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Basic Theory of Nonlinear Mixed Effects
Individual parameters phi (¢ ) to a PK/PD model are assumed to have a random distribution

in a population of subjects, typically a normal distribution with mean MU (p) and variance
OMEGA (Q). The mean pmay in turn be modeled as a function of a set of unknown but

to be estimated fixed effects parameters THETA (0 ), and a set of covariates, or information

about individual i, xi.  The deviation of the individual parameter from its mean is
designated n, so that the following relation holds:

¢=p(0,,x,)+n (1.1)
where 0, are those thetas that are related to etas through a mu function, of the above format.

Thus, the distribution of ¢ can be described as

(b 1 ) = 5 (02 ) | 12)

The population parameter density h(d|p,,Q)is the probability that the particular ¢ would
occur for an individual, given mean population parameters w; and its inter-individual
covariance Q. The distribution of n is therefore centered about zero (0), and can be

described as

h(n]0,Q)) Wiz)mexp(—%n’fz‘lnj (1.3)

Not all fixed effects theta are involved in an eta (1) relationship as shown above. For those
theta that are not exclusively expressed in the PK/PD model or error model via mu (u), these
are considered not mu modeled. We shall designate these thetas as 0, . The entire vector of
thetas is then

0={0,0_} (1.4)
The parameters as designated in NONMEM are THETA for 0, ETA for n, and OMEGA
for Q. There are also a set of parameters designated as SIGMA in NONMEM, which are

never mu modeled, and because in our discussion they will be treated in exactly the same

way as non mu modeled theta, we shall include them in 0 , to reduce the complexity of the
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nomenclature. There may also be some etas that are not related to a MU model, in which

case
¢=mn (1.5
Thus the phi vector includes all etas, whether or not they are involved in a mu function.

For observed data that are modeled as normally distributed, a predictive function may be
evaluated using the individual PK/PD parameters phi, and/or may be modeled directly from

fixed effects parameters not be phi/mu modeled, f,(¢,0,,). In addition, a residual variance

matrix V describes the uncertainty of the observed values, and may be directly a function of

the predicted value f,, sigma parameters and other non-mu modeled thetas, and rarely,

individual parameters ¢ :V,(f;,$,0,,) . The normal data density can be expressed as
1 n /-1
eXp|:_2(yi —f)Vi(y; _fi):|

\/det(\/i )

where 1(y;[4,0,,) is the individual data density, the probability of data y; occurring for

1(yil9,0,,) o (1.6)

individual i, given individual PK/PD parameters ¢, and fixed effect parameters 6 , that are

not mu modeled.

The joint density of data y; and ¢ for an individual is then

P(Y;,¢16,,,1:(6,),Q)=1(y;19,6,,)h(¢|n(6,).Q) 1.7)
The I(y; |$,6.,)h(¢|w;,€2) is the joint likelihood density of ¢ and y; for a given individual.
It is integrated over all possible values of ¢ for each individual, so that the “best” population

parameters® andQ are determined by taking into account the joint probability to an

individual’s data over the entire parameter space of ¢, rather than at just one particular
location, such as at the individual’s best fit. We are therefore interested in evaluating the

marginal density of y; for any given 8 andQ (or 6 ,,;,Q):

Py 16,Q) =7, p(y;,¢10,,. 1, 2)do = [ 1(y; [$,6,.)h(d|p;, Q2)d (1.8)

for each subject i. The total marginal density for all m subjects is then
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Py 10.2) =117, Py, 616, b, )¢ (19

It is convenient at this stage to use the negative logarithm of the density, and refer to this as

the objective function, for each individual:

L =—log(I> p(y;. 16,1, ©)d¢) (1.10)

and for the total data set:

L=—log(p(y|6.2)= XL, (1.11)
Thus, the negative logarithm of the parameter density is

~1og((bl ) = log(det(@) + (6- 1R (1) 112
And the negative logarithm of the data density is:

~1og(1(y,16,6,,)) = (v, ~F)V; (v, ~) + > log det(V; ) (1.19)

To fit a model with mean population parameters 0 and population variance € to data y, the
marginal density (1.9) is to be maximized with respect to 8 and Q. These parameter values
are then considered the most likely for the observed data y. Therefore, the maximization of
the marginal density with respect to 8 and Q is called the maximum likelihood method. In
practice, as an equivalent process, the negative logarithm of the marginal density (1.11) is
minimized. This is the goal of the first order (FO), first order conditional estimation
(FOCE/FOCEI), Laplace, iterative two stage (ITS), and expectation maximization (EM)

methods.

FOCE and Laplace Methods

Generally the integral of the joint density (1.10) is very difficult to evaluate
deterministically, but it may be approximated for classical methods FOCE and Laplace
using a method described by Beal (part VII of NONMEM manuals [1]). The derivation is
given in [2], while we will merely report the results. Classical NONMEM (FO, FOCE, and
Laplace) does not require the use of p modeling, so for this section, we will use the
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parameterization of 0, n, for all parameters, rather than distinguishing between p modeled

and non-p modeled 0. For example, the individual’s joint density may be alternately
expressed as

P(Yi 90,1, Q) =1(y; 19,0,)h(d|n;, Q) =1(y; [8,m)h(n]0,Q) = p(y;,n[6.Q) (1.14)
and integration over all values of n is equivalent to integrating over all values of ¢ :

L, =—log(["” p(y;,m|6,Q)dn) (1.15)
In order to integrate the individual’s joint density over allmusing the approximation
suggested by Beal, we wish first to determine the set ofnat the maximum of this joint

density, or equivalently, at the minimum of the negative logarithm of the joint density:

1 1,
~log(l(y;18,m)h(n]0,€2)) = —log(l(y; [8,m)) + - log(det(€2)) + - m'Q2 m (1.16)
We minimize with respect to eta by evaluating
o~ log(l(y, |2:] O)h(nI0.Q)) _ 0-log(y,In,8) o1 117)

using typical search strategies. Them at which equation (1.17) is satisfied is called the mode
of the joint density for subject i, and shall be designated 7, (the hat over the parameter shall

refer to a mode or point estimate, whereas the line over a parameter refers to a mean).

Finding the 7, parameters that provide the minimum of the individual’s joint density is

called mode a posteriori (MAP) estimation. This is used to then evaluate an approximation

of the negative logarithm of the individual’s integral of his joint density as follows:

L, =—log({"*1(y, |, 8)h(n| 0,Q)dm) ~
~log(I(y,17,6)) + - log(det(@) + > Q2 i, + (L.18)
S log(de(@* +5(y, 111,0)) = Ly

whereS™(y, | ©;,0) is the hessian or information matrix to the data density I(y, |f,,0).

The total approximate objective function is in turn, for m subjects:

L

M=

L, - (1.19)

4 Ni
i=1
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(the subscript N refers to classical NONMEM) where the first three terms of (1.18) are

simply the negative logarithm of the joint density evaluated at the mode 7, and the last
term is %2 of the negative logarithm of the determinant of the variance of n under the joint
density, 1(y,|mn,0)h(n]0,€2). One can therefore think of the joint density evaluated at the

mode (that is, the first three terms of equation (1.18) as the “height” of the joint density:
—log(H;) =—log(I(y; | 7;,0)) + % log(det(€2)) + %ﬁi’ﬂlﬁi (1.20)

where H; is the “height” of individual i’s joint density. Similarly, one may think of one-half
the determinant of the variance under the joint density (the last term of the equation (1.18))

as its “width”:

_logW,) =%Iog(det(9‘1 £S5y, 1#,,9)) (121)

Thus equation (1.18) represents the negative logarithm of the height multiplied by the width,
resulting in the “area” of the joint density. TheS™(y, |f,,0) may be evaluated several

ways. One method is to evaluate the second derivative, usually by finite difference
methods:

S™(y;In,0) = {az — Ig?](lé); Im.6)) ,k, =1ton,k, =1to n,} (1.22)

where {} means “matrix containing elements”. This evaluation is used in the Laplace
method in NONMEM. This evaluation guarantees positive definiteness (assuming no
numerical difficulties arise) when evaluated at the mode (see appendix B). Another method

is by the cross product of the first derivatives of the individual data point densities:

a m 0—log(l(y; [n.8)) o—log(I(y; In,6))
S7(Y;Im,0)=
(yll ) {JZ_;L Ik1 Ikz }

where m; is the number of data points for patient i (assuming all data are independent).

(1.23)

Based on its structure, positive definiteness is guaranteed even when evaluated not at the
mode (see appendix B). A third method for evaluating S (y, | n,8) is by the expected value

of the second derivative:
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Sy 1m.6) Haz ~log(l(y, |n,e))}}

o, on,
(1.24)
of (t;,m.0) ., of (t;,n.0 _ _
(t,m )vﬁ (6, )+}Ir\ﬁ4§YLVﬁ£§L
&nkl ankz 2 ankl ankz

which is also positive definite even when not evaluated at the mode. Equation (1.24) is used
as the non-Laplace (CONDITIONAL) method in NONMEM. The Q™ +S:* is in turn the

Hessian (information) matrix of the joint density:

2| 2~ log(l(y, Im,&)h(n[0.9)) | _
i AN, N, ~

2| =109y, In.8)) |, | 2*~log(h(n0.Q)) (1.25)
i M ony, A, O,

S(yiIn0)+Q™
and hence its inverse is the variance matrix of nunder the joint density, as mentioned

earlier. Because the sum of two positive definite matrices is itself positive definite, the
variance of the joint density as evaluated above is positive definite. For joint densities that

are exactly multivariate normally distributed with respect to n, equation (1.18) evaluates
the joint area exactly. We shall also refer to S™(y, |f;,0)as S;*. The S*must be

evaluated at the individual i’s mode of his joint density, at %,, and not at the mean

population position of n =0, so the INTERACTION option in NONMEM must be used.

Keep in mind that while the T, represents the ith individual’s “best fit” parameters for its

data, based on its joint density, it is only needed here to evaluate the area under his joint
density using the above approximation. In other words, we really don’t need an individual’s
best fit parameter set theoretically, but we need it practically, in order to evaluate the
“height” of the density, and thus approximate his joint density area. There are alternative
methods of finding the area without needing to know the individual’s “best fit” parameters,

which we will explore later.
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Following the evaluation of each individual’s objective function in the manner described
above, these are summed to form the total approximate objective function Ly. NONMEM
optimizes Ly with respect to THETAS, OMEGAS, and SIGMAS using a variable metric
method, in which Ly is evaluated at a series of values of 8 and Q, to provide a directional
search to find the set of  and Q that optimizes Ly. The description of the variable metric

method is beyond the scope of this document, but a good reference is [3].

Expectation Maximization (EM) Principles
Maximization-expectation methods separate the process of expectation (integration) and

maximization. To find improved estimates for umodeled®,, it is convenient to first
minimize the negative logarithm of p(y |8, u,€2)with respect to u, which is equivalent to
maximizing p(y|6,,u,€). We can do this as follows:

al‘i —

F (1.26)
—log([”, p(y;, 1, Q)d
0-log ([, p(y;.$10,,.1,,2)d¢) w27
om,
~O([%. P(y; 910, 1, 2)d0) o[ [-0p(y,. 610,/ do 128)
[ P(Y;.¢[6 1, Q)dd I~ P(y;. ¢16,,, 1, Q)dd .
.| 0-10g(p(y;$10,,.1,2)) / o1 | p(y;, 616, 1, Q)¢ _ (129)
=, p(Yi’d)le#a“in)dd) .
o-I1 n010,,,1,,Q
IZ{ e »}(¢|yi,e#,upn>d¢= (130
e, [6 —log( p(yia,jl Gﬁ,ui,Q))j g, L31)

where g, is the gradient with respect to p;, and E,; ( )represents the expected value when

integrating over all ¢, and

_ P46, 1.9
2 p(y;. 910, 1. Q)dé

2(01Y;.0,,.1,Q) (1.32)
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is called the conditional density of ¢ for individual i. The conditional density integrated

over all possible ¢ evaluates to 1:

w P ¢, Q)
L0, 0, Q) =] ' do=1 1.33
2(¢1y;, 0,1, Q) =] Dbl Q)d0 ¢ (1.33)

The relationship

0—log(p(y, [0,k ) _ [8—Iog(p(yi,¢|9#,ui,9))]
—E,,

1.34
oM oW, 439

holds for any joint density p(y;,¢[6_,u;,€2) . Now, to evaluate specifically for a parameter

density h that is multivariate normal:

Il L0]0.,p,Q
A »Jz<¢|yi,e#,ui,sz)d¢= (139
" olog(I(y, |$,06.,)h(d|p,,Q
-l og((Y.I¢a:) (6]p ))}Z(¢Iyi,9#,ui,9)d¢= (1.36)
jjow_g_l(d)_ui)z((l)lyi’e#!p‘i’Q)d¢: (1.37)
Q7" (0—-1)z(0]Yi,0,,, 1, Q)dd =9, (1.38)

We can perform the above algebraic manipulation because p (and therefore® ) appears
only in the parameter density h, but does not appear in the data density I. We define

& =["02(01y,,0, 1, Q)dd (1.39)
as the conditional mean ¢ vector for individual i, so that

5 Q7 (- )Z01,0,, . Q)b -
M

_Q_l[qu)z(‘blyi,e#’ui’Q)dd’_”ifwz(q)ly“e#a”i’Q)dd’]:
Q' (@ -w) =9, (1.40)
There are several ways of determining ¢ which are described later, and are called the

expectation (=integrating or averaging) step.

Maximization

To determine the u modeled theta that reduces the objective function, we must solve:
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8|_ m aLI au m au T
N T2 )= 141
0, 10y 09, E 20, (@ —m) o, (1.41)
So that
%, =0 (1.42)

To evaluate (1.41) fully, an optimization algorithm is necessary which varies 6 ,, and
evaluating L at each . Keep in mind that in addition to p; varying with 8, ¢ also varies

with @ through the conditional density z, so this minimization process can be

computationally expensive. Alternatively, we can perform a limited maximization step in

which ¢ is kept constant, while only p; is varied with changes in 8,. This separation of the

expectation step from the maximization step is characteristic of the EM algorithm.

Evaluating (1.41) by this limited optimization is equivalent to minimizing the following

surrogate objective function (keeping ¢ constant):
E, (—log(h(¢|p;,Q)))=
2B (20 ©)0 010, +SE,, (mlog(eet(@) -

— 3[40 -2wQ g +wQ s, |+ S mlog(det(@) =
i=1

13407 200 g + R, ]+ = mlog(det(@) + 1%[4»'914» -4Q7 |-
2i 2 2ia1

1m — ~ o~ /T ~
SX@-mOG,)Q @ -m©,) =L (1.43)
The L. is called the (negative) complete data log likelihood, and it can be shown (see [4])

that any @ , that reduces L., will reduce L by an at least equivalent amount, or:
L(6,)-L®,)=L.(0,)-L0,) (1.44)
where .1 an improved value over the present value ©,. That is, any improvement

value é# that reduces L (where ¢ was kept constant), will also reduce L (in which ¢ varies

with ), by at least the same amount as it reduced L.
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The easiest way to minimize L. is to perform a least squares analysis, by producing the

following positive definite Hessian matrix:

O’L,y  mow - ,0°Ly\ Ol  mOW . OM

H(-) — E( ;):Z l-lu E( ;JI ”’l — Z p’l Q 1 H. (145)
“ 00,°" 1200, ou a0, a0 00

And performing the following update with a variable step size a<l1:

0,=6, +aH:geﬂ (1.46)

This is the maximization step of the EM algorithm. If all of the mu’s have linear

relationships with respect to theta, then the step size that minimizes L. with respect to the

mu’s is 0=1. However, if the mu’s are not linearly related to thetas, then oo must be adjusted
to minimize L. with respect to mu. This can be done by selecting a value a, evaluate I:C
using the proposed 6 . and if I:c is not smaller than the present L evaluated at the present

0, try another value of a, etc. In NONMEM, o=1 is first selected, tested, and if necessary,

a is reduced by geometrical decrements of square root of 2 until an L, is found that is less
than L,. More elaborate search algorithms (such as conjugate gradient or variable metric

methods) for thetas not linearly modeled with respect to mu could be used for the
expectation-maximization methods, but no real time savings occurs in doing so for

population analysis problems.

In the next iteration, the updated 8, are used to evaluate a new set of condional means ¢ in
the expectation step, followed by a limited maximization step to update 6, again. By
repeatedly performing the expectation step (1.39), and evaluating the maximization step as
expressed in equations (1.40) through (1.46), the gradient g, becomes smaller, and
estimates 0, that maximize the marginal density (satisfy equation (1.42)) are eventually

obtained [4].

Again, because p appeared only in the parameter density h as the mean to this multivariate

normal density, and does not appear in the data density I, and the parameters6 ,to be
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estimated appear in the objective function only through p, this allowed us to obtain a

gradient evaluation with a simple construction as given in (1.41) For those 0 that are not
expressed in the model through p the @ may appear anywhere in the joint density. No
shortcut evaluation can be made by maximizing just the parameter density portion. Thus, to
optimize the population objective function in these 6 as well, we need to differentiate the

entire joint density. Through a similar process as we showed in differentiating with respect

top,
o (1.47)
0.,

- | 0—log(p(y ¢16.,,.1,€2))
I = Z(¢|yi’9#’p’i’g)d¢ = (1.48)

0.,
o-lo L0]0,,1,Q
E, 9(p(y: 910, 1. Q) | 0 (1.49)
' 0., ”

oL moL m
s oy a = 1.50
o0, tiop, faden 9 (150)
A Hessian matrix may be constructed as follows:

Ho, =20,,.9%, (1.51)
0,=6,+H g, (152)

To minimize the objective function with respect to the inter-subject variance parameters, we
recognize that Qis symmetrical, and we must vary only the lower triangular portion of the

matrix. Defining A as the lower triangular matrix of €, and minimizing with respect to A,

we have
o— Iog(%(Z |1, Q) _ 21 E, (a— Iog(p(g/x¢| ui,Q))]: (159
:Ii{— T 16l £2) } 261,01, Q) = (154)
S LOWE{Ri —%diag(Ri)} 2(91Yi> b, Q) =9, (1.55)
where
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R =Q7 (Q-(¢-p)¢—p))Q" (1.56)
and g, is the gradient with respect to A. The derivation from equation (1.54) to (1.55)

requires evaluating partial derivatives of matrix components, the tools for which are derived

in appendix A.

We define

Q=17 0-p)O-w) 2@y, 1, Qdo=E,; [(0—p)(¢—n)] (1.57)
as the contribution to the evaluated population variance from each individual i. Then,
E,:(R)=Q"(Q-0)Q™ (1.58)
and

LowerL% E,:(R)) —%diag (ﬁi E,, (Ri))} ~g, =0 (1.59)
is equivalent to solving for

éEq,,i(Ri):Q‘l(mQ—g‘iQ)Q‘l -0 (1.60)
which suggests the following update for Q:

Q= %zl Q (1.61)

Note for any given Q
g, = Lower {le Q-9Q)Q* - g diag (9*1 Q- fz)gl)} (1.62)

Thus, with repeatedly evaluating the expectation step (1.57), and utilizing the result to

evaluate the next estimate of the intersubject variance (maximization step (1.61), when the

“output” Q equals the “input” €, then the gradient g Alsequal to 0.

Note that equation (1.57) may be rearranged as follows, which will be useful later:

Q=@ -G -1+ - 00— a)z(d|y; 1, Q)db (1.63)
Defining
B, =17, (0~ )0 a)z(9]y:. 1, Q2)dd (1.64)
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as the conditional variance of 6 for individual i, then

ﬁl = (d_a —lli)(‘i_l —u)'+ Ei (1.65)

so that

G=23@-p)@-n)+=5B, (166)
M=t ! ! m =1 : '

Thus, the update variance inter-subject variance is evaluated as the sum of the sample

variance of the conditional means and the average conditional variance. To summarize, the

EM algorithm consists of an expectation step evaluating conditional means ¢ and
conditional variances B, , keeping 8,and Qconstant, followed by a limited maximization

step to obtain updated 6, and €, keeping ¢ and B, constant.

Evaluating the Expectation step: Importance Sampling

One can evaluate the area under the joint density and the other integrals by Monte Carlo
techniques. The advantage to these methods is that the actual mathematical expression of
the integral is not necessary for its computation, and the precision to which the integral is
evaluated depends on the number of random samples generated to evaluate the integral.
One Monte Carlo method is to use a sampling function that approximates the joint density,

from which one obtains sample values of nor ¢ .

One possible sampling function is the multivariate normal density that has mean at ¢, and

variance of (Q™* Jréi’l)’1 as described in the previous section. To get these values, therefore,
one first maximizes the joint density with respect to ¢ (or n) as one would for a MAP

estimation. The negative logarithm of the area of this sampling function is exactly Ly; of
equation (1.18). Thus, the purpose of the randomization method is to modify Ly; to the
extent that the joint density deviates from this sampling density. In practice, one may start

with a sampling function that is somewhat larger, by multiplying the variance by a value

y>1: y(Q ™ +S;*)™. The area of this sampling function is then
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E, = —log(I(y, | §,6)) + ~ log(det(€)) +
2 (1.67)

S -1 QG - ) + S log(det( @ +5,)~ nlog(y)

where n is the number of ¢ parameters to be integrated, since ¢ is integrated to form L;.

For the kth random sample selected from this sampling density, the parameter vectors ¢,

are used to evaluate the logarithm of the joint density at that position:

log(7 (¢, )) = 10g(1(y; | d). 8, )Ny, [ 1. €2)) (1.68)
To evaluate the normalized log of the joint density, we subtract

log((@)) =10g(I(y: 14.8,,)h(@ | ;. €)) (1.69)
To obtain

log(7(4)) ~l0g(()) (1.70)

so that this normalized log joint density is 0 at the mode d), . We also evaluate the logarithm

of the normalized sampling function (which is also equal to 0 at ¢, ),

1 P 7
Iog(ei (¢(k))) = _E(¢(k) _‘h) (Q ' +Si 1)(¢(k) _‘h) / Y (1-71)
The logarithm of the ratio between joint density and sampling density is then:

Qs = 109(7(Qy,)) 109 (7($)) — 10g (€, (dy,)) (1.72)

which evaluates to

Qi =109(1(Y; 14y 8.,0) ~10g(1(y; 1 §.6,,))

2@ Q@ 1)~ (0 1) QB )+ 1.73)
S =)@+ ~8) 7

Its exponent is the probability of accepting this position by the joint density, relative to the

sampling density, which we may consider as a weight:
Ui = exp(q(k)i) (1-74)

Thus the following fraction,

1/15/2018 3:28:00 PM Page 16 of 89



NONMEMY7_Technical_Guide.doc RJ Bauer

1r
W= Uy, (1.75)
I k=1

represents the ratio of the area of the conditional density to the area of the sampling density.
The r=ISAMPLE is the number of random samples selected for each individual. This
fraction is now used to adjust the area of the sampling density E;, which is known, to obtain
the true area of the conditional density, which is unknown:

L =E —log(y,) =

~10g(1(y,18,8,,)+5 10g(ce(@)+ (b~ YR *(h —h)+ log(cet(@* +5))  (L76)
—log(y"*)

so that —log(y,»"'?) is the “correction factor” that the randomization method adds to our

original area equation to improve its accuracy. In NONMEM, y is continually adjusted so

that y, approximates IACCEPT, up to the limit of the boundaries of vy being between
ISCALE_MIN and ISCALE_MAX (available in NONMEM 7.2).

The above derivation of sample weights and likelihood evaluation for importance sampling
resulting in equations (1.73) and (1.76) was developed to demonstrate that they are based on
general principles of obtaining integrals by Monte Carlo methods. These relationships can
be simplified by moving all of the elements from E; to gy, given that the components in E;
are constant for all random samples k, so that the use of exp(q;) as a weight factor will not

be affected. Furthermore, we may generalize for all sampling densities ¢, ~ N(ug;, 7€Y;),

by substituting a general sampling density meanp,; in place of ¢, , and a general sampling

density variance ,Q, in place of y(Q™* +S;* )_1, so that we obtain:

Qs = 10001y, | 44,.6.,)) —%(% ) —m)—%log(det(fz»

1 1 1.77)
+E Q) — Mg ) (&)™ Q) —Hs) + > log(det(y:€%;))
Ugi = €XP(di) (1.78)
Vi :%éu(k)i (1.79)
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L, =—log(y;) (1.80)

The new and improved objective function is then

(1.81)

With this technique, we can also evaluate an improved mean®and improved variance-

covariance matrix. Letting

Uy
Ziyi = rL (1.82)
kzzlu(k)i
so that
> Zyyi =1 (1.83)
k=1
then
4= kZ:lz(k)i‘b(k)i (1.84)
B, = kZ::lZ(k)i((b(k)i _d_])(d)(k)i -q) (1.85)

(note also that these are means and variance about the means, as indicated by the line above

the parameter). The update equations yield the following:

oL m oL oy, m O g,
- i e} —u)=qg. =0 1.86
0, Hop e, fop, o BTMI=0 (189
m 0Ky -1 O

H, =y it 1.87

o =& o0 o0 (187)
The easiest way to maximize is to perform the following updates:
6,=6,+aH g, (1.88)
l"li :p'i (é,u)

And, according to equations (1.66), (1.64) and (1.57),
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N 1m - - , 1 m_— B
Q="2(@-p)¢-R)+_2B =
%%(‘T} _ﬁq)(d_ﬁ _ﬁi)'+%iéz(k)i (¢(k)i _4_1)(¢(k)i _d_ﬁ)' = (1-89)

1o . .
— Zoey (B — [ R

=2 2o, (i — B ) (eyi — 1)
This is equivalent to performing summary statistics on all of the random samples among all

of the individuals. Note that the normalized weights z,,, defined in equation (1.82) are
obtained from sampled evaluations under the joint density 1(y; |,6,)h(¢|p;,<2), and are

therefore empirical evaluations of the conditional density of equation (1.32). As the number
of samples approaches infinity (r — o), equations (1.88) and (1.89) approach the exact

evaluation of updates that are required, as expressed in equations (1.39) and (1.66).

For subsequent iterations, the Monte Carlo evaluated conditional mean and variances of the
previous iteration for that subject may be used as the parameters to the sampling density.

This multivariate density has mean at $pi and, and variance of B, so we sample from

pi ?
&y ~ N ($pi, 7i]§pi) where subscript p refers to previous iteration, so the pertinent weighting

function is:

Qs = 10001y, | 44,.6..)) —%(% ) —m)—%log(det(fz»

1 1 (1.90)
+E (¢(k) - d_)pi ) (7, Esi )71 (¢(k) - $pi) + E Iog(det(yiﬁsi )
Followed by
Ui = eXp(q(k)i) (1.92)
Vi :%éu(k)i (1.92)
L, =—log(y,) (193)

and the additional computations are carried out as before. Whether the parameters to the
proposal density are obtained from a MAP estimation, or from conditional means and

variances determined from a previous iteration, depends on whether METHOD=IMP or
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METHOD=IMPMAP is used, and the settings of MAPITER and MAPINTER (available in
NONMEM 7.2).

For those 0 that are not expressed in the model through p, the ® may appear anywhere in the
likelihood. To optimize the population objective function in these 6 as well, we need to

perform a finite difference on the entire likelihood for each non-mu modeled 6, of 0 ,

o L@, +A0,,)-L(6,) B

a0, . A6 (1.94)
1 010, +A0.,), 1, Q)+ L010,,1,Q
Im{ og(p(y:.$1(6,, + #J)Ze )+ loa(pty 419, . »}<¢|yi,eﬁ,uwn>d¢=
(1.95)
{—Iog(p(yi,dn(e#+A«9#,-),ui,sz»+log(p(yi,<1>|e#,ui,sz»}~
= Ab,, )
(1.96)
E¢,i(a_Iog(p(y(;’:l_e#’ui,g))]: 0,.ji (1.97)
L3N _$g, =g, =0 (1.98)

0, =200, a7~
where 9o, is the vector of allggﬂifor which 6,,€6,,. A Hessian matrix may be

constructed as follows:

Ho, = Z‘ige#ig!e#i (1.99)
é# =0, +aH;ige# (1.100)

We now consider the computational expense for importance sampling required to update mu
modeled theta parameters versus non-mu modeled parameters. For complex PK/PD
problems that use the numerical integration ($DES), the greatest computational expense is in

evaluating the predictive function f;(t,,0,,). The evaluation of the individual objective
function —2log(p(y;,$10.,,1,€2)) =-2log(I(y; |$,6_,)h(d|w;,€2))), in particular the data

likelihood portion 1(y; |¢,0,,) requires evaluation of f;(t,¢,,0,,) for every observed value
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of subject i. In importance sampling, the individual likelihood is evaluated r times in the
evaluation of the conditional means and variances, per subject per iteration, regardless of
how many mu modeled parameters are to be evaluated, according to equation (1.84). Once
the conditional means and variances are determined, the individual objective function is no
longer needed to evaluate the update for these thetas, according to equations (1.86) and
(1.88).

For non-MU modeled parameters, however, equations (1.96), (1.97),(1.98), (1.99), and
(1.100) suggest that n_,r individual objective function calls are required, where n_, is the
number of non-mu modeled parameters, one for each log(p(y;,¢[(6,, +A8,,;),n;,<2))

evaluation.

There is a sub-class of non-mu modeled parameters for which some computation efficiency
can be made, and these are the SIGMA parameters, or Sigma-like, theta parameters. Such
parameters are not used in evaluating the predictive function f(t,¢,0,,), the most
computationally expensive component, but only in evaluating the residual variance

V,(f,06,,), so NONMEM uses f,(t,¢,0,,)in evaluating log(I(y;|$,6,)) as well as
log(I(y; | $,6_, +A&,,;))) during the finite difference step, and will not re-evaluate f:

~2log(I(y;19,8,,)) =
B (1.101)
Iy, £, TV, (F,,0,)ly, f, ()] + log (det (V; (£,.0,)))
~2log(I(y; 1,6, +A0,,)) =
B (1.102)
[y, ~f, @1V (F.0,, + 46, )ly, ~f,(#)] +log det(V; (.6, +46,,))

Note that for these parameters only the V,(f;,0 ,) has to be re-evaluated (as the Y value in

the NONMEM control stream file), which is usually a simple algebraic relation. SIGMA
parameters are automatically recognized by NONMEM as those for which it can make this
short-cut. THETA parameters that are used only in evaluating the residual variance (in the
evaluation of Y in the control stream file) but not, directly or indirectly, in evaluating the

predictive function (in the evaluation of F in the control stream file), may be given an S
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designation in the GRD setting of $EST, and only then will NONMEM utilize the short cut

for evaluating its partial derivative.

Sigma parameters (but not Sigma-like THETA parameters) can be additionally updated
efficiently by evaluating their partial derivative gradient contributions analytically, as given
in Appendix F (available in NONMEM 7.2). However, if the user specifies that Sigma’s
GRD value with an N, then their partial derivatives are evaluated numerically by finite

difference method.

In general therefore, it is best to mu model THETA parameters whenever possible, to take
advantage of the efficiency available for EM methods, and to specify when thetas may be
considered Sigma-like, or to take advantage of modeling residual variances via SIGMA

parameters, as much as possible.

Direct Sampling (available in NONMEM 7.2)

Direct sampling is much less efficient than importance sampling, and can require 10000 to
300000 random samples per subject to properly obtain conditional means and variances.
Direct sampling does not use an “importance” region sampling density, but creates samples

¢y, directly from the normal distribution population parameter density: ¢, ~ N(w;,€2) (see

[5]). The following weight is then associated with the sample, based on the appropriate
substitutions into equation (1.77):
Ui = 1Y 14y, 9.,.) (1.103)

Conditional means and variances are obtained as shown earlier:

Zo = u<—k> (1.104)
kZ::lu(k)i

d_l = éz(k)i(b(k)i (1.105)

éi = éz(k)i (¢(k)i _d_hi)(‘b(k)i _$Ri)’ (1.106)

As with importance sampling, an average of weights is obtained,
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15
Wi =— 2 Uuy (1.107)
I, k=1

From which the integrated objective function is obtained
L, =—log(w,) (1.108)

Iterative Two Stage
Iterative two stage approximates the expectation step by using the conditional modes and
approximate conditional variances that are evaluated during the MAP estimation method
that is also used in FOCE or LAPLACE methods, as described earlier. We can consider an
approximate update for mu modeled thetas that is applied in iterative two stage, by
evaluating:
S =@ ) =0 =g, =0= T

Where subscript A refers to “approximate”. This is an approximation to that extent that the

(1.109)

mode ¢
§ =1 ,)+n
approximates the mean ¢ . Then as before,

For 30 M § Mg =g, =0 (1.110)
89# i-1 O, GOH ia aeﬂ u

We then perform a Gauss-Newton update:

Hy = ggeyiggm (1.111)
0,=06,+aH g,, (1.112)

Then, updating the mus:
=W, (é#)

Similarly, to update Omega, iterative two stage approximates update (1.66):

Q=23 @-n)@-p)+=5B = (1113)
Mmi=1 Mmi=1
~S@-R)@-R)+ 2B, (1.114)
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where

-1

B =(Q"+§") (1.115)

is the approximate conditional variance evaluated during the FOCE or LAPLACE
integration step.

The approximate optimization of the iterative two stage method is related to an approximate
optimization of FOCE’s or Laplace’s Ly. To consider optimizing Ly for mu modeled thetas,
we can conveniently rephrase equation (1.18) as

Ly =—log(I(y;14,6,)) +%Iog(det(Q)) +%@ QN —p) +

1 (1.116)
> log(det(Q ™" +S7(y; |4)))
Since ¢, is at the mode of the posterior density, then
(a—log(l(yi |¢,eﬂ»j e -y =0 w117)
o A
It follows that:
Ay _paly _ i[(@loQ('(Y. I¢,9#))] LLaG-p) QG -p) | % |
e, 100, i1 o i 2 o a0,
: A . (1.118)
3 o2 (¢ — 1) +1i Olog(det(Q~ +S7(y; |4)) b _
i=1 89u 2ia a(h Geu
_powQ (G -w) 1 0olog( (@ +S7(y, 19)) o _ (1.119)

= 00, 2ia o 00,
where the term in parentheses cancels because of equation (1.117). Comparing equation
(1.119) with that of (1.110) shows that iterative two stage only approximates the
optimization of FOCE’s Ly because it does not include the contribution of change in the
information matrix of the joint density with respect to theta (the log(det) term in equation

(1.119)).

Similarly, we consider differentiating FOCE’s objective function with respect to OMEGA:
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|_ m
Oy _$ 0w _¢

0-log(I(y 14:6,))) |, 10(h-p)Q @) | o
8(21 —18(2 =] &

o0 2 ) Q™
_ 12 0log(det(Q™) 1§8(<h m)Q (G — ) 1§6|09(det(9 +S7(y; I,

O 4 (1.120)

2 i-1 ot 2ia ot 2ia o™
128Iog(det(Q‘1+S Yy, |%,,0)) on;
2ia o, o
m| 1 1.., 1/ a4yt] 1molog(det(@Q™*+S™) om

——Q+ Q*'+SHt =0 1.121
zl{ 22+ A5 )} 25 R o’ (L.121)

Here we differentiate the objective function with respect to Q™ for convenience. When the
gradient with respect to Q *equals 0, then the gradient with respect to Q also equals 0. The
details of the linear algebra manipulations leading to the last part of (1.121) are given in
appendix A. Then we can express the exact minimization of Ly with respect to Omega as:

oLy, o[ 1 1, 15 ] 1molog(det(Q™+S™) on,
Yl taq +iB -0 1.122
ot zl[ AL } 25 R, ol (1122)

Note thatBi represents a linearized approximation to the true conditional variance B,. We

may consider an approximate partial gradient to Ly with respect to Omega as:

oLy i oLy

0l S0t 4

m| 1 1 1.
~3|-ZO0+=AN +=B. |=0 1.123
Z[ AL } (1.123)

Solving for the next estimate of Omega from equation (1.123):

Q= —Znn += zB (1.124)
mi=1 mi=t

which is similar to the update of Omega in the iterative two stage algorithm (1.114). Again,
the ITS method updates Ly only approximately, as it does not take into account the log(det)

term in equation (1.122).

To summarize, in iterative two stage, 0 is updated here using the average of the modes of the
individual joint densities, which serves only as an approximation to the more precise update
of the average of the means of the ¢ under the joint density, as dictated by the exact equation
(1.39). If there is a skewness to each individual’s joint density, such that the means tend to
differ systematically from the modes, then the iterative two stage update may yield biased

results.
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For non-mu modeled theta, iterative two stage in NONMEM falls back on a forward

difference evaluation of the full likelihood:
oL, LN(6#+A9#)—LN(9#) g

1.125
0., AO, O ( )
Followed by a single step Gauss-Newton update:
He, = ége#igéﬁi (1.126)
0,=6,+H'g, (1.127)

To summarize, the NONMEM FOCE method optimizes Ly , which is an approximation to
the true objective function L, and iterative two stage further approximates the optimization
of Ly.

All iterative update methods that rely on updating the population parameters 0 using the
average to the individual estimates guarantee “centeredness” of the population parameters
about the individual parameters by definition. However, because the FOCE NONMEM
method uses a search algorithm on an approximate objective function, it does not guarantee
centeredness. One can impose the “CENTERING” option to the estimation process in
NONMEM, which then optimizes a modified objective function of equation (1.18):

Lr'\n ~
—10g(1(y, | (i — 1), 8)) +%Iog(det(cz» +§(ﬁi Q- 7) (1.128)

+% log(det(@* +S(y, | 11,,8)))

where

. 1

A=—37 (1.129)
mi=1

to ensure statistical centering, although not exact centering.

The MCMC method of Expectation in SAEM
In Markov Monte Carlo sampling, used in the SAEM and BAYES methods, samples are

generated from a larger variety of proposal densities than in importance sampling. As
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implemented in NONMEM, for a given set of population parameters mu and omega,
proposed parameters phi for each individual are generated by a three mode process. The

following is based on references [6] and [7].

During mode 1, a vector of model parameters is generated from the following proposal

density or kernel:
log(k, (¢)) = 10g(N (¢ | p;,€2)) = log(h(¢| p;,€2)) = —%(¢—ui)'0‘1(¢—ui)’—%log €[(1.130)

For the acceptance test, we need to evaluate the above density along with the following

backward density, at the present ¢ for subject i:

109k, (8)) =Iog(N (4 |, ) =log(n(d 1,0)) =~ (& ) Q"*( ~ )"~ > log ¥ (1.131)

Also, the joint density is evaluated at the present ¢ :

log(7z(¢)) = log(p(y;, ¢ |6...1;,€2)) = log(I(y;, 4 |8.,)) +log(h(4 | 1;,€2)) (1.132)
And at the proposed ¢
log(7z(¢)) =log(p(y;>$19...1;,€2)) = log(l(y;, 16.,)) +log(h(p| ;. ©2)) (1.133)

Then the test statistic is created:

t, = log(7(¢)) —log(7(¢)) +log(ky(¢)) —log(k,(¢)) =

1.134
109(1(y,,4 18, )~ log(1(,»$16.,) (139
A unform random deviate u is then generated, log transformed, and if
log(u) <t, (1.1395)

then the proposed sample set ¢ of parameters is accepted and becomes the new ¢ for

subject i.

Following mode 1 sampling, proposal kernel mode 1A sampling and testing is performed, in
which a sample from one of the other subjects is randomly selected. It is assumed that the
set of parameters among subjects is normally distributed with mean and variance of the
present pand Q. Thus, the statistic t; of equation (1.134) is used as the acceptance test.
This method has limited use to assist certain subjects to find good parameter values by

borrowing from their neighbors, in case the neighbors had obtained good values. This
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mode should generally not be used, and can be inaccurate if not all subjects share the same

pand Q, such as in covariate modeling. Alternatively, use mode 1A sampling at the

beginning of an SAEM analysis for a few burn in iterations, then continue with a complete
SAEM analysis with mode 1A sampling turned off, with more burn in and accumulated

sampling iterations.

Following mode 1A sampling, proposal kernel mode 2 sampling and testing is performed,

using the proposal density:
log(k.(61 4)) = 1og(N (41, 2)) =~ (- 4)(2) *(b-4)'—Iog|Z (1.136)

where ¢ is the present set of parameters for individual i (it could have been the one accepted

from the just completed mode 1 sampling), and where
Z=kQ

which includes a scaling factor k. This scaling factor is adjusted for each subject such that

samples are accepted at a fractional rate p,, =IACCEPT. This scaling factor « is similar to

the scaling factor y in importance sampling, and is also subject to the boundary values of

ISCALE_MIN and ISCALE_MAX (available in NONMEM 7.2). The backward density is

log(k, (¢, | $)) =10g(N (¢ | $, Z)) = —%(th -0)'(2) (¢ —¢)'—% log|Z| =k, (¢|4) (1.137)
so the test statistic is calculated as:

t, = log(7z(9)) —log(7(¢)) +log(k, (¢ | 9)) —log(k,(¢ | §)) = log(7(¢)) - log(z(¢r)) (1.138)

A uniform random deviate u is then generated, log transformed, and if
log(u) <t, (1.139)

then the proposed sample set ¢ of parameters is accepted and becomes the new ¢ for

subject i.

For proposal kernel mode 3, each parameter of the vector ¢ is sequentially sampled using the

univariate density:

A 1) = 109N (A 1, 2090 == (A ~ ) @2")( ~ 4 + S logl (1.140)
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where subscript | refers to the Ith parameter, and z,"is the Ith diagonal element of Z™*. The

backward density is

Ko(dh | ) =Ks(di | ) (1.141)
S0 the test statistic is:

t; =log(z(¢)) —log(7z(¢)) (1.142)
Where ¢ equals ¢ but with the Ith element replaced with ¢, :

‘h :{ﬂ v(h,+}

Once a parameter is tested, the result contributes to the new ¢, for the next parameter in the

vector to be sampled.

The mode 1B kernel obtains samples using the individual conditional mean and individual
conditional variance collected from previous iterations as proposal density (a type of

importance sampling kernel for SAEM).

During the MCMC sampling process, the IACCEPT sets p,,, ISAMPLE_M1 determines

the number of mode 1 samplings, followed by ISAMPLE_M1B samplings, followed by
ISAMPLE_M1A samplings, followed by ISAMPLE_M2 mode 2 samplings, followed by
ISAMPLE_M3 mode 3 samplings. The final parameter set ¢ after the cycle of

ISAMPLE_M1+ISAMPLE_M2+pISAMPLE_M3 samplings (where p=number of elements

in vectord, ) serves as the results of one chain for subject i. During each iteration,
r=ISAMPLE separate chains of vectors¢ may be collected. Then, as described with

importance sampling, the following may be calculated:

‘1_1 = kzr::ld)(k)i (1.143)
I§i = kzr::l(d)(k)i _d_l)(d)(k)i _d_l)' (1.144)

Note that the acceptance/rejection process assured that the collection of ¢, reflect the

distribution of the desired conditional density, and weights z are not needed.
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During the stochastic mode, the updates to the population parameters (both mu and non-mu
modeled) are then performed as described in importance sampling. During the
accumulation mode, update results from previous k-1 iterations are averaged into the

updates of the present kth iteration.

For mu modeled theta, and Omegas, the conditional means and variances are accumulatively

updated and saved as follows:

k-1- 1-
‘hsk = T‘hsk,1 +E‘hk

= k-1
S, = ( K )( Bis, . ‘hskl) (Buk+‘hk)
_S _‘hs
followed by update of the main population parameters in the usual manner:
oL O, ot
Bl i 1.145
%, ;189 (B, —1) =0y, = (1.145)
0Ky -1 O
H =Y 2iQt h 1.146
o =& o0 o0 (1.146)
6,=6,+H'g, (1.147)
l"\l’l = u’l (élu)
A 1m — o~ Ay, 1Imo
Q :_Z((hsk _ui)(‘hsk —1) +_ZBiSk (1.148)
m i=1 mi=1

For non-mu modeled theta, the thetas é#k of the present kth iteration are updated using
equations (1.47)-(1.52) using the present iteration’s sampling process, followed by:
0,5 =((k-10,5 +6,,)/k (1.149)

First derivative gradients of non-mu modeled theta are also accumulated (for use in first

order approximations of standard errors, see Appendix C):

k— 1

= =q. 1.150
ngk k k glk ( )
In general, the order of accuracy for the various methods is

Monte Carlo EM (IMP, SAEM, DIRECT) >Laplace>FOCEI>ITS.

1
Ois,, T
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Three Stage EM Analysis

There are times when one desires to use information from a previous analysis and
incorporate it into the present analysis. This would be in the form of prior information for
thetas and/or omegas. The principle on which this is based is as follows. Let 6,be the
priors to the thetas (theta priors, which could be estimates of theta from a previous analysis).
Let the matrix ©,* be the information matrix (which could be the theta portion of the
inverse of the standard error variance matrix of a previous analysis) of the theta priors.
Then Q, may be called variance to theta priors, or theta variance priors. Let €, be the
prior to the omegas of the population inter-subject variance-covariance matrix, of dimension
p (Omega priors, could be Omega estimates of a previous analysis), let p be the degrees of

freedom of Q,, (degrees of freedom priors, could be the number of subjects in the previous

analysis). The contribution to the objective function that incorporates this prior information

is

L, =—log(N(6]6,,9,))—log (W (pQ|Q,, o+ p+1)) (1.151)
And is then added to equation (1.11):

L=—310g("7 p(y;,¢| 1. Q) +L, (1152)
where

~10g(N (0]0,,0,) =5 (6-0,)0;*(0-0,) + _ log(cet(@,) (1.153)

~logW (@] p . d,,) =

1.154
%(ptr(QQQ‘l)+(dW -n-1In(|Q))-d, [In(|QQ|)+n|n(p)]) (1154

(not including constants) where n is the dimension of Q. The degrees of freedom d,, will be
described later. It follows that the partial derivatives to L contributed by this prior

information are:

oL .

a_ep =-0,'(0-0,) (1.155)
b, C 1 o 4

oo = pc(Jy, i2)! 2 (24 Q2—€5)Q I, (1.156)

hi2
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where

c(jy, jp)=1for j, * I _ (1.157)
=1/2for j, =],

and

2, = (dy —N=1)/ p (1.158)

Which suggest the following updates. To determine the u modeled theta that minimize the

objective function, we must solve adding the contribution from the prior:

oL 8;1 ol
—_— — 0-0 1.159
0, hap @ B-m)-070-0) =g, (1159)
and
OW; ~-1 OH, _
H — Q" 1.160
O %ae o0 ) (1.160)

And performing the following update As before:

6,=6,+aH g, (1.161)
For non-mu modeled thetas,

_ o-1 L0101, Q
oL E, og(p(y: 1., 1. <2)) g, . (1.162)
0., 0., ”

o35 00-0,)= $g,, ~0,(0-8,) =g, =0 (1163)
o0, 100, Yo, o) =%, = '
H,, = igeﬁigg#i +O (1.164)
0,=0,+ H. g, (1.165)
The inter-subject variances are updated as
A 1
Q=——— B. 1.166

| PAURCRNED LR (1.166)

These were derived from setting partial derivatives of the objective function to 0 and using
the appropriate “inverse” densities and particular degrees of freedom in the objective

function.
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For maximization methods (all methods except BAYES), the degrees of freedom to the
inverse Wishart is selected as

d, =p+n+1 (1.167)

so that the maximization of these densities leads to a centering about the prior inter-subject
variances, weighted according to the number of subjects from that previous analysis, and

with a denominator term of m+ p, yielding an intuitive update. That is, the density whose
mode is at Q7' is W (Q| pQ,, o+n+1). We shall call this the “modal” or maximization
version of adding the prior information. The density whose mean is at Q' is

W Q| pQ,,p)). A BAYES analysis is concerned with obtaining average population

parameters rather than best fit or modal population parameters, so it utilizes the degrees of
freedom

dy, =p (1.168)

which we shall call the “mean” version of adding the prior information.

The above equations are also suggested by the sample distribution equations listed on page
341 of [8].

The priors to X are also inverse Wishart distributed with prior parameters (X,, p5) SO

similar relationships hold, as for Qpriors. However, X parameters are embedded in the
data likelihood portion of the total likelihood in a non-linear manner, so updates need to be
performed by extending the first and second derivatives of the total likelihood with respect
to X, and then using them in the Gauss-Newton update process. With this in mind, we need
to find the partial derivative of the prior portion of the objective function with respect to
each of the cholesky elements to X, since this is how we vary the parameters in X. Let A
be the cholesky matrix to X :

Y= AA’ (1.169)

So,

L zl(p tr(Z, ) +(d, —n, ~1)In(|Z]) = d, [ In (=, )+ In( )]) (1.170)
P 2 p) xz p) > > xz P p :
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%( pr tI(ELATA™) +(dy —ny 1) In(|AA’

)—d,[In(|Z.])+n, |n(pz)]) (1.171)

It is the cholesky elements in A that are varied to optimize the likelihood, so,

aLZz _ =1 4 -1 r—1 d 1 r—1 1.172
A =—p, AT ATEAT +(dy -, —DA (1.172)
aLZ ! - - r— ! - - — ! aLz r—
ﬁ: Pl AT, ZEATT 4 2T, ATEA 11k1_1j16_1\21k2j2A T,
Iaka 7 ks
(1.173)
Where

I, =1for vector element |
= 0 otherwise

I, =1for matrix element j,k
=0 otherwise

Population Mixture Modeling

Sometimes the data may be derived from two or more sub-populations, as evidenced by a
distribution of a parameter among the subjects that appears to be bi-modal, or skewed. For
example, suppose the data is first fit with a simple one compartment model, with volume Vc
and rate constant of elimination k10. A histogram analysis of the individual k10's suggests a
bimodal or skewed distribution. However, none of the known binary covariates (gender, for
example) explains this bimodality. Under these circumstances, one can specify the
probability of an individual belonging to a sub-group, without insisting on the certainty of

belonging to that particular sub-group.

Consider that we have N, sub-populations. Then for each subject i, and for each sub-

population j we have the probability
Nm
p(y; 16,Q)=["" 2.9, p;(v:.$16,Q)dd (1.174)

where
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p;(Yi,$16,Q) (1.175)
is the density for sub-population model j, for subject i, and a; is the probability of belonging

to sub-population j. Then define

so the negative log-likelihood of an individual is:

] =—Iog<r;f’sz"‘la,- D, (y,,$16,Q)d¢) = (1177)
—Iog(sz””la,- 1 b, (y,,0]8,Q)dd) = (1178)
~log( a, exp(-L,)) (1.179)

Consider that equations for updating the non-proportion (that is, non-a) population

parameters g ={0,Q} are derived from obtaining the partial derivatives of the objective

function L:
ji

oL N,, aj exp(_L“)
— =2 (1.180)
A Y aep-Ly)

k=1
or

ar oL,
. Nm L a0 Nm 6L

9k _ > o9 _ Ya,— (1.181)
aq j=1 Z akrki j=1 aq

k=1
where
= exp(—Lji) (1.182)
and

a;r;
aj = (1.183)
Z ak rki
k=1

is the probability or weight for individual i, sub-population model j. As an example,
oL L
o =L Oz @lym Ddé =g, (L.184)
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where
Z; (CIN/AT ) (1.185)

is the conditional density for subject i modeled under sub-model j, then the appropriate

conditional mean for subject i would be

—_ Np _

&= ,—zzla“d)“ (1.186)

where

& =[7.02;(0y;, 1, Q)dd (1.187)

which are then used in the usual way to update the thetas.

Similarly:

g Nm f— —_—— —_——

B; = Zlaji(Bji +¢ji¢j,i ) — G (1.188)
J=

where

Bji :Ijow(¢_$ji)(¢_d_)ji)lzj(¢|yiaan)d¢ (1.189)

is the conditional variance for individual i, sub-model j, whereupon the update is the usual:

=23 G-w@ -+ £, (1.190)
The weighted average of the other expectation results are also performed, using the same
weightings. The Lj;, and therefore a;;, is readily obtained during the expectation step as the
objective function to subject i, under sub-population model j. In practice therefore, the
expectation step is done Ny, times for each individual, collecting the resulting conditional

means, variances, and objective function values to each sub-model, and then performing the

weighted average, as shown above.

A method in keeping with minimizing the total objective function would be to construct

partial derivatives and partial second derivatives, where for each subject i:

oL _ exp(—L;)—exp(-Ly ;) _ TN

Nm Nm
aaj El 8 exp(-— Ly ) El Ay

(1.191)
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o’L, _ exp(—L;) —exp(-Ly, ;) exp(-L;,) —exp(-Ly ;) _ay ol

N N S = 3 (1.192)
482 33, exp(-Ly) 3 2 exp(-Ly) A1 OBy
since
Ny, -1
ay =1- 2 g; (1.193)

Then, perform the usual Gauss-Newton update, where 0, are all thetas that model the sub-

population proportions in the $MIX module:
0L, oa

= 1.194

%. =% a o0, (1.194)
mol, 6L o

H =" —_3q.qd 1.195

0a |Z:::L aea aea gi gl&)a gl(-)a ( )
-1

9anew = 6aold _(Hea ) (gea ) (1196)

MCMC Bayesian Analysis for Evaluating a Distribution of Population Parameters
The Markov chain Monte Carlo (MCMC) Bayesian analysis can be used to obtain many

thousands of population parameter and variance parameters that represent the distribution
according to their ability to fit the data. This information is similar to what is obtained by
boot strap methods, and MCMC Bayesian analysis can be used in their place. The Bayesian
analysis may be performed with or without including prior information, but it is

recommended that there at least be prior information for OMEGA.

There are two main types of Bayesian analysis available in NONMEM. The most efficient
is the Gibbs sampling method, and is used to create samples of thetas that are linearly
modeled with respect to their mu’s, and the inter-subject variances. This is performed in the

manner of page 341 of [8]. Updating linearly modeled thetas (designated as 6, ) is done as

follows. Use the EM update method to obtain estimates éﬂL ;

m oW o1 OW =]
=> Q4 1.197
On EaeﬂL 20, "o (197

H

Followed by
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6, =6, +aH'g, (1.198)
Next, sample from the following conditional density:
0, [1~N (ém H! ) (1.199)
For the Omegas:
A 1 m _ — , D=
=113 G-w@-w 58+ 0y (1.200)
m+ pLi=1 i=1
Followed by sampling from an inverse Wishart density:
A \—1
[Q'|]~W™ ((Q) M+ p) (1.201)
A matrix with an inverse Wishart distribution of m+ pdegrees of freedom could be
constructed as follows. Create k vectors of normally distributed random samples:

x, ~N(0,) (1.202)

Then construct

m+p

Smip = 2 XX (1.203)
=1y
Q=L.S"L}, (1.204)

Where L is the cholesky of Q. More efficient methods of creating an inverse Wishart

matrix sample are available. Because these sample densities are also the conditional
densities for the respective parameters, the samples are always accepted, and no

acceptance/rejection analysis needs to be performed.

Sigma parameters (but not Sigma-like THETA parameters) that are isolated residual

variance coefficients are updated as follows:

A2 O (yij - fij)2
T RN Gy, ey

Followed by sampling from an inverse chi-square:

o?=77(N,6?)

(1.205)

Where N is the total number of data points involved in evaluation of that particular sigma.
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Metropolis-Hastings sampling must be performed on all other types of theta parameters, as
follows. For the first mode, for thetas not linearly mu modeled and cholesky decomposed
sigma elements, designated collectively as 6, proposed sample parameters for the k+1th

iteration are created using
1 L -1 1
log(N(6]6,,2)) =—E(9—90) (2) (9—90)—Elog|z| (1.206)

8,and Z vary according to how many samples have so far been created. During the first
several hundred iterations of burn-in, 0, are the initial thetas at the start of the analysis, and

Zis a diagonal matrix with diagonal elements that are equal to (0.5*8,)°. During the

subsequent iterations of burn-in, ,and Z are the sample means and variances of 0 collected
during the previous several hundred iterations. During the stationary phase, 8,and Zare

the sample means and variances of all 6 collected so far since the beginning of the

stationary phase.

To reflect the probability of choosing these values, the following log density values are

therefore calculated, based on the respective proposal densities, for mode 1
log(k,(816,)) =log(N(8]6,,Z,)) (1.207)
The log likelihood of the kth set of population parameters with respect to the data, and with

respect to positions of the kth set of individual parameters ¢, is evaluated also:

10g(7(8,)) = X 10g(P(Y 8115, 2,)) (1.208)

The log likelihood of the proposed sample set of population parameters with respect to the

data, and with respect to positions of the present kth set of individual thetas is evaluated

also:

log((8)) = 2-10g(P(Yi, 4 |6, i, £2)) (1.209)
The following test statistic is created:

t, =—log(k,(6186,)) +log(k, (8, | 8,)) —log(7(8,)) +log(7(6)) (1.210)
A unform random deviate u is then generated, log transformed, and if

log(u) <t, (1.211)
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then the proposed sample set of population parameters is accepted. If rejected, then the kth
sample set is used as the k+1th sample set. This is done PSAMPLE_M1 (an option in
NONMEM) times.

Next, during the second kernel density mode, the population parameters of the present

position k may be used to create a sample for the next iteration:
log(N(8]6,,2)) = —%(e—ek)'(wz)‘l ©-9,) —% log|wZ (1.212)

Where 0, is the accepted theta of the kth iteration, w is a scaling parameter, which is

adjusted throughout the analysis so that a fraction PACCEPT (option) of random sample
sets are accepted. The PACCEPT (option) parameter is set by the user.

To reflect the probability of choosing these values, the following log density values are

therefore calculated, based on the respective proposal densities:

log(k,(016,)) =log(N(0]6,,wZ)) (1.213)
as well as their backward density of mode 2:

log(k, (6, |0)) =log(N(6, |6, wZ)) =log(k,(0]6,)) (1.214)
The test statistic is created:

t, =—log(k,(016,))+log(k, (6, |8,)) —log(z(6,)) + log(7(0)) (1.215)
A uniform random deviate u is then generated, log transformed, and if

log(u) <t, (1.216)

Then the sample is accepted. This is done PSAMPLE_M2 times.

As a third kernel sampling mode, samples on each parameter separately and sequentially

may be made using the univariate distribution
_ 1 . 1 _
log(N (9| | Hkl ' Zul)) = _E (‘9| - ekl) Z||1(6)| - ‘9k| )+ E log ‘Zul‘ (1.217)

where z,'is the llth diagonal element to Z*, for parameter . The other parameters are not

moved when in this mode.
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To reflect the probability of choosing these values, the following log density values are

therefore calculated, based on the respective proposal densities:

log(ks, (6, |0,,)) =1og(N(6, | 6,,,WwZ)) (1.218)
and backward density of mode 3:

log(k, (6, 16,)) =log(N(6,, |6,,WZ)) (1.219)
The test statistic is created for each parameter I

t, =—log(ky (81 6,)) +1og(k, (6, 18,)) ~log(x(8,)) +10g((6,)) (1.220)
A uniform random deviate u is then generated, log transformed, and if

log(u) <t, (1.221)

then the proposed sample set of population parameters is accepted as the k+1th sample set.

If rejected, then the kth sample set is used as the k+1th sample set.

The third mode is done for each parameter PSAMPLE_M3 times , for n*PSAMPLE_M3

times in a given iteration, where n is the number of population parameters in the vector 6.

If the user has selected to perform Metropolis-Hastings samplings for Omega elements, then
for each time that samples of population mean parameters and covariates are created,

samples of population variances are also created using the inverse Wishart distribution.

For mode 1, using the starting position values (k=0) (OSAMPLE_M1 times):
logW (Q 1 (p+ M), (p+m)) =

1.222
_%<(p+ m)tr(QQ ™) +(p+m-n-1)In(|Q)-(p+ m)[ln () +nIn(p+ m)]) (1222)

To reflect the probability of choosing these values, the following log density values are

therefore calculated, based on the respective proposal densities:

log(k, (| €2,)) = logW ™(Q| (0 +m)Qy, (o +m)) (1.223)
The log likelihood of the k set of population parameters with respect to the data, and with

respect to positions of the k set of individual parameters ¢, is evaluated also:

10g((€2)) = 2 10g(P(Y d |0y, b, ) (1.224)
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The log likelihood of the proposed sample set of population variances with respect to the

data, and with respect to positions of the present kth set of individual thetas is evaluated

also:

log((€2)) = 2 109(P(Yi, i |8, ;. £2)) (1.225)
During mode 1, the following test statistic is created:

t, =—log(k, (] €)) +log(k, (2 |)) — log(7(€,)) + log(7(€)) (1.226)
A uniform random deviate u is then generated, log transformed, and if

log(u) <t, (1.227)

then the proposed sample set of variances is accepted as the k+1th sample set. If rejected,

then the kth sample set is used as the k+1th sample set.

For mode 2, the present position k is used (OSAMPLE_M2 times):

logW (| w(p +m)Q, W(p+m)) =

—%(w(m mtr(Q Q™) + (W(p +m) —n-1)In(|Q]) - (w(p+m) [ In(j]) - nin (w(p+ m))])
(1.228)

where w is the scaling parameter (separate from that used for the normal distribution
proposal density for the theta parameters) to allow OACCEPT acceptance rate.

To reflect the probability of choosing these values, the following log density values are

therefore calculated, based on the respective proposal densities:

log(k, (€] ©,)) = logW (| w(,0 + M), , W(,0 +m) (1.229)
as well as their backward density of mode 2:

log(k, (€, €2)) = log(W (€, | W(o+m)Q, w(p+m)) (1.230)
The test statistic is created:

t, =—log(k, (€] ) +log(k, (€, | 2,)) —log(()) +log(7(€)) (1.231)
A uniform random deviate u is then generated, log transformed, and if

log(u) <t, (1.232)
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then the proposed sample set of variances is accepted, and serves as the k+1th sample set. If
rejected, then the kth sample set is used as the k+1th sample set. This is done

OSAMPLE_M2 times.

A single iteration consists of: Gibbs sampling of THETAS, SIGMAS and OMEGAS,
followed by Metropolis-Hastings sampling of other THETAS, PSAMPLE_M1 times for
mode 1, then PSAMPLE_M2 times for mode 2, followed by OMEGAS sampled
OSAMPLE_M1 times for mode 1, then OSAMPLE_M2 times for mode 2. The final
sample set of THETAS, OMEGAS and SIGMAS after going through this process is then

stored in the raw output file as the results to that particular iteration.
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Conditional Weighted Residuals

We consider the following linear-epsilon residual error model:
M
Y, = fiw+ X ai, (W, 1)

for data points i=1 to N of a particular subject, which takes into account intra-subject error
components within a subject (such as homoscedastic eps(1) mixed with heteroscedastic
eps(2)) plus possible intra-individual error interaction with other data points, as well as the

possibility that g, , depends on n. We define the Mx1 normally distributed random vector:

g={g,, m=1toM} (2.2)
with the properties:

E(g)=0 (2.3)
E(ee') =1

E(en) =E(&)E@m) =0 (2.4)
and the NxN matrix

Q' ={0g,,i=1toN,m=1to M} (2.5)

with 1xM row vectors
a; ={a,,m=1to M} (2.6)
Then, for a given n, the expected value over all epsilon is

M M
E, (vi) = ECfi () + E(2, (W) = Fim+ 2. i (WE (&) = fi(w) 27)
and

Var(yiyj) =E,((y,— f; (n)(yj - fj (m) =

E, ((:Z:lq{m (e, )(é% (e, )) =E, ((:Zzléq{m (e, d} ()& )) = (2.8)
5 3 o, (00 (DEGE60 = 3 il = 3 dia,

or

var(y) =Q'Q=V 00

To integrate over all n and € and have an analytical solution, first define
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ac]mi
on,

Wimiy =

as the series of Mxn matrices

W, ={vvi(mk),m=1to M,k =1to n}

and the Nxn matrix

G:{gik :afi(n),iZJ.tO N,k=1t0n}
0

R

with 1xn row vectors

g; :{gik = ) k=1to n}
o,

We now linearize by Taylor series expansion about i’ as follows:

yi = () +gn—-gn+(q —q'W)e+n'We

RJ Bauer

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

If we now integrate over all n and €, we have the marginal density of y with mean

E,.(y)=fi(—-gn

and variance

Var(y,y;)=E((y; - fi(m+gn(y; - f;(m)+gin) =
E,.(@gm+(q; —n'W)e+n'We)(gin+(q, —n'W))e+n'Wije)) =
giE,(m)g; + (g —A'W)E, (eg)(q; —W;n) + E,(n"'WE, (e ) W;n)
But

E(MmWE(ee)Wm) = E(m'WWn) =

n M n n M n
E(Z 2 177kvvi’(kI)Wj(Im)77m) = E(Z zglﬂkwi(lk)wj(lm)nm) =

m=11=1k= ML=l k=

n M n M n n
> Wi(lk)E(UkUm)Wj(lm) =220 2 Wiy D Wi imy =
m=1I=1k=1 I=1k=1m=1
tI’(VViQW;) = tI‘(QVVi'VVJ—)

And similarly,

N WW 1 = trf(Wan'W)) = tr(if WW,)

So (CWRESI)

Var(y,y;) =0iQg; +qiq; — (q/W; +q; Wi+ tr (fif + Q)W,W, |
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(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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If=0 (WRESI) then

Var(y;y;) =g/Qg; +qiq; +tr[ QW/W, | (2.21)
If Wi=0, that is, interactive component is not taken into account, then (CWRES, [9])
Var(y,y;) = 9iQg; +qiq; (2.22)
In NONMEM 7.2, if $EST INTERACTION was specified prior to requesting $TABLE
CWRES, then g and q are evaluated at =1 in equation (2.22). If INTERACTION was not
specified prior to requesting $TABLE CWRES, then g and g are evaluated at n=0in
equation (2.22). In NONMEM 7.1.0 and 7.1.2, regardless of INTERACTION setting in a

previous $EST statement, g and q are evaluated at n = 1in equation (2.22).

In NONMEM, the residual error is modeled as follows:

y,=f,+hle +he,.. (2.23)
for data point i of a particular subject, where e refers to the kth residual error component,
that is in turn modeled to be normally distributed with variance

E(eklekz) =2y,

And

hi’k — ayi

e,
Consider a problem where PK data are modeled with mixed homoscedastic error and
heteroscedastic error, as is PD data, and there is a correlation between certain PK and PD
data that are sampleed at the same time. Such a correlation is indicated by the L2 variable
listed in the data set. For such a problem, we could have:

y, =f,+(2-C)fe +(2-C)e,+(C -1 fe, +(C, —De, (2.24)
Where C=1 if the datum is PK, and C=2 if datum is PD. The Sigma matrix would be
modeled as:

o, 0 o, O

0 o2 0 o (2.25)

oy, 0 o, O
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With correlation between certain paired PK,PD data, between their homoscedastic errors

and heteroscedastic errors.

A grand matrix H’ is produced among all data points for a subject. Suppose a particular
subject has four data points:

1: PK datum at time 1 hour
2: PD datum at time 1 hour
3: PK datum at time 2 hours
4: PD datum at time 3 horus

Data points 1 and 2 are coupled, and the others are not. An expanded 4x12 matrix H’ is
produced as follows:

.10 00

2

(2.26)

O O O —
o Bk O o
o O o O

0 f, 10
00 0 f
00 00

O O o O
O O o o
O O O o
- O O O
P o o o

4
along with an expanded 12x12 matrix X, of block diagonal form, consisting of the 4x4

matrix X duplicated three times along the diagonal. The placement of h’j in H’> determines

if two data points are correlated within a shared block diagonal portion of X_, as is the case

with data points 1 and 2 , or have separate block diagonals, and therefore uncorrelated, as
with data points 3 and 4. In this example, M=12, N=4.

Defining matrix A’ as the lower triangular cholesky matrix to X, (earlier we defined A as

the lower triangular cholesky: we are redefining the nomenclature for this section for

convenience):

T =AA (2.27)
It follows that we can construct

Q' =H'A’ (2.28)
Q=AH (2.29)

Or, considering column vector h, of the ith column of H, then

g, = AH, (2.30)
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And the full intra-subject variance would be
QQ=V=HAAH=HXL H

Furthermore, defining

% - o)
on
then
w2 0AR) _ o)
on on
So,

Var(y;y;) =0;Qg; +hiZ.h, - (h X X, +h'Z X

i“e™j

R+t (AR + Q)X(E X,

RJ Bauer

(2.31)

(2.32)

(2.33)

(2.34)

An empirical method for evaluating the population weighted residual is to perform a Monte

Carlo integration over all possible 7.

predicted values is
f, =E,(f(m)= [ f(m)p(n|0,2)dn

where

1 1
0,Q) = exp| =n'Q

The expected residual for an observed value is
r, =E,(y=f(m) = [ (y—f(m) p(n|0, Q)i =y -,

without using linearization methods on n. Now, since

E.(y)=f(n)
E.(y-f(m(y-f(m) =QQ’

For a given subject, the expected population

(2.35)

(2.36)

(2.37)

(2.38)
(2.39)

Then the expected population variance is (without using linearization methods on eta):

C, =E..((y-fm(y-f(m))=

E,(E.(y-f()(y-f())) +E,F(n) - £)(F(m) - £;)) =V, + V¢

where
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V; =E,(Q(mQw)) = T Q' (m)Q(m) p(n|0,L2)dn (2.40)

V, = E, (F) —£,)(E) —1,)) = E, E (I () —£,f; (241)
To evaluate the expected weighted residual (EWRES),
w, =C."r

where Cgl’ Zis the inverse square root of the expected population variance matrix.

An expected conditional (without interaction) weighted residual (ECWRES) can also be
evaluated if we evaluate the intra-subject residual error at the conditional mean, such that

V; =Q'(MQ(m) (242)
if $EST INTERACTION is specifed followed by $TABLE ECWRES. But all other
components are Monte Carlo integrated:

C,=V,+V; (2.43)

As of NONMEM 7.2, if INTERACTION in $EST was not specified, followed by $TABLE
ECWRES, then

Vo =Q(m=0)Q(m=0) (2.44)
and all other components are Monte Carlo integrated:
C,=V,+V; (2.45)

In NONMEM 7.1.0 and 7.1.2, regardless of INTERACTION setting from the previous
$EST command, V,; is used to evaluate ECWRES.

NPDE:

The NPDE is the normalized prediction distribution error (reference [10]: takes into account
within-subject correlations), also a Monte Carlo assessed diagnostic item. For the kth
simulated vector of data y:

So =Ys — T (2.46)

its decorrelated residual vector is calculated:
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W, =C. "%, (2.47)

and compared against the decorrelated residual vector of observed values w, such that

1 K
u= K E O(W, =W ) (2.48)
k=1

For K random samples, where
o(x)=1for x>=0
=0for x<0

For each element in the vector. Then, an inverse normal distribution transformation is

performed:
W, = @7 (U) (2.49)
NPD:

The NPD is the correlated normalized prediction distribution error (reference [11]: does not
take into account within-subject correlations), also a Monte Carlo assessed diagnostic item.

For each vector of data y:
M = V(n, ) (y —f(n, )) (2.50)

These are then averaged over all the random samples;
1 K

u,=—> a(r,) (2.51)
Kid

Then, an inverse normal distribution transformation is performed:
Wnpdec = CD_l (uc) (252)

Models Non-Linearly Modeled in Epsilon

In NONMEM, one may also model the residuals using the epsilons in a nonlinear manner,

such as:

y = f*exp(eps(1))
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When population analysis is performed, however, NONMEM transposes this model into its
linear-epsilon residual approximate form:

y = f+f*eps(1)

and evaluates the likelihood according to this epsilon-linearization. All analysis methods
(classical as well as Monte Carlo) utilize this linearization of the likelihood in epsilon.
Furthermore, the assessment of NPDE, NPD, EWRES, and ECWRES as described above
utilize this linearized form with respect to the epsilon model, in keeping with the way the

data was analyzed.

To most properly analyze the data in a manner that is equivalent to its epsilon exponential
model form, and to also properly asses the various Monte Carlo population weighted
residuals, it is best to log-transform the data, and model the residual variance to the log-
transformed data follows:

y = log(f)+eps(1)

The residual variance is now linear epsilon modeled, and NONMEM will analyse the data
exactly according to the true distribution of the data.
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Epsilon Shrinkage Evaluation
The general shrinkage evaluation of the pth epsilon is evaluated as

R(p)=100%|1- [-+—ro (3.1)
summed over subjects i to m, where
M; oy R
Si(p)= kz=:15ikp (Vi =i D) Vi (i =i (7)) (3:2)
M;
N;(p) = kZ:;Lé‘ikpnk (3.3)
Where in turn
n, = { > 1} (3.4)
jek

is the number of data points of subject i that belong to correlated data cluster k,

Yi =1y, J €k} (3.5
the vector of a subset of data points of subject i, which belong to correlated data cluster k of
subject i. Also,

H, ={hj,,jek, p=1ton} (3.6)

Where n=number of epsilons.
S = S(2 hip) (3.7)
je

x)=0for x=0
" )=1otherwise (38)
That is, the delta function is O if for the pth epsilon no data point in k contributes to its
evaluation. This assures that the epsilon shrinkage evaluation includes only residual terms
that relate to that epsilon. For example, it assures that epsilons involved only in PK data
incorporate only PK data residuals, etc. And,
Vi = Hi ZH; (3.9)

is the residual variance matrix to subject i, data cluster k.
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If all data points in a subject are independent, then each data point cluster k contains only its
own data point k, so n,=1 for all k=1 to M;, the number of data points to subject i, and the

above vectors and matrices are scalar quantities
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Appendix A: Matrix Algebra Tools

We wish to determine the derivative of —log(h(¢|p,€2)with respect to p and Q™.

Differentiating with respect to p is easily done as follows:

~log(h(¢lp. @) __12109(Q7) 1 00-w'Q @-p)

(4.1)
Ou 2 on 2 ou
For a particular parameter,
~log(h(e],9)) _ 1 o¢-w'Q ($-p) _ Liaigow-te-waet, @2

a'uj 2 aﬂj

where i is a vector of 0’s except for the jth element, which is 1. But the scalar terms are

equal:
(@-we'i) =o' @¢-m (4.3)
SO
_|09(2(¢|H’ Q)) :_I’JQ_l(d)_u) (44)
Hi
and for the entire vector p,
~log(M@ 11 D) _ )14 45)

op

To differentiate —log(h(8 | p, ) with respect to Q™ is more difficult:

~log(h(¢|w,2)) __12109(Q7) 1 a(p-py (9
ot 2 ot 2 ot

To do so, we must develop some partial derivative relationships in linear algebra. Consider

(4.6)

any non-singular square matrix Z which is related to its inverse by
zZ ' =1 4.7
Therefore, The partial derivative with respect to some variable x yields

-1 -1
@:%244_2%:@:
OX OX OX OX

It follows that

(4.8)
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0z _ .z

PVl ™ z? (4.9)
Suppose
X=12, (4.10)
then
-1
I SXCS WZ ' ={-z,z, forallm=1ton, p=1ton} (4.11)
OZy OZj,

where |, is a matrix that is 0 every where except for element j,k which has a value of 1. Or

0o 4 4
?f: ZpiZ (4.12)
Similarly,

oz'™* _oZ"” - _ oZ'
0z azkj oz,

9Z' 514 _Z;—llka'—lz{ Az1 forallm=1ton,p= 1t0n} (4.13)

im pk’

Suppose it is more convenient to differentiate a particular function with respect to the

inverse of Z, then

o (2) o oo (2) 8Zmp no o (Z) . o _aof(2) .
82 mZ 1 p2:1 82;“1) 07. " mzzﬁ pZ::1 m 82,;; ke mz:1 pzzl m 82;1; P ( )

or in matrix notation,

A2 __ @)
oZ oz

Furthermore, according to linear algebra, for any matrix Z

z (4.15)

|z|=izjkzjk foranyk =1ton (4.16)
j=1

where z;is an element of matrix Z, and Z,is its cofactor. The cofactor Z,is the

determinant of the sub-matrix of Z that does not include row j and column k. Therefore,
Z,, does not contain the elementz,, . Again, according to linear algebra,

a4y
Zj = E’ (4.17)

where zj‘kl is the j,k element of Z™*. Therefore
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o2 _ g o

Z, = =|Z 4.18
or
02 _ 5
Z|Z" 4.19
oZ | | (4.19)

More generally, for Z raised to any power p,

a‘zp‘:amp _ | |—1M
oZ oL oL

It follows that for any variable x which influences the elements of the matrix Z,

=plzfz* (4.20)

So also,
olog(z) 10|17 __
azlk :E azlk o (422)
so that
0 IoaggZD _ (4.23)

or, for any variable x,

ABE) 5 BT 31Ty 222

= 4,24
OX j=lk=1 ﬁzjk OX  jak=a 4 OX ( )

For any nxm matrix Y, any nxm matrix X, and any nxn matrix Z,

tr(X'Z2Y)= Zizllkz‘?LXu WY = Z le Z, Y% =tr(ZYX') = kzl_Zi_Zlyki Xz, =tr(YX'Z)(4.25)
1=1 J=1K= =1k=1i =li=l j=

If m=1, then

tr (X'Zy)=x2Zy =tr(Zyx') =tr (yx'Z) (4.26)

Derivatives to trace functions can be derived as follows:

otr(X'ZzY , ,

%ﬂr(lpm):tr(lplmZY)=tr(ImZYIp) (4.27)

mp
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Where |; is a column vector of zeros for all elements except for element j, for which it has a

value of 1. Or,

atr(X'ZY)
oX

Similarly (taking some shortcuts in element/matrix nomenclature),

ar(X'ZY)
oZ

=ZY (4.28)

=tr(X'1,,Y) =tr(X'1,I)Y) =tr(1'YX'I,;) = XY’ (4.29)

and
otr(X'ZY)
oY
Using the above relationships for the following,
A(o-W'Q (60—
o
It follows that
o—log(h(¢|pm ) 1
ot 2
and incidentally,

0—log(h(¢|w.)) _ - (5— log(h(¢ [ u. €2))

= XZ' (4.30)

=(@-m(o-n) (4.31)

0+ (0~ kb1 (4.32)

jo-l = %Q*(n— O-wo-p)Q*

oQ o
(4.33)
The above tools also allow us to evaluate the following
oL, 10109 106 -yt -w 10l +S7)
—r=—= -+ ~ += — (4.34)
oQ 2 0Q 2 oQ 2 oQ
Since
alog(‘Q’1+§i’1‘) 1 a\gfuéﬁ\ 1 a\gﬂéf\ oy +531)
0wy, Cdet(@+SY) o, _‘Q‘H—éi‘l‘ ow, +81)  dw,
A1 \~1
=(a>}k1+5,-kli) (4.35)
or
alog(‘Q’1+éi’1‘ L gy o
=(Q+S7) 4,
o =@'+8) (4.:36)
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It follows that

o, 1. 1. N
preei i S U DIC RS (SRS (437)
and
I _ o [ﬂ_ﬁljg—l (4.38)
oQ o0Q

1_ 2 2 ' 1, o1\ At
— | e-G-wé-w-(@+s) o (4.39)

Because Qis symmetrical, the independent parameters which must be varied to minimize
the objective function consist of only half of the matrix. Let us define the lower triangular

matrix A containing independent parameters which relate to the elements of Q such that

Wy = ay
_ ) (4.40)
oy =3a;,for j=1tonk=1to j
or
Q=A+A"-diag(A) (4.41)
It follows that
0—log(h(¢|p.€2) _ o-log(h(¢[u €2))  d-log(h(¢|p,€2))
oa, 0w, 0,

@,
50~ |09(ah(¢ |k, €2)) _9—log(h(¢|u,<2)) 5(i.K)

;, 0wy

or in matrix notation,

o-log(h(¢| Q) _ Lowe{z 0-log(h(@ 1. Q)) _ . O-log(h(dln, 9)))} 4.43)
oA o0 o0 |

and equation (1.55) results. At the minimum,

a_d _, (4.44)
oA 0Q

Another trace relationship that appears in probability densities is:

tr(Z'R) =tr(A"*A'R) (4.45)
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Where A is the lower triangular cholesky matrix to a symmetrical matrix X, and R is also a
symmetrical matrix. Derivatives with respect to the cholesky elements is often desired, so,

or(AA7R) _ A otr(A"*A7R)
OA oAt
=2AATRA T =22 'RA?

=1 A1 -1 -1p’ -1
AT=—A (A R+A R)A (4.46)
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Appendix B: Positive Definite Properties
A matrix A is defined as positive definite if

X'Ax>0 (5.1)
for any vector x = 0. Consider a matrix constructed as follows

A=YZY' (5.2)
where Y is any non-zero nxm matrix, Z is an mxm positive definite matrix, so that A is an

nxn matrix. Then, with any non-zero nx1 vector X,

XAX =XYZY'X =V'Zv (5.3)
where

v=Y'X (5.4)
is a non-zero mx1 vector. It follows that

X'AX=V'Zv >0 (5.5)

and A is therefore positive definite. The sum of two positive definite matrices A and B is

also positive definite. Let

C=A+B

X'Ax=a>0 (5.6)
X'Bx=b>0

then

X'AX+X'BX=X'(A+B)x=x'Cx=a+b>0 (5.7)

Thus, matrices of the form

YY.ZY (5.8)
i=1

where Z; is positive definite, are also positive definite.

The second derivative of any objective function L evaluated at its minimum is positive

definite. This can be shown by considering that the derivative of L evaluated at its

minimum L is equal to O (otherwise, it would not be at a minimum/maximum):

oL
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And any small perturbation A6 from the minimum results in a change in L, called AL, that
is positive, otherwise it would be at its maximum, not its minimum. By Taylor series

expansion we have:

2 2
0<AL:(@j 20+ a0l 25| po=tae| 2L | a0 (5.10)
o), 2 (o0®) 2 (o8*)

and therefore the second derivative of the objective function evaluated at its minimum is

positive definite.
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Appendix C: The Fischer Score Matrix for Error Assessment in EM Problems

We wish to evaluate the expected value, over all possible data y and over an infinite number

of subjects m, of the second derivative of the objective function with respect to the

population parameters q = {6, Q} . The inverse of that matrix is then the asymptotic error

matrix to the parameters. We do this as follows. Noting that

p(y; 19) =1~ pi(y;. 61 a)dd 6.1)
where
PV, 61a) =1y, | 9)h(o| 1, Q) 6.2)
and
L=§—Iog(pi(yi|q))=—log(p(y|q» 6.3)
then

o*—log(p(y|a)), .| ;| 0" —log(p(y|a)) _
Ey( 20,20, IQJ—I[ 20,50, }p(qu)dy— (6.4)

~1 &°p(y|q) . alog(p(y|a)) &log(p(y|a)) ; 65
JyLo(qu) a0, o o }p(qu) 4 ©9)
But

-1 °p(y|q) o*p(y|q) clplylady a1 _

dy =— =X gy = — =— =0 (6.6
howim eaag "Y1VY =5 5 aoe  aagg o OO
SO
e, £=loatoty|a) m} _ ; 2=100(p(y19) 0=10g(p(Y 1) 41y - 67)
4,09, o0, 29,
3 a—loga(p(wq»a—log(p(ym»'q] 68)
q, o9,

We note that

aq.

J

aq
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m 0—log(p, (y; [Q)) |( m 0—log(p, (y; [Q)) | m
Iy[_z — j{z _— j p, (v;, la)dy = (6.10)
=1 oq i ip=1 aq, ;=1
m-m a_Iog(pi (yi IQ)) a_Iog(pi (yi |Q)) m
PN — ————T1 p, (v, |a)dy (6.11)
i, =li,=1 8q j 8qk iy=1
Since
[, pi(yila)=1 (6.12)
then
d—log(p(y|q)) o—log(p(y|a) . |-
E, 1
aq; o0,
m o 0—log(p, (y; |a)) o—log(p; (y; [a)) m
I — ————T1 p,(y, a)dy = (6.13)
ii=1i,=1 15, j aq, iy=1
m m o—log(p; (y; 19)) 0—log(p; (y; 19))
2200 S = —=p, (y, la)p, (y, la)dy, dy, +  (6.14)
i =1 :2 ;Il 177k 8qj qu
m  0—log(p; (Y, o—log(p. (y.
3, 9Cp: (v: 1)) O=109(P (Y, [A)) 1, (4 | ey, (6.15)
i=1 8qj 8qk
But
m m o—log(p, (v; |9)) o—log(p, (y;, |a)
Z Z J.yA Iy. — — P (Yil |a) P, (Yi2 |q)in1in2 =
i, =1 :2 ;1 1772 8q j 8qk
m m | 0-—log(p; (v, 9)) o—log(p, (y;, |a))
ZZ .[y. — pil(yillq)dyi1:||:.[y. — P, (Yi2 |Q)dyi2 =(6.16)
i, =1 :2;1 L 1 Eiqj 2 8qk
mom | op; (v, 19) op, (y, |d)

i 1 PV 1V g | 2 6.17
iél IZZ::]_ _th aqj y|1:||:'[yi2 aqk y|2:| ( )
m om0 iy \Yi dy; || ol,, P, (y; dy;

o fy, P, (v, [a)dy; || of, b, (y,, [a)dy;, _ (6.18)
Wil | aq, od,

3 ﬁ}{ﬁ}o (6.19)
1Tl | 0q; || A,

Furthermore,
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o-log(p(y: (@) _ 1 o-p(yila) _ [LIop (v 0la)/ dalde

aq; pi(y; ) aq; pi(y; la)
[Z.[0—log(pi(yi,¢ 1)/ oalp (v, la)de _
pi(yila)

JZ.[0—log(p;(y;, ¢l @)/ dalz(¢|y;,q)d¢ =

E¢(6—Iog(pi(yi,¢|q)>|yi,qJ

oq,
So that
ifyi a_log(api (y; [a)) 0—log(p;(y; 9)) b, (y, | q)dy, =
i=1 qj 5qk

E{gE{a_|og(gi;_yi,¢|q)) |yi,qJE¢(a—|og(gi;yi,¢|q» wqu'q}
iE¢(a—log(gi<yi,¢|q>)|y“qJE‘b(a—log(giq(yi,¢|q)>|y“q]
SO

. (a—log(p<y|q»a—log(p(y|q))|q]:

y aq. o

q; O

iE{a—log(ggyi,Mq»|yi,q]E{a—log(giq(yi,¢|q>)ly“qj
We define
" :E¢[a—log(rgéyi,¢|q»qu

and is the contribution of data from individual i to the total gradient g, where

at the minimum.

RJ Bauer

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

The gradient components are evaluated by methods of differentiation of matrix algebra.

M o1 (F
a=——"Q — W
gue ae ((h ul)
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Now, for the lower triangular part of the covariance matrix,
_ -1 A R -1 O -1
JiLoweriary = LOWEr| Q(Q-Q)Q —Edlag(Q Q-0)Q) (6.28)
To summarize,
m -1
Var(qq') = (ggig{) (6.29)
where igig{ Is known as the Fisher score matrix.
i=1

One caveat is in order. Note that the structure of the expected value second derivative can

be written in the form GG'where G is a kxm matrix having m column vectors of g, of size

kx1, and k is the total number of population parameters. If the number of subjects m is less
than k, then the kxk Fischer score matrix has only a rank of m, and the matrix is not
invertible. Thus, this manner of constructing the expected value second derivative only
holds true as the number of subjects m as well as the number of data points per subject
approaches infinity. Put another way, increasing the number of data points towards infinity
for each subject, while having only a limited number of subjects, especially k<m, will not
lead the Fischer score matrix to approach the expected value second derivative. For such
conditions, the exact second derivative should be evaluated as given in appendix D.
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Appendix D: The Exact Second Derivative Matrix for Error Assessment

The second derivative matrix for the population parameters and the population variance
parameters, when the population parameter density is normally distributed, is determined as
in the previous appendix, but without eliminating the terms that are canceled when taking
the expected value over all y. For the second derivative for a normal population parameter,
we note the following:

aolza_[_@j:a_{z( Jalogémz(q)dd,ﬂ

oqoq' oql oq aq| iz
m 0° —log(p;) —log(p;) &—log(p;)
Ef—aqaq (@)do - ZI p P z;(q)dé+

N -~ (7.1)
B[ 1212R) g | 120 g |

=1

where we let g represent the vector of all population parameters and variances, and

P =pP(Yi,9[0,,.1(0,).Q)=1(y; 14,6, )h(®|1(6,) Q) (7.2)
_ 0=log(p,)
9 =]J o z,(q)d¢ (7.3)

We already know the first derivatives contributed by each individual i. For mu modeled

thetas,

_Iog(pi)__ M o1 .

o= ) (7.4)
Also,
%- (i BV Q7 (-0 )~ Q7 (7.5)

hiz
where | ) is a vector of 0’s for every element except for element j;, which is valued at 1.
Also,

C(jl’ Jz) =1 for jl * jz

7.6
=1/2for j, =], (7.6)

Finally, for non-mu modeled thetas, a finite difference formula is employed:
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~log(p) _ [109(p,(6,,; +A6,,))~10g(p (6, ~A6,)] o
0,,; 2A0,,, '
We now derive the second derivatives
o [ 6—log(p. 0 L, Ou. on! )
g( p|) p‘l Q 1 p‘l _ p’l l(¢_ui) (78)
aem 6@” 6@” 849/”.2 aam 86’
o> [ o—-log(p.) o o o
Zi=c(ij, i,)c(ja., i Q.. +1. )Q7l. +
aa)-- [ aa)hjz (Jl JZ) (J3 J4) n ( Jj3la 1413) jo (79)
2C( b Jz)C( J3s J4)| Q_l(l 13,4 ials )Q_l((d)_ui)(d’_”i)'_Q)Q_ll i
0 0-log(p,) O =
=c L Q7(I )Q - 7.10
aa)hk aeﬂh (JZ J3) aeﬂh ( J2]3 13]2) (¢ “’|) ( )
Also:
—log(p) __ 0 [a-log(p) ) _
ae#hae j 69#11 ae#jz
—log(p; (4, +AD,, .0, +A¢9#j2))+log(p,(9 +A0,,;.0.,; 6?#1.2)) 11
4A9#11A0#12 .

—log(p;(0,,;, —A0,,;.0,.;, +A0,,; ) +109(p;(0,,;, —Ab,,;.0,; —Ab,;))

#! #h !

4A 0#1'1 A H#Jz

And, since 0, show up only in the h() portion of the joint density, and ©_, show up only in

the I() portion of the joint density

0 [a—mMpo}ZO

ae/‘jl 60‘#]2

Defining the individual subject central moments:

4 =174, —14,)2(d1y;,0)dd

Ao =17, — 14, )@, — 14, )2(dy;, a)d O

B, = 17 (B — 14, )@, — 14, )@, — 14,)2(d |y, Q)
|(rj'zr3r4_jm(¢& :un'l)(¢r2 /ulrz)(¢r3 :u|r3)(¢ _/uir4)z(¢|yiaq)d¢
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@) =[" 5,5, 2(6]y;,q)dd (7.17)
oid =17 (8, — 14,)3,,2(d1Y;, A)d (7.18)
o =178, (8, — 14, )&, — 14,)2(0]y;, Q) (7.19)
where

_ 0-log(p;)

in aG#H (720)

and the overall central moments:

g = Z¢i.(” (7.21)
mi=1
g == ¢i.$fr§ (7.22)
1 m
¢r5::2)r3 = Z éf’f’r)z@ (723)
mi=t
1 m
¢é:’12)r3r4 = z ¢|E’frzr3r4 (724)
mi=1

We now have the following:

0’0 o Mr1 1 2 alulm 4 ’uiﬁ W 4
8!9 8(9%” 5%51515169 rlrz( D ¢'r2r3) L 8l9ﬂjz %%51819 89”1 r1r2¢'
z g'e; it g'gx i
(7.25)
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0’0 L.
ow. . 0w B mC( Jl’ JZ)C(13, J4)(a)J1 +a)jlj4a)isiz)

i3 lad2
J3la iz

+m2C(J1' JZ)C( J3’ J4)a)]J (Z z a)JArl( éfz) rlrz)a)rjj-z

+m2C(Jl’ JZ)C(J,’_’,’ J4)a)]1]4 (Z z a)]3r1 (¢r§32) rlrz) rjz

1_2

-me(iy, )e(s )2 3 2 2 fats O3 O O O (7.26)

=1n=1n=1r=1

+mC(Jl’ JZ)C(J3’ 14)2 Z z Z Jr1¢é?z) P3P 1314

r=1r,=1r=1r,=1

+me(y, )i Ja) X 2 2 z o5 0 0o,

.
n=lr,=1r=1r,=1 2da

1

—mC( iy JZ)C(JS’ J4)a)h]2wj_314 +Zgl(o Gio,

iz 3ia

0’0 Oty - B
B ——————] C( Jz, J3)Z z L I(I'i)J(wrlia)jajlzz +a)ﬁ}3a)jz];’2)

Ow,,; 00 iln-1{ i-100,,
1213 o (727)
T © 5 ,Ll”,4 3 _
_C(Jb JS)[IE;.QZ—‘& 69 r4r1¢|(r1rzr3] Jj‘z Jahs a( JZ! J3)gc ]2J3 Z 9,9 glezJ3
where
Z Jio,, (7.28)
etcetera. And finally:
For the non-mu parameters:
0 _n. & -log(p), "
= T~~~ d ZD'(Z) + . 7.29
69#1169#J2 EJ. 69 8(9 (q) ¢ z thl2 Eglgﬁh ge#]z ( )
0’0 @
B 7.30
26,,00,,, zlz ae @1a0 + 250, O, (7.30)
82—0 (3) -1 m m 5 31
C(Jz, Js) ZZZCOJZH 'hﬁrza)fzjg wjzjgzgiﬁ j +Zgi9 j giwjj ( . )
aa)izjzaeﬁh i=ln n j=1 i i -k 2i3

At the minimum of the objective function,
9y, =0 (7.32)

wit
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9y, =0 (7.33)
b = @y, (7.34)

we then obtain following simplifications:

520 ;U.r1 @ -1 a’uiﬁ
00 _ 10}
80 . 8C ggue ng %%rzz—:lgz—:luz—:l 80 ﬁl’z (¢i”,2r3 I’zrs) [ agﬁjz
(7.35)
n /‘iq &)
2529 YRR

i=lnn 180 69

50 .
ow. . Ow - mC( Jl' JZ)C( J3' J4)(a)hlz Jala + a)hlsa)hlz 1114 Jalz)
i a Iz (736)

_mC(Jl’ JZ)C(JS’ 14)2 Z Z z "(1?2)"3"4a)h"la)lzrza)lsrsa)hrz: zglw

n 1|'2 1I'3 1|’4 J1]2 13J4

0’0 Othy
= C(JZ’ JS) z z [ ﬂgl)](a)ﬁlz a)Jsrz + wﬁthzrz )

8601-2]359 i n=1r,=-1 |_189
(7.37)
HE lulr4
| EE S i S
0’0 m 0% —log(p;) 5 m
=2 o - u(@)dé- zw,“ +2 0. 9y (7.38)
619#j189#j2 i=1 8(9#1.189#] )2 i iy S Ve
0?0 Ol e
= ' + 7.39
00,,00,,, grzlae g Zg.g 2 90, (7.39)
_d0__ =c(] J)[Zziw a“)co‘}m 0; (7.40)
aa)jzj386#h 21 J3 v Joh T Ihh T s 10, Jio,, .

Let us see that, if we take the expected value over all y, and as the number of subset of
subjects m; sharing a particular set of covariates (and therefore sharing the same ),

approaches infinity, we should obtain the results in Appendix C. First, note that:
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yé .(rf’r)z%p(YIQ)dY——ZH,w(% e ), = 1, ), — 14, )2(d ]y, @)dp(y | q)dy =

(7.41)
mimy 1.6, — 1)@ — 1)@ — )1y, | 9)N(] )y, = (7.42)
EOAMCEVR RN CERLGLINIADEE (7.43)
= 3 7 (0, = 40, = 140, 1 I | CDI0= (7.44)

Since h() is a multi-variate normal density, so therefore the 4® is the skewness of a

1 P1eY

normally distributed variable:

Q(ﬁsrz% _ (7.45)
Similarly,

4 =0 (7.46)
and

L. Pl la)dy =40 =0, 0, +o, 0, +o,0, (7.47)

is derived from the kurtosis of a normally distributed random variable. We may now make

the final simplification:

0?0 J
B g 2 |~ 2900 (7.48)
’ aeﬂjzagﬂh =1 ”2

0°0 m
E| =——— |- 2%, % (7.49)

Ow;; 0w, | = o

0°0 m
Bl o —— |29, 7.50
’ 6“’1'21360/1J Egleﬂhgl%m (7:50)

These results are expected based on the general proof for the expected information matrix

given in Appendix C for any population parameter density.

For population mixture parameters, the second derivatives are simply:
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0’0

—Ya. q’ 7.51
20,00, & Je.9. (7.51)
00 g4 g (7.52)
00,00, &%, '
ASHIE P (7.53)
00,00, 50090 '
00 80 g (7.554)
00,00 i T '

For Three hierarchical stage analysis, the second derivative matrices would have added to
them:
0’0, _
(08)°

Q' (7.55)

for all theta parameters (mu or non-mu modeled). For inter-subject variance components:

02 00 o C N A -
{ P ]=pZWC(J1, )iy iV Q7 +15,)Q7 +

Oay;, \ 0y, (7.56)
ch( jlv jz)c(jsv j4)|,le_1(| Jala +1 j4j3)Q_l(QQ - ZWQ)Q_lI i
Similarly for Sigma parameters, we add the following:
o | o0, o o B
=0.2.¢(j, ,)C(ja, I 27 (1. . +1. XTI, +
azjsjA {azhh J pZ z (Jl JZ) (13 J4) N ( Jala 1413) Jo (757)

20,¢(Jy. ip)eCs, J)V, B, +1,,)E 4 (E, -2, D)2,
If we designate the exact second derivative as described in this appendix as matrix R , and

the Fischer score matrix (appendix C) as S, then we can construct a variance matrix in a
manner similar to NONMEM:

Var(qq) =R 'SR (7.58)
The R matrix is not always numerically positive definite. For Monte Carlo assessed
information matrices, the NONMEM program passes the matrix through a positive

definiteness filter that makes small adjustments to the eigenvalues of R, if necessary.
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Appendix E: Adjustment of Error Matrix for Constraints and Non-Positive
Definiteness

The user supplied subroutine CONSTRAINT allows the user to impose constraints on the
population parameters. Therefore the error matrix must be adjusted to account for these

constraints, and it is done as follows.

Let the constraint matrix W be defined as a matrix with elements:

oa.
W, = A (8.1)
aq;

where ¢; is the jth population parameter (or Omega variance), which could have a

dependence on some other population parameter g;. If no dependence exists for parameter |,
then w;=0 for i= j, and w;=1. If no dependencies are defined for any parameter, then

W=I, and no correction occurs. The Error matrix is corrected as follows:

For the R matrix type covariance:

Var(qq') = W' (WRW') " W (8.2)

The logic behind this equation is as follows. Parameters that are dependent on other
parameters are considered secondary parameters, in contrast to the primary parameters that
are independent of other parameters. The (WRW')_lterm creates the error matrix with

rows and columns pertaining to the secondary parameters zeroed out, while the errors of the
primary parameters are adjusted to account for the constraint on the model. This matrix is

then multiplied on either side by W and W, to fill the zeroed secondary parameter rows and
columns of (WRW')_l with errors from the primary parameters, in accordance with their

dependencies on the primary parameters. The resulting error matrix therefore contains
errors to the primary as well as secondary parameters, and this matrix is placed in the var

table by the poperr command, and the varc table by the poperr_corr command.

Similarly for the S matrix:
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Var(qq') = W' (WSW') " W (8.3)

For the RSR matrix:

Var(qq') = W'(WRW') W |s| W (WRW') " w |- 80
8.4

W' (WRW') ™ (WSW')(WRW') ™ W

If a particular parameter is constrained to a fixed value, then W will be singular. The matrix

WRW' is therefore inverted by the Jacobi method of extracting eignvalues and eigenvector

matrices. That is, for any symmetric matrix A, the Jacobian process decomposes the matrix

to:

A =EAF’ (8.5)

where A is the diagonal matrix of eigenvalues and E is a matrix of eigenvector columns,

which has the property:

E=E" (8.6)
The generalized inverse of A is then obtained as:
A=EAFE (8.7)
where A™ has diagonal elements of
A7, -1 for |4]>0
4] 8.8)
=0 for |4]=0

In addition, the R matrix itself can at times be not positive definite (has negative
eigenvalues), because of the imprecision of evaluating this matrix using random sampling,
in the manner decribed in appendix D. It has been found in practice that using the absolute
value of the eigenvalues to evaluate the inverse for Monte Carlo constructed information
matrices effectively yields satisfactory error matrices. This is because negative eigenvalues
are usually close to 0, and arise in the least important portions of the matrix.
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Appendix F: Obtaining Analytical Derivatives of Likelihood with Respect to Cholesky
of Sigma Parameters.

The following is used to provide more rapid analysis for the importance sampling, direct
sampling, and SAEM methods.

We concern ourselves with the derivatives of the likelihood:
1 o 1
log(1(y: 14,6,,)) = - (v, =)V (v, =)+ log ([ |) (9.1)

With respect to the Sigma parameters. Consider that the Sigma parameters are involved in
the construction of the residual variance matrix as follows:
V =HXH' = HAA'H’

9.2)
Where A is the cholesky of X . Itis the elements of A that are actually varied to optimize
the objective function, therefore we wish to determine the derivative with respect to the
elements of A .

First derivatives:

—~0log(I(y;19,6,)) 1 LoVt 10l0g(|V; |} _
EY) =E(yi_fi) EY) (yi_fi)+ET_
ki ik jiky
9.3)
1 oV, 1 oV,

—=(y. —f)YVI—Vy —f)+=tr| V1= 9.4
2(y| |) i abjlkl i (yl I) 2 [ i abjlklj ( )
N OB AN ©5)

o o o
T AN A\ AN G nar,

a/’lekl aijlkl a/ljlkl a/’lekl (9 * 6)
{6(J, i) A, +(K, j)4, for j=1ton, k =1ton}

Second derivatives:

2" 10g(1(y, 16,6,)) _
aﬂ“izkz aljlkl

(9.7)
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2
(yi _fi ),\/i_l VI Vi_l aVi \/i_l(yi _fi ) _1 (yi _fi )’Vi_l o VI
oA J2ka oA kg 2 oA Joka oA ik

2
L [vil—avi J—Etr(vil My M J (9.8)
1kl

\/i_l(yi _fi ) +

+—tr ,
2 04,4, 04, 2 0, O,
2 2 '
N 0% g AN ©.9)
aﬂ”izkz aljlkl aﬂ’]zkz aﬂ/jlkl aﬂ”izkz aljlkl
oz OAA' OA OA' OA OA’
= =1 b, 1 0 =
1M 212 202 141 (9,10)

= = +

JZkZ J1k1 aAJZkZ éaZ‘/jlkl aijlkl a/ljsz aﬂ’jzkz a/’lekl
161, 1)8(k; k)8 I, k) +6( ], 1,)0(Kk,, ky)S( ]y, k) for j=1ton, k=1ton}

Since the Sigma parameters are only in the data likelihood portion of the conditional

OA;\ OA,

density, then
0—log(p(y; 916, 1:,€2) _ 0—log(p(y;, o] 4; . 1i £2)
00 O
- (9.11)

#
_ 0-log(I(y:, &1 A, i, €2)

aﬂ’jlkl
which is used in equation (1.48). The Sigma-like theta parameters cannot be processed in

this way, because the user defines sigma-like parameters in H, with unpredictable functional

relationships to that theta.
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Appendix G: Degrees of Freedom Assessment for OMEGA Priors

The heuristic justification for Mats Karlsson’s formula:

N = Z(EJ (10.1)

Where N is the number of subjects of the previous analysis, Q2 is an omega diagonal element,

and Eis its standard error (the error in the estimate of Q), is as follows.

For a normally distributed random variable x, with mean 0, and variance Q, the following
holds:

[xp(x]0,Q)dx=X=0 (10.2)

Define the random variable y:

y=(X=X)? (10.3)

So

[(x=X)>p(x]|0,)dx = [ yp(x|0,Q)dx = ¥ =Var(x) = Q (10.4)

Finally, the fourth central moment is:

[(x=%)* p(x]|0,Q)dx = [ x* p(x| 0, Q)dx = 3Q? (10.5)

Then,

Var(Q) = STD(Q) = [ (y— ) p(x| 0,Q)dx = [ y* p(x| 0, Q)dx — 7 = (106)

[(x=%)* p(x|0,Q)dx — y* =3Q° - = 20)?

For N normal random deviates, the variance of the estimate of its average variance is

Var(Q, ) =Var(Q) /N =SE*(Q,) = E2 (10.7)

Thus,

E, = 2 (10.8)
N

That is, the standard error of the variance is related by the above equation, as long as the N
items that contribute to its assessment are normally distributed. This is the best error in the
inter-subject variance that can be expected in a set of parameters from subjects with rich
data for each. In a population analysis, however, some subjects with few data points will

not have much information for their parameter. However, population analysis yields
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empirical standard errors of Omegas E, , that properly reflect the total information available

for the Omega. Thus, given E,, the “effective N” can be evaluated as:

N = Z(EJ (10.9)

Q
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Appendix H: Technical Note on NonParametric Analysis

Perform a standard FOCE analysis, to produce vectors of 7,, i=1 to N, at the mode a

posteriori (MAP estimates, or empirical Bayes estimates (EBE)) for each subject i,

evaluated at the final population parameters (0,€,X), where N is the number of subjects,

and N is the number of support points. These best fit etas for each subject serve as the

anchors, or grid points, for the non-parametric analysis, to be evaluated by subroutine NP.

In the subroutine NP, using data of subject i, and grid point n, (which may have come from

EBE of subject k of the FOCE analysis for k<=N, or random creation of extra support points,
for N<k<=Ny) , the data likelihood is evaluated:
I(y;,n.0,X) (10.10)

by subroutine OBJ3, and an initial prior (population density) is evaluated as
1.,
() = eXp(_E nkﬂnk) (10.11)

7(m,) is stored in vnonpara(1), and file system of subroutine DATS.

Like other optimization methods, non-parametric estimation is reiterated, until the objective
function no longer changes. At any given iteration of the non-parametric optimization, the

following is assessed.

For each subject i with y;, the set of n that yields the largest posterior density is evaluated,
1(Y;, 0y, 0,2)z(My, ) 2 1(y;,m,, 0, E)z(m, ) for all k =1, N, (10.12)
where m,, produces the largest value of the posterior density for subject i. I(y;,n,,0,X)is
stored in VNONPARA(3). The m is stored in IC(I), and I(y;,n,, ,0,X)z(n,, )is stored in
X79(1). The final m; is stored in VNONPARA(5).

The objective function is evaluated for a given iteration as

0=-23l0g(X; 1, m,,0.2)z(n,) (1013)
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where summing the probability density over all discrete positions n;, j=1 to N, is the non-

parametric or discrete density equivalent to integrating over alln for a continuous density

function, to obtain a marginal density for each subject i. These marginal densities are in turn
multiplied among all subjects i to N, to obtain the joint marginal density. Since the objective
function is typically -2log(joint marginal density), it is more convenient to sum the log of
the marginal densities among all subjects i, i=1 to N, as shown in the above equation. O is
stored in OBJNP, and

N,
El(yi’njie, X)z(n;) (10.14)

is temporarily stored in U(l).

Normalized posterior densities are also evaluated:

p.(n.) = N!(yi N, 0,X)7(n,) (10.15)
2 1(y;,m;,0,X)z(n;)

j=1

The 1(yir i, 8, X) term is stored in VNONPARA(2).
,:

The posterior densities are normalized in the sense that
NS
kZ_l pi(n)=1 (10.16)

as required for a proper probability density of n. The final p,(n,) are stored in row subject

i, column IPROB(K), of the .npi file. These are averaged among all subjects at a given
anchor point n, to obtain a posterior, or empirical, assessed “weight” at that anchor:
1N
p(n,) = W § pi(my) (10.17)
The final values are reported as subject 0, IPROB(K), in the .npi file.

If the following test is satisfied:

S, =‘M >e, (10.18)

z(n,)
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for some small optimization criterione,, then p(n,) serves as the new prior density for the

next iteration:

() =p(n,) (10.19)

If the test fails, it means that p(n,)is no longer changing sufficiently with respect to its
previous value z(n, ), and the updates no longer need to be performed for future iterations,

for that n, .

When for all k the following is satisfied:

o <¢gfork=1toN (10.20)

for some small &, then the non-parametric optimization is ended.

The following final information is stored:

7z(m,)is stored in VNONPARA(1), which is retrieved for each k via sequential calls to
subroutine DATS.

N
n= I(Z::lnkﬂ(nk) (10.21)
is stored in EXNPETA(), EXETA().
Q=3 (n -Wn—'z(n,) (10.22)

is stored in COVNPETA(), COVETA().
The expected values EXNPETA(j), and expected covariances COVNPETA(j,K) are
reported as ETA(j) and ETC(j,K), respectively, in the .npe file.

If INPETA/=0, then

n,, is stored in VNONPARA(2) to VNONPARA(1+neta), where neta is the eta vector
length, retrieved for each subject i via sequential calls to subroutine DATS, and also placed
in the .npd file, labeled as ETM(j), pertaining to eta(j). That is, the grid point eta vector that
best fits subject i is stored in record i of the DATS storage system (the entire DAT8 storage

contains Ns records, where Ne>N).
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If INPETA=0, then cumulative distributions are stored as follows:

Clny)= > a(w) (10.23)

i€y <)
is stored in VNONPARA(1+j), retrieved for each support point k sequentially from
subroutine DATS, and also placed in the .npd file, labeled as CUM(j). Here, 7, is the jth

element of the eta vector belonging to support point i. That is, C(r,;,)is the sum of
densities z(m,) for which the jth element of eta is less than or equal to the jth element of
n, (Which is 7, ;). Intumn, n, ., is stored in VETA(]), retrieved for each support point k

from subroutine DAT4, and reported as eta(j) in the .npd file. The z(n, ) for support point k
is reported in the .npd file in the last column, labeled as PROBABILITY.

See references [16] and [17] for information of supplementary support points and

bootstrapping.
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Appendix I: Note on TNPRI

The statistical basis of the frequentist method (TNPRI which stands for Total Normal
PRIlor) ) for priors is that of sampling about some mean, with some measure of
dispersion, but not requiring a rigid rule of a particular distribution, other than that it has

some semblance of normal distribution where this makes sense.

Regarding THETAS:
Let THETA be the theta estimate, and SE be the standard error of the theta estimate.

When no boundaries are given in the STHETA record, then $SIML will generate random
sample thetas that are normally distributed with mean THETA and variance SE?, and
with suitable correction for correlation between theta(1) and theta(2), etc., in accordance

with the variance-covariance matrix of the estimates.

When boundary is set, an intermediate variable normal deviate v will be generated with
mean log(THETA), and variance (SE/THETA)? Again, the random deviate v for each
theta(1), theta(2), etc., is corrected to account for correlation (covariance of estimates)
between theta(1) and theta(2), etc.

This log-normal deviate v is then transformed to a final theta sample w as follows:
Lower bound only:
w=exp(v)+LB

(range of v(-inf,+inf) transposes to range of w=(LB,+inf))
upper bound only:
w=ub-exp(-v)

(range of v(-inf,+inf) transposes to range of w=(-inf,UB))

Lower and upper bound:
w=LB + (UB-LB)*exp(V)/(1+exp(v))
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(range of v(-inf,+inf) transposes to range of w=(LB,UB))

When SE/mean is small, then the resulting distribution of the thetas is nearly normally
distributed with mean THETA and standard error SE, as reflected from the original
estimates and standard errors. When SE/mean is large, this creates considerable non-

normal distribution in the samples.

Regarding OMEGAS (and Sigmas):

In the case of the OMEGAS, using, the mean OMEGA and its standard error from a
previous problem, the TNPRI method transposes this into its cholesky form and its
equivalent standard error, so that each element in the cholesky matrix has the appropriate
“mean and standard error”. Transforming the mean omega elements and their standard
errors into the equivalent mean and standard errors for the cholesky elements is not
trivial, but it can be done using matrix algebra and the principal of propagation of errors.
The principle of propagation of errors itself is accurate only as an asymptotic rule, that is,

if the error is sufficiently small, then it provides reasonable results.

Also, while having omega elements be normally distributed is not reasonable, the
underlying cholesky elements can be modeled as normally distributed. Further, the off-
diagonal elements are allowed to be positive or negative, and these elements are sampled
as a strict normal distribution. The diagonal elements of the cholesky matrix can also be
normally sampled, but with the proviso that the sample be positive. Thus, as with thetas,
if the standard error is small relative to the mean value, very few if any samples will be
negative. If the standard error is large, then a great many samples will end up as
negative. To avoid negative values altogether, the additional transformation that is done
for the cholesky diagonal is to generate a random sample as x=log(cholesky
estimate)+(se of cholesky estimate)/(cholesky estimate)*r, where r is created as a ~N(0,1)
deviate, and then exponentiate x, and this is the cholesky diagonal sample. When
se/mean is small, exp(log(mean)+SE/mean*r) is very nearly normally distributed with the

appropriate mean and standard error.
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Next, the cholesky matrix is multiplied by its transpose to create the random OMEGA
sample, with the result of being positive definite, and having the appropriate mean and

dispersion.
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Appendix J: T distribution Sample Generation

The tdist6 and tdist7 examples described in intro7.pdf use the fact that two normal random
deviates can be converted into a T distributed normal random deviate. The derivation is as
follows.

From Numerical Recipes reference [19], the Box-Muller algorithms for creating a random

normal deviate pair is as follows. Two uniform random deviate pairs u and v are generated,

and modified:
U=2u-1 (12.1)
V=2v-1 (12.2)
W =U2+V? (12.3)

Values of W>=1.0 are rejected.
Normal deviates x and y are generated as follows:

x=U[-2LOG(W) /W (12.4)

y =V/-2LOG(W) /W (13.1)

According to [20], a t-distribution sample of n degrees of freedom can be generated as

t= % , /n(w-z’n -1) (13.2)

This suggests that rather than starting with uniform deviates u and v, one can use normal

deviates x and y to generate the t deviate:

x* +y? =-2log(W) (13.3)

W = exp(—%(x2 + yz)j (13.4)

X :U\/—ZLOG(\N)/W _ U
N J-2LOGW) W

So,

t= ﬁ\/n(exp((xz +y?)/n)-1.0) (13.6)

This transformation is used in the tdist6 and tdist7 examples.

(13.5)
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From the alternative method of the Box-Muller method ([19]) of using trigonometric

functions, we note that uniform deviates u and v can be generated from the normal deviates:

u= exp(—%(x2 + yz)) (13.7)
1 aly 1 4 X
v=—itan| = |=—c0s"| —= 13.8
2 (Xj 2r [./X2+y2] ( )
Therefore,
t=cos(2zv))/n(u?" -1.0) (13.9)

which is a means of generating a t sample using a uniform deviate pair, without having to
reject uniform random samples, and is the method used for t sample generating function

TDEV?2 in ..\source\GENERAL.f90, for general degrees of freedom n.
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