variable (a fixed effect). Ideally, the plot should
have the appearance of a homogeneous scatter about the zero line. If it does not, this can suggest that the
effect of the variable is not appropriately modeled, and the pattern of the scatter may suggest a more
appropriate model. If there is another independent variable which can affect the data, then it can be help-
ful to develop a picture wherein the effects of the two variables are not confounded. Using the second
variable as a separator can help in this regard. This presumes that the second variable is also a fixed
effect, and that its values exist as data items in the data set.A random effect is a type of independent
variable, and it also can be somewhat confounded with the effect of the first variable. Thevalues of the
random effect, however, are not known. When,though, there are several observations from some individ-
uals, then the ID data item can be used as a separator to help distinguish random interindividual effects
from the effect of the first variable.

Also, the desire for homogeneous residuals is predicated on the assumption that under the assumed
model, and ignoring estimation error, the residuals are uncorrelated and have means 0 and constant vari-
ance (i.e. homogeneous variance). Ineach of the two examples used in this chapter, howev er, under the
model, the variances of the observations (and therefore, of the residuals) vary with values of fixed effect
independent variables. Weighted residuals, on the other hand, are uncorrelated and have means 0 and
constant variance under the assumed model (and ignoring estimation error).So it is generally advisable
that with models under which residuals are nonhomogeneous, weighted residuals, rather than residuals,
should be plotted.

In the first example, weighted residual vs time was plotted, but in fact, the plot does not appear too
different from a plot of residual vs time (not shown; but see the plot of residual vs time in Fig. 18). In the
second example (the one under discussion) there really is not a need to plot weighted residuals because
whenthe P/S data item type is used as a separator, the modeled variances of the observations are constant
with time.

A base plot can be separated into a family based on the values of two separators. Sucha family is
called a two-waypartitionedscatterplot.Consider all distinct pairs of values, one value from the first sep-
arator and the other value from the second separator. Then one scatterplot of the family consists of those
points of the base plot resulting from the data records with one particular pair of values of the separators,
and another scatterplot of the family consists of those points of the base plot resulting from the data
records with another pair of values of the separators, etc.To obtain a two-way partitioned scatterplot,
place a 2 in field 3 of the individual SCATTERPLOT record, and place the indices of the two separators
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in fields 4 and 5.

D.5.6 SelectedPrintout

The summary of the problem specification shown in Fig. 39 is given in Fig. 53. Someremarks
concerning it may be helpful.

The total number of individuals is stated to be 17. Due to the presence of ID data items, individual
records are defined, and the number of such records may be verified to be 17.

The matrixΩ is stated to have a certain block form. Its lower triangular part is shown schemati-
cally to indicate that it is a simple 2× 2 matrix. Thematrix could be constrained to have a block diagonal
form, in which case this form would be indicated with a more "interesting" schematic pattern than that
shown in this problem summary (see NONMEM Users Guide, Part II).

The final parameter estimate, standard errors, and correlation matrix are shown in Figs. 54-56.The
reader might note that the correlation betweenη1 i andη2 i is estimated to be -0.066, which is quite small.
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E. Linear Regression with One-Level Nested Random Effects

E.1. Introduction

In this chapter two examples, using some new type of data, are considered.The data are typical of
repeated measures type data and can be modeled using one-level nested random effects. Also,the data
can be modeled using a linear, rather than a nonlinear, regression function. This simplification allows the
reader to better focus on the considerations involving the random effects. However, use of a linear
regression function is also very common with repeated measures type data. (An example involving a
nonlinear regression function is given in chapter F.) Oneexample involves one random interindividual
effect and one random intraindividual effect. It is discussed in sections E.2 and E.3.Another example, a
multivariate regression and with two random effects of each type, is discussed in sections E.4 and E.5.

E.2 Examplewith One Inter- and One Intra-Individual Random Effect

In this example six oral doses of theophylline were administered to each of a number of subjects.
With each subject the doses were given at times when no drug from previous doses remained in the sub-
ject. For each dose, a measurement called the (observed) drug clearance for the subject, was made using
the measured drug concentration vs time data resulting from the dose after absorption was complete.
Drug clearance has the form: dose divided by area under the concentration vs time curve. It is a mea-
surement of the elimination chracteristics of the drug (The clearance might be given by the formulaθ2θ3,
whereθ2 andθ3 are estimates of the rate constant of elimination and volume of distribution, obtained
from the concentration vs time data as in previous examples. However, in this example the clearance was
computed nonparametrically.) Theobservations are these clearances. The subject’s weight is often an
important explanatory variable of his clearance, and weight data items are included in the data set.The
pharmacokinetic model for theophylline plasma concentration is linear in dose (see the previous exam-
ples), and therefore clearance is assumed to be independent of dose.

The statistical model for the jth observation from the ith individual is taken to be

yi j = θ1xi j + θ2 + η i + ε i j

whereθ1 andθ2 are regression parameters, xi j denotes weight, theη i are statistically independent values
of random interindividual effects, with means 0 and common varianceΩ (a scalar), and theε i j are statis-
tically independent values of random intraindividual effects, with means 0 and common varianceΣ (a
scalar). Avalue of the random interindividual effect,η i , is always taken to be statistically independent of
a value of the random intraindividual effect, ε i j . The variable x is doubly subscripted, suggesting that for
each individual, its value can vary between doses.In fact, though, in the actual data set its value remains
constant across doses for each individual. Theregression function is linear in weight. Since if this lin-
earity holds, it may do so only over a limited weight range, an intercept parameter might be included in
the model. However, analysis of the data has revealed no evidence whatsoever of a nonzero intercept.
Consequently, while an intercept parameter has in fact been included in the model, in this example it
shall be constrained to be 0.Under the model, the observations yi 1, yi 2, ..., yi 6 are each affected byη i ,
and so they are correlated.We let yi denote the column form of the vector consisting of the six observa-
tions, (yi 1, yi 2, . . . , yi 6). Therandom intraindividual effect is clearly nested within the random interindi-
vidual effect. For each value of the random interindividual effect, the random intraindividual effect takes
on six different values, while for no value of the random intraindividual effect does the random interindi-
vidual effect take on different values. (Theseeffects are presumed to be continuously distributed.)

The NONMEM linear model schematic is given by

yi j = f i j (θ ) + gi jη i + hi j ε i j
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where

f i j (θ ) = θ1xi j + θ2

gi j = 1

hi j = 1

Let I denote the number of individuals. Also,for fixed i, let fi denote the column vector of values
of the fi j , let gi denote the column vector of values of the gi j (viz. a column vector of 1’s), and let hi

denote the column vector of values of the hi j (viz. a column vector of 1’s). Thenthe ELS objective func-
tion is given by

O(θ , Ω, Σ) =
I

i=1
Σ 


log det Ci(Ω, Σ) + Ri(θ , Ω, Σ)′Ri(θ , Ω, Σ)



where

Ri(θ , Ω, Σ) = Ci(Ω, Σ)−1/2(yi − f i(θ ))

Ci(Ω, Σ) = giΩgi ′ + diag (hiΣhi ′)

and where if A is a square matrix, diag(A) denotes the diagonal matrix whose diagonal elements are
those of A. The matrix Ci is the variance-covariance matrix of yi . The vector Ri is the vector of
weightedresidualsfrom theobservationsyi . As with previous examples, it has the form residual (vector)
divided by standard deviation (matrix), and it is "squared" in the expression for the objective function.
The weightedresidualsare defined to be the weighted residuals from all obervations yi . It may be seen
that the form of the objective function is the same as that given with previous examples, except that now
Ci has an extra term expressing intraindividual variability which for the first time is a factor.

E.3. Implementationof Example 1 E.3.1. Inputs

A code for PRED which implements the example is given in Fig. 57. Note that the values gi j and
hi j are returned in G(1) and H(1), respectively. These are the coefficients ofη i andε i j in the NONMEM
linear model schematic.In general, the value returned in G(I) is the coefficient of the Ith random
interindividual effect in the NONMEM linear model schematic, and the value returned returned in H(I) is
the coefficient of the Ith random intraindividual effect in the NONMEM linear model schematic.

A control stream for this example is given in Fig. 58. The data set is embedded in it, and the data
items in a data record are the ID, weight, and DV data items, respectively.

Since in the example there are both random inter- and intra-individual effects, there are entries in
both fields 2 and 3 of the initial STRUCTURE record. In general, the numbers of random interindividual
effects and random intraindividual effects are placed in fields 2 and 3, respectively. The total number of
both random inter- and intra-individual effects cannot exceed 10.Also, since in the example bothΩ and
Σ are taken to be diagonal (they are both scalars), there are 1’s in both fields 6 and 8. In general, ifΩ is
constrained to be diagonal, a 1 is placed in field 6, and ifΣ is constrained to be diagonal, a 1 is placed in
field 8. If Ω (Σ) is not constrained, a 1 is placed in field 7 (9). (Since a scalar is also an unconstrained
1 × 1 matrix, in this example a 1 could be placed in either field 7 or 9, but a more perspicuous problem
summary develops when a scalar is regarded as a diagonal matrix.)

The initial estimate ofθ1 is obtained by first averaging all the 72 clearances to obtain an estimate
of mean clearance in the population.(This is equivalent to averaging the 6 clearances in each of the 12
individuals to obtain to obtain estimates of the individuals’ mean clearances, and then averaging these 12
individual estimates.) Then this estimate is divided by 70Kg, the average weight of the individuals of the
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sample, to obtain the desired estimate. Since lower and upper bounds of 0 are specified forθ2 (thus this
parameter is fixed to 0), lower and upper bounds must also be specified forθ1, but these are taken to be
−∞ and∞ (see sections C.3.4.4 and C.3.4.5).

Since in the example the two parametersΩ andΣ must be estimated, as well asθ , there must be
initial estimates specified for each.Therefore, a DIAGONAL record for Σ, as well as a DIAGONAL
record forΩ appears in the problem specification. Its form is exactly that of the DIAGONAL record for
Ω. The initial estimate record forΣ (be it a DIAGONAL or BLOCK SET record) is placed after the ini-
tial estimate record forΩ (be it a DIAGONAL or BLOCK SET record).

Unlike previous examples, for illustrative purposes, actual initial estimates have been placed in
both DIAGONAL records, rather than letting the fields be blank. The initial estimate ofΣ is obtained by
first obtaining for each individual, the sample variance of his clearance measurements. Then these indi-
vidual estimates are averaged to obtain the desired estimate. The initial estimate ofΩ is obtained by first
calculating the sample variance of the individuals’ average clearances. Then 1/6 of the the initial esti-
mate ofΣ is subtracted from this sample variance to obtain the desired estimate.In this example the
same final estimate, standard errors, etc. are obtained when the fields of the DIAGONAL records are left
blank.

E.3.2 SelectedPrintout

The final parameter estimate, standard errors, and correlation matrix are shown in Figs. 59-61.
Note that in these printoutsθ2 is listed. Its final estimate is 0, the value to which the parameter is fixed.
The covariance (or correlation) of any estimate of a fixed parameter with the estimate of any other param-
eter is by definition 0.However, lest the user forget this and think that a number other than 0 could
appear for the estimate of this covariance (or correlation), but that 0 is in fact the estimate, a 0 does not in
fact appear in the printout.Instead, a place holder consisting of dots appears in order to remind the user
that the covariance (correlation) is 0 by definition.Similarly, this type of place holder also appears for
the standard error estimate of the point estimate of a fixed parameter.

The two scatterplots of residual vs weight and weighted residual vs weight are shown in Figs. 62
and 63. It is not necessary to separate these scatterplots by ID since in this example weight is in effect a
surrogate for ID, and so the residuals are already very naturally separated by individual. However, to bet-
ter look for homogeneous scatter, it is better to examine the scatterplot of weighted residual vs weight. In
this example the weighted residuals are distributed much more homogeneously about the zero line than
are the residuals.

E.4. Examplewith Two Inter- and Two Intra-individual Random Effects

This is an extension of example 1.Again, six oral doses are given to each of 12 subjects, and with
each dose a clearance is measured. In addition, with each dose a rate constant of elimination is mea-
sured. Thismeasurement is an estimate of the parameterθ2 in the example of section D.4, obtained
graphically from the plasma concentration vs time data ocurring after the absorption phase is over. The
clearance and rate constant may correlate across doses within any individual. Therefore,the clearance
and rate constant together form a bivariate observation from the point of view of random intraindividual
variablity. There are altogether 6 such bivariate observations per individual.

The statistical model for the kth element of the jth (bivariate) observation from the ith individual is
taken to be
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yi j k = θ1x1 i  j k + θ2 + η1 i + ε1 i  j k

if x2 i  j k = 0

yi j k = θ3 + η2 i + ε2 i  j k

if x2 i  j k = 1

where x2 is a clearance-rate constant indicator variable (0: clearance; 1: rate constant). Here the new part
of the model is the part for the rate constant measurement. The mean rate constant measurement is sim-
ply assumed to be a constant and not to vary with weight. The error structure for the rate constant mea-
surements is analogous to that for the clearance mesurements; it is the sum of both simple interindividual
and simple intraindividual error. The variance-covariance matrix ofη i = (η1 i,η2 i) is the 2× 2 matrix Ω,
and the variance-covariance matrix ofε i j = (ε1 i  j, ε2 i  j) is the 2× 2 matrix Σ. A value of the random
interindividual effect vectorη i is always statistically independent of a value of the random intraindividual
effect vectorε i j . Under the model the clearance observations from individual i are each affected by the
η1 i, the rate constant observations from individual i are each affected byη2 i, and η1 i andη2 i are corre-
lated, and so all the observations from individual i are correlated. Each pair of clearance and rate con-
stant observations with a given dose are also correlated by virtue of the correlation between the two ran-
dom intraindividual effects. We let yi denote the column form of the vector consisting of the twelve
observations, (yi 11, yi 12, yi 21, yi 22, . . . , yi 61, yi 62). Therandom intraindividual effects are clearly nested
within the random interindividual effects.

The NONMEM linear model schematic is given by

yi j k = f i j k(θ ) + g1 i  j kη1 i + g2 i  j kη2 i + h1 i  j kε1 i  j + h2 i  j kε2 i  j

where

f i j k(θ ) = θ1xi j k + θ2

if x2 i  j k = 0

f i j k(θ ) = θ3

if x2 i  j k = 1

g1 i  j k = 1 or 0

if x2 i  j k = 0 or 1, respectively

g2 i  j k = 0 or 1

if x2 i  j k = 0 or 1, respectively

h1 i  j k = 1 or 0

if x2 i  j k = 0 or 1, respectively

h2 i  j k = 0 or 1

if x2 i  j k = 0 or 1, respectively
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Let I denote the number of individuals. Also,for fixed i, let fi denote the column vector of values
of the fi j k, let g1 i denote the column vector of values of the g1 i  j k, let g2 i denote the column vector of val-
ues of the g2 i  j k, let h1 i denote the column vector of values of the h1 i  j k, and let h2 i denote the column vec-
tor of values of the h2 i  j k. Then the ELS objective function is given by

O(θ , Ω, Σ) =
I

i=1
Σ 


log det Ci(Ω, Σ) + Ri(θ , Ω, Σ)′Ri(θ , Ω, Σ)



where

Ri(θ , Ω, Σ) = Ci(Ω, Σ)−1/2(yi − f i(θ ))

Ci(Ω, Σ) = (g1 i, g2 i)Ω(g1 i, g2 i)′ + diag2 ((h1 i, h2 i)Σ(h1 i, h2 i)′)

and where if A is a square matrix, diag2 (A) denotes the block diagonal matrix whose diagonal blocks are
the 2× 2 diagonal blocks of A. The matrix Ci is the variance-covariance matrix of yi . The vector Ri is
the vector of weightedresidualsfrom the observationsyi . As with previous examples, it has the form
residual (vector) divided by standard deviation (matrix), and it is "squared" in the expression for the ob-
jective function. Theweightedresidualsare defined to be the weighted residuals from all obervations yi .

E.5 Implementationof Example 2

E.5.1 Inputs

A code for PRED which implements the example is given in Fig. 64. The computation involves
querying the value of x2. Note that the values g1 i  j and g2 i  j are returned in G(1) and G(2), respectively.
These are the coefficients ofη1 i andη2 i in the NONMEM linear model schematic. In general, the value
returned in G(I) is the coefficient of the Ith random interindividual effect in the NONMEM linear model
schematic. Thevalues h1 i  j and h2 i  j are returned in H(1) and H(2), respectively. These are the coeffi-
cients ofε1 i  j andε2 i  j in the NONMEM linear model schematic. In general, the value returned in H(I) is
the coefficient of the Ith random intraindividual effect in the NONMEM linear model schematic.

A control stream for this example is given in Fig. 65. The data set is embedded in it, and the data
items in a data record are the ID data item, the weight data item, the DV data item, the clearance-rate
constant indicator data item (x2), and the level-two data item, respectively. This last type of data item is
needed with one-level nested random effects in order to group together the DV data items belonging to a
bivariate observation (see section B.1). It is given the label L2 in the NONMEM printout, and the ID
data item is given the label L1 since in this example the ID data item is also the level-one data item.Note
that for readability and for the purpose of conveniently keying the data, the indicator data item is blank in
those places where it is actually zero, and similarly with the level-two data item. The alternating use of
the values 0 and 1 for the level-two data items illustrates how it is not necessary that noncontiguous level-
two records have different level-two data items. Note that the index of the level-two data item is placed
in field 7 of the ITEM record.

The initial STRUCTURE record for the problem specification has 1’s in fields 7 and 9, indicating
that bothΩ andΣ are full matrices, i.e. neither is constrained to be diagonal.When a 1 is placed in field
7 (9) of the initial STRUCTURE record, the number of random inter- (intra-) individual effects cannot
exceed 5.

The control stream contains a STRUCTURE record forΣ, as well as a STRUCTURE record forΩ.
This is, of course, because neitherΩ nor Σ is constrained to be a diagonal matrix. The form of the
STRUCTURE record forΣ is exactly that of the STRUCTURE record forΩ (see section D.5.2).When
the STRUCTURE record forΣ appears, it is placed after the STRUCTURE record forΩ, except when
the latter record is not present, in which case the STRUCTURE record forΣ is placed after the initial
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STRUCTURE record.

The initial estimate forθ1 is that used in the previous example. Theinitial estimate ofθ3 is
obtained by averaging the 72 rate constant measurements.

The control stream contains a BLOCK SET record forΣ, as well as a BLOCK SET record forΩ.
The form of the BLOCK SET record forΩ is exactly that of the BLOCK SET record forΩ (see section
D.5.3).

The initial estimate ofΣ is obtained by first obtaining for each individual, the sample variance-
covariance matrix of his clearance and rate constant measurements. Then these individual matrix esti-
mates are averaged to obtain the desired estimate.The initial estimate ofΩ is obtained by first calculat-
ing the sample variance-covariance matrix of the individuals’ average clearances and average rate con-
stants. Then1/6 of the the initial estimate ofΣ is subtracted from this sample variance-covariance matrix
to obtain the desired estimate. In this example the same final estimate, standard errors, etc. are obtained
when the fields of the BLOCK SET records are left blank.

E.5.2 SelectedPrintout

The final estimate, standard errors, and correlation matrix are shown in Figs. 66-68. It is interest-
ing to compare the final estimates and standard errors from this example with those from the previous
example. All the parameters associated with clearance only that occur in the model with the previous
example also occur in the extension of that model which is considered here, and in this extended model
the only parameter associated with both clearance and rate constant is the covariance parameter inΩ.
Consequently, the final estimates and standard errors of the estimates from this example are very close to
those from the previous example.

Regarding the covariance parameterΩ12, note that its normalized value, i.e. the correlation
betweenη1 andη2 (Ω12/(Ω11Ω22)

1/2), is estimated to be .95. (Whereas the minimum value of the objec-
tive function is -651, in another NONMEM run whereΩ is constrained to be DIAGONAL the minimum
value is much larger -631, indicating that the correlation is indeed significant.)This suggests that vari-
ablity in estimates of volume of distribution that might be obtained across individuals and doses would be
due largely to random intraindividual (dose to dose) variablity and little to random interindividual vari-
ablity. The reason for this is as follows. As noted in section E.2, a clearance observation for a given
individual and dose might have been measured byθ2θ3, whereθ2 andθ3 are estimates of the rate con-
stant of elimination and volume of distribution obtained from concentration vs time data. As noted in
section E.4, a rate constant observation for a given individual and dose might have been measured byθ2.
The high interindividual correlation between these two types of measurements implies an approximately
proportional interindividual relationship betweenθ2θ3 andθ2, i.e. an approximately constant interindi-
vidual relationship forθ3.

The first and last pages of the requested table are shown in Fig. 69. The scatterplots of residual vs
weight separated by TYPE are given Figs. 70 and 71.The scatterplots of weighted residual vs weight
separated by TYPE are given in Figs. 72 and 73.
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F. Nonlinear Regression with One-Level Nested Random Effects

F.1 An Example

In this chapter we return to theophylline plasma concentration vs time data, but where such data
from 12 subjects, rather than from a single subject, are available. Thisis done to illustrate a regression
with one-level nested random effects where the regression function is nonlinear. The fact that the regres-
sion function is nonlinear really does not introduce any new considerations regarding the inputs required
by NONMEM. However, often with a nonlinear regression function and one-level nested random effects,
a modeling approximation is necessary, and this is described here.Also, this example does bring
together a number of concepts discussed in the earlier examples.

Each subject is given a single oral dose, the same dose for each subject. Each subject has a differ-
ent weight. Often dose is expressed as the amount of drug administered per unit weight of the subject
(weight-adjusted dose), and in this example the dose data item is the weight-adjusted dose.However, a
weight data item is also included in the data record because it will be assumed that interindividual differ-
ences in plasma concentrations may be due to interindividual weight differences beyond those expressed
through weight-adjusted dose. Also, 11 plasma concentrations are observed per individual at different
times, and these times vary between individuals. (Theclearance and rate constant measurements used in
the examples of chapter E are obtained from this concentration vs time data and from similar data using
an additional five doses per subject.)

A model for the jth observation from the ith individual might be given by

yi j = F(θ1,θ2,θ3,η1 i,η2 i,η3 i, x1 i, x2 i  j, x3 i) =
κ1 iκ2 ix1 i

κ3 i(κ1 i − κ2 i)
(exp (−κ2 ix2 i  j) − (exp (−κ1 ix2 i  j)) + ε i j

where

κ1 i = θ1 + η1 i

κ2 i = θ2 + η2 i

κ3 i = θ3x3 i + η3 i

where x1, x2, and x3 are the (non-weight-adjusted) dose, time, and weight variables. Herex1 and x3 are
not subscripted with a j, indicating that the values of the dose and weight variables do not vary within the
individual. Thismodel is similar to one used in chapter C for data from a single individual, but there are
some notable differences. First,the ith individual is regarded as having his own set of pharmacokinetic
parameters, these parameters are denoted byκ1 i, κ2 i, and κ3 i. Second, two of the pharmacokinetic
parameters are rate constant of absorption,κ1 i, and rate constant of elimination,κ2 i, as previously, but
the third basic parameter is clearance,κ3 i, rather than volume of distribution. Third,these parameters are
affected by random interindividual affects, and thus random interindividual variability is expressed in the
model. Fourth, residual error is an intraindividual effect. Notethat an individual’s clearance is linearly
related to his weight as in chapter E. The variance-covariance of the random interindividual effects,Ω,
is regarded as a full matrix in this example.

As stated in section A.1, with the current version of NONMEM random effects must enter the
model (for the observations) linearly. This requirement is not met in the above model; the random
interindividual effects enter nonlinearly. One device that has been found useful under these circum-
stances is to approximate the above model, A, with another, B, obtained by expanding A with a first-term
Taylor Series in the random effects about their mean values (0). In the case at hand B is given by

yi j = f i j (θ1,θ2,θ3) + g1 i  j(θ1,θ2,θ3)η1 i + g2 i  j(θ1,θ2,θ3)η2 i + g3 i  j(θ1,θ2,θ3)η3 i + hi j ε i j
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where

f i j (θ1,θ2,θ3) = F(θ1,θ2,θ3, 0, 0, 0, x1 i, x2 i  j, x3 i)

g1 i  j(θ1,θ2,θ3) =
∂F

∂η1 i
(θ1,θ2,θ3, 0, 0, 0, x1 i, x2 i  j, x3 i)

g2 i  j(θ1,θ2,θ3) =
∂F

∂η2 i
(θ1,θ2,θ3, 0, 0, 0, x1 i, x2 i  j, x3 i)

g3 i  j(θ1,θ2,θ3) =
∂F

∂η3 i
(θ1,θ2,θ3, 0, 0, 0, x1 i, x2 i  j, x3 i)

hi j = 1

Written this way, the model is also displayed as the NONMEM linear model schematic.Use of this first-
order approximation to the original model, along with use of the ELS objective function, has been called
the First-OrderMethod for analyzing nonlinear mixed effects modeled data.This method has been
shown to be statistically efficacious in particular situations (Sheiner and Beal, 1980, 1981, and 1983, and
Beal 1984a). The first-order approximation itself may be called the First-OrderModel. One practical
problem with this method is that it can require some nontrivial effort to obtain the partial derivatives
defining the g’s. Moreover, there is little to be gained by examining these derivatives. Indeed,rather than
try to display explicit formulae for the g’s in this example in this text, we refer the reader to the PRED
routine of Fig. 73 where code is given for these formulae. Certain tools are available to help the user ob-
tain the first-order model. PREDPP is a package which can be used with NONMEM and with pharma-
cokinetic data and which automatically obtains the derivatives ∂F/∂κmi, when, as in the example, the ef-
fect of theη′s is throughκ ′s. PREDPPis actually a very elaborate PRED subroutine.It then remains for
the user to supply code for the derivatives ∂κmi/∂ηn i; these are relatively simple to obtain. Also, NM-
TRAN, a computer program which facilitates the problem of constructing inputs to NONMEM, can be
used to automatically obtain the derivatives ∂κmi/∂ηn i. (Both PREDPP and NM-TRAN are distributed
with NONMEM.)

Let I denote the number of individuals. Also,for fixed i, let fi denote the column vector of values
of the fi j , let g1 i denote the column vector of values of the g1 i  j, let g2 i denote the column vector of values
of the g2 i  j, let g3 i denote the column vector of values of the g3 i  j, and let hi denote the column vector of
values of the hi j . Then the ELS objective function is given by

O(θ , Ω, Σ) =
I

i=1
Σ 


log det Ci(θ , Ω, Σ) + Ri(θ , Ω, Σ)′Ri(θ , Ω, Σ)



where

Ri(θ , Ω, Σ) = Ci(θ , Ω, Σ)−1/2(yi − f i(θ ))

Ci(θ , Ω, Σ) = (g1 i(θ ), g2 i(θ ), g3 i(θ )Ω(g1 i(θ ), g2 i(θ ), g3 i(θ )′ + diag (hiΣhi ′)

The last term in the expression for Ci is just a fancy way of writing the diagonal matrix whose elements
are allΣ. The matrix Ci is the variance-covariance matrix of yi . The vector Ri is the vector of weighted
residualsfrom the observationsyi . As with previous examples, it has the form residual (vector) divided
by standard deviation (matrix), and it is "squared" in the expression for the objective function. The
weightedresidualsare defined to be the weighted residuals from all obervations yi .
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F.2 Implementation of the Example

F.2.1 Inputs

A code for PRED which implements the example is given in Fig. 74. It is similar to that in Fig. 1.
However, the values returned in G are now very different, and a value is also returned in H. The same
rules for determining what is returned in G and H, and that are given in chapter E, apply here too.For
clarity, code to compute the partial derivatives that are returned in G is indented from the other code.
Note that in the expression for F the weight-adjusted dose (DOSE) appears, rather than the non-weight-
adjusted dose, but that also THETA(3) occurs in the denominator (E=THETA(3)*C) of that same expres-
sion, so that weight itself need not enter this expression. Onthe other hand, sinceη3 i adds to mean clear-
ance, weight does enter the expression for G(3).

A control stream for this example is given in Fig. 75. The data set is embedded in it. Note that for
readability and for the purpose of conveniently keying the data, the weight-adjusted dose and weight data
items are blank for all data records of an individual record except the first data record.The PRED rou-
tine stores these data items in its local storage whenever the first data record of an individual record is
passed to it (review the argument NEWIND described in section C.3.5.2).

The initial STRUCTURE record for the problem specification has 1’s in fields 7 and 8, indicating
that Ω is a full matrix, but thatΣ is constrained to be diagonal.(Again, sinceΣ is a scalar, it can be
regarded as an unconstrained 1× 1 matrix, but for the sake of a more perspicuous problem summary, it is
taken to be diagonal.)

F.2.2 SelectedPrintout

The final estimate, standard errors, and correlation matrix are shown in Figs. 76-78. It may interest
the reader to see how remarkably well the final estimates in Figs. 66 and 76 agree for those parameters
that occur in both the model in section E.4 and the model in section F.1. Thefinal estimates of these
parameters from both figures, their standard errors, and the ratios of standard error to estimate are given
in Table F.2.2.i. Recallthat the estimates in Fig. 76 are obtained using one-sixth the amount of data used
to obtain the estimates in Fig. 66, since in the present example only the concentration data from one dose
per individual are used, while in the previous example this same data, plus similar data from five addi-
tional doses per individual, are used.



Users Basic Guide 43

Table F.2.2.i
Estimate Comparison

Parameter Sec. Est. S.E. S.E./Est. (%)

slope E.4 .0446 .00230 5.2
F.1 .0363 .00466 12.9

mean rate const. E.4 .0843 .003698 4.4
F.1 .0781 .00736 9.4

Ω22 E.4 .327 .162 49.5
F.1 .515 .208 40.4

Ω33 E.4 .000154 .0000905 58.3
F.1 .000240 .000118 46.7

Ω23 E.4 .00672 .00371 55.2
F.1 .00911 .00362 39.7

The first page of the requested table is shown in Fig. 79. Scatterplots of residual vs time and of
weighted residual vs time, both separated by ID, are requested. The four scatterplots corresponding to
individuals 4 and 5 are shown as examples in Figs. 80-83.
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G. Err or Messages

G.1 Messagesfrom Processing Data Records

The data records are checked for three possible errors.Each error generates a message given
below.

A) MDV DAT A ITEM FOR DAT A REC NO. n IS INAPPROPRIATE

Explanation: TheMDV data item in data record no. n is neither 0 nor 1.

System Action: Program terminates when encountering first such record.

B) TOT. NO. OF OBSERVA TIONS IN INDIVIDUAL REC NO. n
(IN INDIVIDUAL REC ORDERING) EXCEEDS 50

Explanation: Themaximum number of observation records allowed in any individual record is 50.Indi-
vidual record no. n does not comply with this limitation.

System Action: Program terminates when encountering first such record.

User Response: If there are important reasons for using more than 50 observation records in an individ-
ual record, the limit of 50 may be increased; see NONMEM Users Guide, Part III. This will entail
recompiling parts of NONMEM.Execution time increases rapidly with the number of observation
records per individual record.

C) WARNING: NO. OF OBS RECS IN INDIVIDUAL REC NO. n
(IN INDIVIDUAL REC ORDERING) EXCEEDS ONE

WHILE INITIAL ESTIMATE OF WITHIN INDIVIDUAL VARIANCE IS ZERO

Explanation: Theinitial estimate ofΣ is fixed to 0, while intraindividual variability appears to exist in
the data. Moreover, the Simulation Step is not implemented.

System Action: Continue processing. Message is issued only with the first five individual records in
which the number of observation records exceeds one.

User Response: If it is not intended that the number of observation records in individual record no. n
should exceed one, then correct the data set.If it is not intended that the initial estimate ofΣ should be 0,
then check the initial estimate. There can be circumstances where the intent is to have multiple observa-
tions in individual records and to fixΣ to 0. In these circumstances the random intraindividual effects in
the model have no actual effect on the data sinceΣ is 0 and so their values are constant.However,
another way to arrange that random intraindividual effects have no effect is to eliminate them from the
model. Thisis accomplished by placing a 0 in field 3 of the initial STRUCTURE record and by omitting
all control records pertaining toΣ.
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G.2 Messagesfrom Processing Control Records

Each control record is checked for many possible errors, such as there being an integer in a control
record outside the permitted range, or there being a sort code in a TABLE record which appears more
than once in the record.If an error is found in a control record, a self-explanatory error message is
printed that directs the user to examine this record, and sometimes the particular field(s) containing the
error. One control record after another is checked, and when the first control record (or combination of
control records) with an error is found, NONMEM issues the appropriate error message and terminates.
Therefore, subsequent control records with errors may not be identified until a subsequent NONMEM
run.

G.3 Messagesfrom the Estimation Step

Besides one possible error message from the Estimation Step, there are the three lines of output
that always appear and that describe the nature of the termination of the minimization search. In addi-
tion, with the default ELS objective function a certain pattern of output indicates that with the initial
parameter estimate, the estimated variance-covariance matrix of some individual’s set of observations is
algorithmically singular. This pattern can also occur with a user-specified objective function when with
the initial parameter estimate the user-supplied subprogram CONTR issues return code 1.(See NON-
MEM Users Guide II.)The pattern consists of a) termination of the search after the second iteration due
to rounding errors dominating, b) an exceedingly large value of the objective function at the end of the
0th, 1st, and 2nd iterations, c) zero gradients (across all STP) at these three iterations, d) asterisks for the
minimum value of the objective function, and e) a final estimate equalling the initial estimate.In this
case user response should be to check i) that a suitable model has been chosen for the data, ii) for pro-
gramming errors in PRED, iii) that reasonable initial estimates have been specified, iv) for mistakes in
the data set.When the Estimation Step is not implemented, a pattern consisting of asterisks for the mini-
mum value of the objective function should also prompt the same user response.

The error message from the Estimation Step is:

A) PROGRAM TERMINATED BY OBJ, ERROR IN CONTR
WITH INDIVIDUAL n (IN INDIVIDUAL RECORD ORDERING)
RETURN CODE m

Explanation: CONTRis the user-supplied subprogram for computing the contribution made to the objec-
tive function from a given individual’s data. It has encountered an error with individual n, and it has
issued a return code m> 1.

System Action: Program terminates.

User Response: Response should be appropriate for return code m.

G.4 Messagesfrom the Covariance Step

The following error messages from the Covariance Step either indicate the reasons why various
anticipated output is omitted from the Covariance Step or give a warning. Thesystem action in each case
is to continue processing. Reference is made to the R and S matrices. These matrices, computed in the
Covariance Step, are described in NONMEM Users Guide, Part II. The R matrix is a numerical approxi-
mation to the hessian matrix of the objective function evaluated at the final estimate. As such, it is
desireable that it be nonsingular and positive semidefinite. Ifit is not, then the covariance matrix may not
be obtainable. If the S matrix is singular, then the inverse covariance matrix may not be obtainable.

A) R MATRIX UNOBTAINABLE
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B) SMATRIX UNOBTAINABLE

C) RMATRIX ALGORITHMICALL Y SINGULAR

D) R MATRIX ALGORITHMICALL Y SINGULAR
AND ALGORITHMICALL Y NON-POSITIVE SEMIDEFINITE

E) RMATRIX ALGORITHMICALL Y NON-POSITIVE SEMIDEFINITE
BUT NONSINGULAR

F) SMATRIX ALGORITHMICALL Y SINGULAR

G) PSEUDOINVERSE OF S MATRIX UNOBTAINABLE

H) PSEUDOINVERSE OF COVARIANCE MATRIX UNOBTAINABLE

I) EIGENVALUES NO. n AND GREATER UNOBTAINABLE

When messages A and B occur, they are accompanied by the messages:

J) ERROR RMATX-n m

K) ERROR SMATX-n m

respectively. These two messages are not explained here. If message C occurs, the objective function
could be flat over some part of the parameter space that includes the final estimate.If message D or E
occurs, the final estimate is not a local minimum. A situation giving rise to one of the above messages
may also give rise to one of the following messages which indicate that certain output is being ommitted
or indicates that surrogate output is generated.

L) COVARIANCE MATRIX UNOBTAINABLE

M) INVERSECOVARIANCE MATRIX UNOBTAINABLE

N) COVARIANCE MATRIX SET EQUAL TO INVERSE OF R MATRIX

O) COVARIANCE MATRIX SET EQUAL TO INVERSE OF S MATRIX

P) INVERSEOF COVARIANCE MATRIX SET EQUAL TO R MATRIX

Q) INVERSEOF COVARIANCE MATRIX SET EQUAL TO S MATRIX

If the covariance matrix is unobtainable, so are the standard errors and the correlation matrix.

In addition to messages A-Q, these two messages can occur together:

R) PROGRAM TERMINATED BY OBJ, ERROR IN ELS
VAR-COV WITH INDIVIDUAL n (IN INDIVIDUAL RECORD ORDERING)

ESTIMATED TO BE ALGORITHMICALLY SINGULAR

S) MESSAGE ISSUED FROM COVARIANCE STEP
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Explanation: With the final parameter estimate, the estimated variance-covariance matrix of the observa-
tions from individual n is algorithmically singular.

System Action: Program terminates.

User Response:The error can occur only when the final estimate is the initial estimate and only when
either the Covariance Step is unconditionally implemented or a MSF is used.Respond with i-iv, as indi-
cated in section G.3. If MSF is used, check that it is the correct one.

These two messages may also occur together:

T) PROGRAM TERMINATED BY OBJ, ERROR IN CONTR
WITH INDIVIDUAL n (IN INDIVIDUAL RECORD ORDERING)
RETURN CODE m

U) MESSAGE ISSUED FROM COVARIANCE STEP

Explanation: CONTRis the user-supplied subprogram for computing the contribution made to the objec-
tive function from a given individual’s data. Ithas encountered a fatal error with individual n, and it has
issued a return code m.

System Action: Program terminates.

User Response:The error can occur only when the final estimate is the initial estimate and only when
either the Covariance Step is unconditionally implemented or a MSF is used.Respond with i-iv, as indi-
cated in section G.3. If MSF is used, check that it is the correct one.Response should be appropriate for
return code m.

G.5 Messagesfrom the Table and Scatterplot Steps

These two messages may can occur together:

A) PROGRAM TERMINATED BY PRRES, ERROR IN ELS
VAR-COV WITH INDIVIDUAL n (IN INDIVIDUAL RECORD ORDERING)

ESTIMATED TO BE ALGORITHMICALLY SINGULAR

B) MESSAGE ISSUED FROM x STEP

Explanation: With the final parameter estimate, the estimated variance-covariance matrix of the observa-
tions from individual n is algorithmically singular. In message B the x stands for either TABLE or
SCATTERPLOT, whichever applies.

System Action: Program terminates.

User Response:The error can occur only when the final estimate is the initial estimate and only when
the Estimation Step is either unconditionally implemented or not implemented. Respond with i-iv, as
indicated in section G.3.

These two messages may also occur together:

C) PROGRAM TERMINATED BY PRRES, ERROR IN CONTR
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WITH INDIVIDUAL n (IN INDIVIDUAL RECORD ORDERING)
RETURN CODE m

D) MESSAGE ISSUED FROM x STEP

Explanation: CONTRis the user-supplied subprogram for computing the contribution made to the objec-
tive function from a given individual’s data. Ithas encountered a fatal error with individual n, and it has
issued a return code m. In message D the x stands for either TABLE or SCATTERPLOT, whichever
applies.

System Action: Program terminates.

User Response:The error can occur only when the final estimate is the initial estimate and only when
the Estimation Step is either unconditionally implemented or not implemented.Respond with i-iv, as
indicated in section G.3. Response should be appropriate for return code m.

There is another possible message from the Scatterplot Step:

E) RANGEFOR x is ZERO

Explanation: Thedata items labeled x are to be scatterplotted, but they are all equal.

System Action: Replace the scatterplot with this message.

G.5 Messagesfrom the Finalization Step

These two messages may can occur together:

A) PROGRAM TERMINATED BY PRRES, ERROR IN ELS
VAR-COV WITH INDIVIDUAL n (IN INDIVIDUAL RECORD ORDERING)

ESTIMATED TO BE ALGORITHMICALLY SINGULAR

B) MESSAGE ISSUED WHEN CONPAR CALLED WITH ICALL=3

Explanation: With the final parameter estimate, the estimated variance-covariance matrix of the observa-
tions from individual n is algorithmically singular. In message B CONPAR refers to the user-supplied
subprogram for computing condensed parameter values.

System Action: Program terminates.

User Response:The error can occur only when the final estimate is the initial estimate and only when
the Estimation Step is either unconditionally implemented or not implemented.Respond with i-iv, as
indicated in section G.3.

These two messages may also occur together:

C) PROGRAM TERMINATED BY PRRES, ERROR IN CONTR
WITH INDIVIDUAL n (IN INDIVIDUAL RECORD ORDERING)
RETURN CODE m

D) MESSAGE ISSUED WHEN CONPAR CALLED WITH ICALL=3
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Explanation: CONTRis the user-supplied subprogram for computing the contribution made to the objec-
tive function from a given individual’s data. Ithas encountered a fatal error with individual n, and it has
issued a return code m. In message D CONPAR refers to the user-supplied subprogram for computing
condensed parameter values.

System Action: Program terminates.

User Response:The error can occur only when the final estimate is the initial estimate and only when
the Estimation Step is either unconditionally implemented or not implemented. Respond with i-iv, as
indicated in section G.3. Response should be appropriate for return code m.
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Appendix I. Control Record Formats

Records marked with * may be continued.
The record name, e.g., "INDX", is not repeated on continuation(s).

FILE record (FILE) (A4,4X,A72)

Field No. Value Function
1 NULL no file stream

72 chars name of file stream

SUPER record (SUPR) (A4,4X,I4,I8,I4)

Field No. Value Function
1 1-9999 Numberof problems in the superproblem
2 2-9999 Numberof iterations of the superproblem.
3 0 Input information will be printed for first problem only

1 Input information will be printed for all problems

PROBLEM record (PROB) (A4,4X,A72)

Field No. Value Function
1 72 chars problemheading

DATA record (DATA) (A4,4X,18I4)

Field No. Value Function
1 0or blank data set is embedded in the control stream

1 data set is in a separate file
-1 re-usethe data set from the previous problem.

2 0or blank FORTRAN unit not to be rewound
1 FORTRAN unit to be rewound

3 0 data set to be read to FINISH record or end of file
1-9999 no.of data records (low-order digits)

4 1-20 no.of data items per data record
5 0 not data checkout

1 data checkout only
6 0-9999 no.of data records (high-order digits)

The no. of data records is Field 6 * 10000 + Field 3.
When Field 6 is 0 or blank, this is simply Field 3
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ITEM record (ITEM) (A4,4X,18I4)

Field No. Value Function
1 0-20 index of ID data item
2 1-20 index of DV data item
3 0-20 index of MDV data item
4 0-20 no.of data item indices in INDXS
5 0 no user-supplied labels.

1 user-supplied labels.
6 0 standard labels PRED,RES and WRES used.

1 nonstandard labels used.
7 0-20 index of L2 data item
8 0-20 index of first data item specified in CONTR record
9 0-20 index of second data item specified in CONTR record
10 0-20 index of third data item specified in CONTR record
11 0-50 no. of user-supplied labels for tables, scatters
12 0-20 index of MRG_ data item
13 0-20 index of RAW_ data item
14 0-20 no. of items on OMIT record
15 0-20 index of RPT_ data item

INDEX record (INDX)* (A4,4X,18I4)

Field No. Value Function
1 1-20 1stelement of INDXS
2 1-20 2ndelement of INDXS

etc.
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LABEL record (LABL)* (A4,4X,9(A4,4X))

Field No. Value Function
1 4chars labelof 1st data item
2 4chars labelof 2nd data item

etc.
m 4chars labelof last data item
m+1 4chars labelfor PRED (if ITEM(6)=1)
m+2 4chars labelfor RES (if ITEM(6)=1)
m+3 4chars labelfor WRES (if ITEM(6)=1)
m+p+1 4chars labelfor 1st variable in NMPRD4†
m+p+2 4chars labelfor 2nd variable in NMPRD4†

etc.
m+p+q 4chars labelfor last displayed variable in NMPRD4

Note
m=no. of data items per data rec.=DAT A(4)
p=3 if non-standard labels for PRED, RES, WRES (ITEM(6)=1)
p=0 otherwise
q=no. of user supplied labels for tables, scatters=ITEM(11)
† Blank if this variable is not displayed

OMIT record (OMIT)* (A4,4X,18I4)

Field No. Value Function
1 4chars no.of 1st data item omitted from template matching
2 4chars no.of 2nd data item omitted from template matching

etc.

FORMAT record (FORM) (A4,4X,A72/A80)

Field No. Value Function
1 80 chars formatspecification

(field begins on first continuation record)

FIND record (FIND) (A4,4X,18I4)

Field No. Value Function
1 0
2 0
3 0  No Model specification file (MSFI)

1 A Model specification file (MSFI) is to be read.
4 0  estimate on file not to be rescaled.

1 estimate on file to be rescaled.
5 0  No ONLYREAD option

1 ONLYREAD option
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initial STRUCTURE record (STRC) (A4,4X,18I4)

Field No. Value Function
1 0-70 lengthof THETA
2 0-70 dimensionof OMEGA
3 0-70 dimensionof SIGMA
4 blank
5 blank
6 0or blank OMEGA constrained with a block set partition

1 OMEGA constrained to be diagonal
7 0or blank only if field 6 has value 1

1-70 numberof block sets for OMEGA

If the dimension of SIGMA is 0, the following fields may be ignored.

8 0or blank SIGMA constrained with a block set partition
1 SIGMA constrained to be diagonal

9 0or blank SIGMA only if field 8 has value 1
1-70 numberof block sets for SIGMA

10 blank
11 blank
12 0or blank default THETA boundary test

1 No default THETA boundary test
13 0or blank default OMEGA boundary test

1 No default OMEGA boundary test
14 0or blank default SIGMA boundary test

1 No default SIGMA boundary test

STRUCTURE record for OMEGA or SIGMA(STRC)* (A4,4X,18I4)

Field No. Value Function
1 1-70 sizeof 1st. block set
2 1-70 dimensionof blocks in 1st. block set
3 1-70 sizeof 2nd. block set
4 1-70 dimensionof blocks in 2nd. block set

etc.

THETA CONSTRAINT record (THCN) (A4,4X,18I4)

Field No. Value Function
1 0or blank THETA unconstrained

1 THETA constrained
2 0or blank use default size of initial. est. search

1-9999 no.of points to be examined during initial est. search.
3 0or blank ABORT if PRED sets error return code to 1 during search

1 NOABORT - Ignore PRED error return code during search
2 NOABORTFIRST - Same, even with first values.
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THETA record (THTA)* (A4,4X,9A8)

Field No. Value Function
1 initial est. ofθ1

(blank if NONMEM is to obtain the inital est.)
2 initial est. ofθ2

(blank if NONMEM is to obtain the inital est.)
etc.

LOWER BOUND record (LOWR)* (A4,4X,9A8)

Field No. Value Function
1 lower bound forθ1

2 lower bound forθ2

etc.

UPPER BOUND record (UPPR)* (A4,4X,9A8)

Field No. Value Function
1 upper bound forθ1

2 upper bound forθ2

etc.

DIAGONAL record (DIAG)* (A4,3X,A1,9A8)
for OMEGA or SIGMA

Field No. Value Function
Pos. 1 blank Notfixed.

1 Fixed.
2 NONMEM is to obtain the inital estimate(s).

1 initial est. of (1,1) element of matrix
2 initial est. of (2,2) element of matrix

etc.

BLOCK SET record (BLST)* (A4,3X,A1,9A8)
for OMEGA or SIGMA

Field No. Value Function
Pos. 1 blank Notfixed.

1 Fixed.
2 NONMEM is to obtain the inital estimate(s).

1 initial est. of (1,1) element of matrix
2 initial est. of (1,2) element of matrix

etc.
use symmetric enumeration
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SIMLUATION record (SIML) (A4,4X,18I4)

Field No. Value Function
1 0or blank Simulation Step implemented

1 Simulation Step not implemented

If the value is 1, the subsequent fields may be ignored.

2 1-10 no.of random sources (SORC records)
3 0 eta (eps) changes with each record

1 eta (eps) changes with new ind.rec. (L2 rec) (NEW)
4 0-9999 no.of subproblems
5 0 compute objective function and other steps

1 only the simulation step
6 0or blank no partial derivatives from PRED needed

1 PRED should compute 1st. derivatives (REQUESTFIRST)
2 PRED should compute 2nd. derivatives (REQUESTSECOND)

7 0or blank simulated observation isY or F (PREDICTION)
1 simulated observation is DV (NOPREDICTION)

8 0or blank Use inital ests. (TRUE=INITIAL)
1 with MSFI, use final ests. (TRUE=FINAL)
2 use values in NMPR16 (TRUE=PRIOR)

SOURCE record (SORC) (A4,4X,2A12,I4)

Field No. Value Function
1 -1-21474836447 firstseed
2 0-21474836447 secondseed
3 0or blank random numbers are pseudo-normal (NORMAL)

1 random numbers are pseudo-uniform (UNIFORM)
2 random numbers are from a nonpar. distrib (NONPARAMETRIC)
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ESTIMATION record (ESTM) (A4,4X,18I4)

Field No. Value Function
1 0or blank Estimation Step implemented

1 Estimation Step not implemented

If the value is 1, the subsequent fields may be ignored.

2 0-9999 maximumno. of function. evaluations (low-order digits)
-1 Reusethe value from the previous run (with MSFI)

3 1-8 numberof significant figs. required in final est.
4 0or blank no summarization of iterations

n > 0  every nth iteration summarized
5 0or blank no second search (REPEAT)

1 second search (REPEAT) implemented
6 0or blank MSF not output

1 MSF output
7 0or blank First order (FO) method

1 Conditional method(METHOD=COND)
8 0or blank No POSTHOC etas are to be estimated.

1 POSTHOC etas are to be estimated.
9 0or blank Etas are 0 for comp. of intraind. error (NOINTERACTION)

1 Nonzero etas for comp. of intraind. error INTERACTION
10 0or blank Do not use Laplacian method.

1 Laplacian method is to be used.
11 0or blank ABORT if PRED sets error return code to 1

1 NOABORT - Attempt theta-recovery when PRED error code 1.
12 0or blank Faster method of compuation (NOSLOW)

1 Slower method of computation (SLOW)
2 Slower method of computation (SLOW=2); for Stieltjes

13 0or blank avg. cond. est. of etas unconstrained (NOCENTER)
1 avg. cond. est. of etas constrained close to 0. (CENTER)

14 0or blank First-order model not used (NOFO)
1 First-order model used with METHOD=1 CENTERING (FO)

15 0or blank Second eta-derivs. computed by PRED (NONUMERICAL)
1 Second eta-derivs. for Laplacian to be obtained numerically.

16 0or blank Y or F (with user-supplied code) is a prediction.
1 Y or F is a LIKELIHOOD.
2 Y or F is a -2LOGLIKELIHOOD

17 0or blank Not the Hybrid method
1-99 no.of etas fixed to zero by ZERO recs. (Hybrid method)

18 0or blank Not the Stieltjes method.
1 Stieltjes method; no GRID option.
2 Stieltjes method; GRID was specified.

ESTIMATION rec. continuation rec.( ) (A4,4X,18I4)

Field No. Value Function
1 0or blank Required if estimation step is omitted, otherwise:

0 or blank TheREPEAT2 option is not coded; same as NOREPEAT2
1 REPEAT2 (with Stieltjes)
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2 0or blank No ETABARCHECK.
1 ETABARCHECK option is coded.

3 0or blank. Sum contrib. to obj. func. in data set order.
1 Sort contrib. to obj. func. prior to sum (SORT)

4 0-9999 maximumno. of function evaluations (high-order digits)
The no. of func. evals. is Field 4 * 10000 + low-order
When Field 4 is 0 or blank, this is simply low-order

ZERO record (ZERO)* (A4,4X,18I4)

Field No. Value Function
1 0 conditional estimate for eta(1)

1 eta(1) is fixed to 0 (HYBRID method)
2 0 conditional estimate for eta(2)

1 eta(2) is fixed to 0 (HYBRID method)
etc.

GRID record (GRID) (A4,4X,9A8)

Field No. Value Function
1 nr as specified in GRID=(nr,ns,r0,r1)
2 ns as specified in GRID=(nr,ns,r0,r1)
3 r0 as specified in GRID=(nr,ns,r0,r1)
4 r1 as specified in GRID=(nr,ns,r0,r1)

NONPARAMETRIC record (NONP) (A4,4X,18I4)

Field No. Value Function
1 0or blank Nonparametric step implemented conditionally

1 Nonparametric step implemented unconditionally
2 0or blank use nonparametric estimate from input MSF

1 recompute nonparametric estimate
3 0or blank obtain marginal cumulatives

1 compute conditional nonpar. etas (CNPE ETAS)
4 0or blank no model specification file is output

1 amodel specification file is output
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COVARIANCE record (COVR) (A4,4X,18I4)

Field No. Value Function
1 0or blank Covariance Step conditionally implemented

(1) (Covariance Step unconditionally implemented - obsolete)
2 Covariance Step not implemented

2 0or blank covariance matrix set to (R inverse) S (R inverse)
1 covariance matrix set to R inverse
2 covariance matrix set to S inverse

3 0or blank neither R nor S printed.
1 Rmatrix printed
2 Smatrix printed
3 both R and S printed

4 0or blank eigenvalues not printed
1 eigenvalues printed.

5 0or blank default computation.
1 Special computation with a recursive PRED subroutine.

6 0or blank Print Covariance Step arrays in normal format.
1 Print Covariance Step arrays in compressed format.

7 1
8 0or blank
9 0or blank Normal method of computation

1 Slower method of computation (SLOW)

initial TABLE record (TABL) (A4,4X,18I4)

Field No. Value Function
1 0or blank Table Step conditionally implemented

1 Table Step unconditionally implemented
2 Table Step not implemented

If the value is 2, the next field may be ignored, and there should not appear
any individual TABLE records.

2 1-10 numberof tables
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individual TABLE record (TABL) (A4,3X,I1,18I4)

Field No. Value Function
Pos. 1 blank nooption record.

1 an option record follows.
(only if at least one item on the option rec. is non-blank)

1 0-50 numberof selected data item types
2 1-999 index of 1st selected data item type
3 0-8 sortcode for data items of 1st selected type
4 1-999 index of 2nd selected data item type
5 0-8 sortcode for data items of 2nd selected type

etc.

individual TABLE rec. contin. rec. ( )* (A4,4X,18I4)
(as needed)

Field No. Value Function
1 1-999 index of 9th. selected data item type
2 0
3 1-999 index of 10th. selected data item type
4 0

etc.

individual TABLE record option rec.( ) (A4,4X,18I4)

Field No. Value Function
1 blank Every data record appears in the table.

1 Only the first data rec. from each ind. rec. (FIRSTONLY)
2 1 With TABLE file, no printed table (NOPRINT)

2 With TABLE file, printed table appears in the NONMEM output.
3 blank Normalheader lines appear in the TABLE file.

1 Only one header in the TABLE file (ONEHEADER)
2 No headers are included in the TABLE file (NOHEADER)

4 blank TheTABLE file is opened and is positioned at the start.
1 The TABLE file is positioned at the end (FORWARD)

5 blank DV, PRED, RES, WRES appear automatically
1 DV, PRED, RES, WRES do not appear unless listed (NOAPPEND)
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initial SCATTERPLOT record (SCAT) (A4,4X,18I4)

Field No. Value Function
1 0or blank Scatterplot Step conditionally implemented

1 Scatterplot Step unconditionally implemented
2 Scatterplot Step not implemented

If the value is 2, the next field may be ignored, and there should not appear
any individual SCATTERPLOT records.

2 1-20 numberof families

individual SCATTERPLOT record (SCAT) (A4,4X,6I4,2I8,4I4,16X)

Field No. Value Function
1 1-23 index of data items plotted on abcsissa axis
2 1-23 index of data items plotted on ordinate axis
3 0or blank a single scatterplot

1 aone-way partitioned scatterplot
2 atwo-way partitioned scatterplot

If the value of field 3 is 0 or blank, the next two fields should be ignored.

4 1-23 index of 1st separator

If the value of field 3 is 1, the next field should be ignored.

5 1-23 index of 2nd separator
6 0or blank no unit slope line appears

1 unit slope line appears
7 0-99999999 no.of the first data rec. for the scatter (FROM)
8 0-99999999 no.of the last data rec. for the scatter (TO)
9 0or blank a line through zero on the ordinate axis if appropriate.

1 aline through zero on the ordinate axis. (ORD0)
-1 noline through zero on the ordinate axis.

10 0or blank a line through zero on the abscissa axis if appropriate.
1 aline through zero on the abscissa axis. (ABS0)
-1 noline through zero on the abscissa axis.

11 0or blank Every data record appears in the scatter.
1 Only the first data rec. from each ind. rec. (FIRSTONLY)

12 0or blank Every data record appears in the scatter
1 Only data records with MDV=0 (OBSONLY).


